
Compressed Linear Genetic Programming: empirical parameter study on the
Even-n-parity problem

Johan Parent
Vrije Universiteit Brussel

IR, ETRO
Pleinlaan 2 1050 Brussel,

BELGIUM
johan@info.vub.ac.be

Ann Nowé
Vrije Universiteit Brussel

Faculty of Science, COMO
Pleinlaan 2 1050 Brussel,

BELGIUM
asnowe@info.vub.ac.be

Anne Defaweux
Vrije Universiteit Brussel

Faculty of Science, COMO
Pleinlaan 2 1050 Brussel,

BELGIUM
adefaweu@vub.ac.be

Kris Steenhaut
Vrije Universiteit Brussel

IR, ETRO
Pleinlaan 2 1050 Brussel,

BELGIUM
kris@info.vub.ac.be

Abstract- This paper presents a parameter study of our
Compressed Linear Genetic Programming (cl-GP) using
the Even-n-parity problem. A cl-GP system is a linear
genetic programming (GP) which uses substring com-
pression as a modularization scheme. Despite the fact
that the compression of substrings assumes a tight link-
age between alleles, this approach improves the search
process. The compression of the genotype, which is
a form of linkage learning, provides both a protection
mechanism and a form of genetic code reuse. This text
presents a study of the different parameters of the cl-GP
on Even-n-parity. Experiments indicate that the cl-GP
performs best when compressing a small fraction of the
population and the length of the substituted substrings
is rather short.

1 Introduction

Genetic algorithms (GA) and genetic programming (GP)
search the space of possible solutions by manipulating
the solution representation using genetic operators like
crossover and mutation. Variable length representations al-
low the structure of the solution to evolve but are still re-
stricted to the genetic primitives used to build the solutions.
If GA and GP are to address more complex problems it be-
comes necessary to automatically adapt the representation
to the problem. Modularization adapts the representation by
extending the set of genetic primitives with problem specific
functionalities. In this text we present a low level modular-
ization technique for linear GP system based on compres-
sion. The presented compressed linear GP (cl-GP) attempts
to identify usefull combinations of genes in the population
and makes these available as new primitives. The search
process benefit from these new functionalities to progress
more quickly through the search space.

The assumption of tight linkage between individual
genes (cfr substrings) was made with the use of a linear
representation in mind. The representation of a linear GP
system is similar to that used by a GA [4][11]. Following
the approach used by [11] the cl-GP loop consists of a stan-
dard (generational) GA on top of which a problem specific
evaluator is placed to simulate the program execution.

This paper is structured as follows Section 2 describes
related work, In Section 3 the compression/substitution
scheme is presented in detail. In Section 4 the experiments
used to evaluate the impact different parameter settings of
our algorithm is presented. Results are presented in Section

5.

2 Related work

The benefits of modularization for the GP search process are
well known [9][1][7]. Modularization fosters code reuse on
one hand, and on the other hand allows the GP system to
identify and use high level functionalities. Different modu-
larization strategies for tree based GP have been explored.
Automatically Defined Functions (ADF) is the most promi-
nent approach. It consists of a main tree which evolves to-
gether with a predefined number of additional trees. Those
additional trees can be called from the main tree and, as
such, complement the set of primitives available to the GP
system. An alternative method is encapsulation. It replaces
a subtree by a new symbol, this symbol is added to the prim-
itive set of the system [6][9]. The symbol created in this way
corresponds to a terminal/leaf node as it does not have any
arguments. A third method, module acquisition, works in
a similar fashion, but can create both function nodes (mod-
ules) and leaf nodes. If the depth of the selected subtree
exceeds a certain threshold module acquisition removes the
subtrees below this level. In this case a function node will
be created by adding an argument for each removed subtree
[2][3]. Although modularization has mainly been of interest
to the GP community it is of course related to the search of
building blocks in a GA. In [5] a module acquisition algo-
rithm is presented which exploits modularity and hierarchy.
Despite the use of a variable length representation, the prob-
lem of modularity is approached purely from a GA point of
view. A module is defined as a combination of gene values
that maximize the fitness. For example, if for the genes g1

and g2 the combination g1 = v8 and g2 = v3 dominates
all other combinations of genes value, then it is considered
a module. As in the work of [5] our algorithm relies on a
substitution scheme but with notable differences in the sub-
stitution strategy. Another difference is that the compressed
genotype scheme of the cl-GP was imagined to be used in
a linear GP system. The linear encoding of a GP program
exhibits a much tighter linkage than is the case for standard
GA problems. This assumption is important as it justifies
the use of the simple compression scheme which supposes
a strong dependency between adjacent values.

0. Choose initial population
1. Evaluate each individual’s fitness
2. Repeat
3. Compress individuals
4. Select best-ranking individuals to reproduce
5. Mate pairs at random
6. Apply crossover operator
7. Apply mutation operator
8. Decompress individuals
9. Evaluate each individual’s fitness
10. Until terminating condition

Figure 1: The pseudo code of a standard GA with 2 extra
steps. Step 3 adds the compression of the individual prior
to the creation of the next generation. Step 8 decompresses
the individuals so that their fitness can be evaluated.

3 Compressed Linear GP

Our cl-GP algorithm consist of the compressed genetic al-
gorithm (cGA) together with problem specific evaluator.
This section presents the cGA which consists of a GA ex-
tended with a substitution/compression based modulariza-
tion mechanism. Figure 1 contains the pseudo code for cGA
loop. The cGA adds compression and decompression steps
in the GA loop. Compression is applied to the genotype
of individuals in the population prior to the creation of the
next generation. As a result the search process occurs using
a compressed representation. After the creation of the next
generation the individuals are decompressed so that their fit-
ness can be evaluated.

The schema theory models the probability of disruption
by crossover is proportional to the defining length of the
building block. Compression can shorten the representation
of the building blocks thus reduce the chance of disruption
by crossover. The cGA uses a substitution coder to com-
press the genotype in an attempt to protect substrings that
represent building blocks. Protecting the building blocks
guarantees the preservation of good allele combinations and
is beneficial to the search process. In Subsection 3.1 the ba-
sics of the substitution coder used by the cGA are presented.
The compression of the individuals is a two stage stochastic
process: build a dictionary and select individuals for com-
pression. Subsection 3.2 explains how the dictionary used
for the compression is built. Subsection 3.4 describes how
compression is applied to the population of the cGA.

3.1 Substitution coder

A substitution coder is a lossless1 compression algorithm.
Compression is obtained by replacing substrings in the in-
put by a shorter reference. A substitution coder uses a dic-
tionary which contains the substrings that need to be substi-
tuted and associates a placeholder symbol with each entry.
Compression involves two phases: 1) building a dictionary
and 2) performing the substitutions. Figure 2 represents the

1Lossless compression means that the original data is restored after
compression.

0. D = build dictionary();
1. current = in; /* in input string */
2. out = ””; /* Empty output */
3. For e in D /* Loop A */
4. For pos = 1 to |in| /* Loop B */
5. If match(pos, current, e.str) Then
6. out[pos] = current[pos];
7. Else
8. out[pos] = e.ref;
9. pos = pos + |e.str|;
10. End;
11. End
12. current = out;
13.End

Figure 2: The pseudo code for the substitution step of the
coder used in the cGA. Given are the dictionary D and the
input string in. The coder searches for a match for each dic-
tionary entry (loop A). If a match is found the reference is
placed in the output, otherwise the original symbol. The in-
ner loop (loop B) can be replaced by the more efficient KMP
string matching algorithm with a linear runtime complexity.

pseudo code of a substitution coder. The content of the dic-
tionary is critical for the compression performance. Much
of the research in data compression concerns the develop-
ment of algorithms to build the dictionary. Section 3.2 de-
scribes how the dictionary is built in the cGA. The substitu-
tion step is computationally expensive as it involves search-
ing for a match for each dictionary entry in the input string.
If a match for substring s is found its placeholder symbol
is placed in the output instead of the original symbols. The
decompression step involves the replacing the placeholder
symbols by the original strings. Decompression is much
faster since it does not involve any search.

Suppose a dictionary D = {”101” → α, ”00” →
β, ”11” → γ} then a substitution coder would compress
the individual ”1010001011101” to ”αβ0α1α”. One can
observe that the order in which the dictionary entries are or-
dered is important. If the opposite order had been used the
result would have been {αβ010γα}.

3.2 Building the dictionary

This section explains the stochastic algorithm used in the
cGA to build the dictionary as it differs from the algo-
rithm(s) used for pure data compression applications. We
considered other criteria to build the dictionary since reduc-
ing the memory needed to represent the individuals is not
our goal. We seek to build a dictionary containing building
blocks. The problem of identifying building blocks is recur-
rent for all the modularization algorithms. In [5] the iden-
tification of a set of alleles as a module involves additional
fitness evaluations. These are used to determine whether an
alternative substring with a better fitness exists. If no such
string can be found then the substring will be used as a mod-
ule. Another approach, used by [10], uses a separate block
fitness function to evaluate the merits of a subpart of a ge-
netic program. This function is presented as scaled down

version of the fitness function for a smaller version of the
original problem. The strategy adopted in this work is to
see a GA as the building block discovery process. Since
by definition building blocks are contributing in a positive
way to the fitness of an individual, they are bound to be
present in the better individuals of a population. We be-
lieve that this approach is more general as it 1) relies on
the information already present in the population, 2) avoids
additional computations and 3) does not require additional
fitness functions to be engineered. Especially the latter two
unacceptable when it comes to real world applications.

The cGA builds its dictionary in two stages. First, a pool
of M individuals is selected stochastically from the popula-
tion. The genotype of these individual will be used to create
the dictionary in the second stage. These individuals are se-
lected using fitness proportional selection. The pool consist
mainly of above average individuals, yet with a minimum
of diversity. Once the pool has been created every substring
of length l of each individual is added to the dictionary.
The dictionary only contains strings of the same length2.
For example, suppose a non-binary alphabet {a, b, c, d} and
the substring length l equal to 3. In this case the individ-
ual ”abccdabc” would add the substring (and their respec-
tive placeholder) ”abc” → α, ”bcc” → β, ”ccd” → γ,
”cda” → δ and ”dab” → σ to the dictionary. The cGA dic-
tionary contains next to the substrings and their placeholder
symbol a counter of the occurrence of every substring in the
pool. This counter is used to order entries of the dictionary.
We have chosen to sort the dictionary entries based on the
occurrence of each substring, the most frequently occurring
substring(s) will be substituted first.

The cGA rebuilds the dictionary for each generation.
This allows to update the content of the dictionary with in-
formation that reflects the evolution of the population. This
differs from [5] where the module formation algorithm is
applied periodically. This also excludes the presence of dic-
tionary entries containing references to other entries.

3.3 Modularization

Applying compression to the genotype can protect building
block. But it does not by itself provide modularization com-
parable to that of ADFs, encapsulation or module acquisi-
tion. Modularization implies that a somehow code reuse
should be present. Code reuse is achieved by the cGA by
adhering to several conditions. First of all, the representa-
tion used by the cGA is adapted during the search. A new
symbol is added to the alphabet of the genetic system for
each potential building block identified by the cGA. Sec-
ond, the genetic operator must be unrestricted: no distinc-
tion is made between compressed symbols and symbols of
the original alphabet. Mutation for instance can replace a
compressed symbol by an original symbol and vice versa.
The third condition is that no distinction is made between
individuals with and without compressed genotype. As will
be explained in section 3.4, all the individuals are not nec-
essarily subjected to compression. By not discriminating

2In traditional substitution coders the dictionary can contain entries of
different lengths

between original genes and compressed genes, the cGA can
make full use of the genetic combinations that where iden-
tified as possible building blocks. It then becomes possible
for the cGA to address problems where repetition is present.
Crossover and mutation operators serve as natural mecha-
nism to obtain this form of translocation of genetic infor-
mation. Translocation occurs when a part of a chromosome
is detached and reattached at a position different from the
its original position in the chromosome.

3.4 Compressing the population

Once the dictionary has been built the substitution coder
(Subsection 3.1) can be used to compress the individuals in
the population. The cGA applies compression in a stochas-
tic fashion to a part of the population. A fraction κ (∈ [0, 1])
of the population will be compressed. This fraction κ of in-
dividuals are selected using tournament selection. Since the
compression setup is repeated anew for each generation this
means that the cGA does not systematically compress the
same individuals. This makes it possible to explore the ben-
efit of the different modules (dictionary entries) in different
contexts (ie. allele combinations).

3.5 Lossless and stochastic

The cGA applies a deterministic transformation, compres-
sion, to some of the individuals in the population. Since
the compression is lossless the (genetic) information present
in the population of the cGA or a GA is exactly the same.
Yet, as described above, a stochastic component has been
added to the overall population compression process. The
creation of the dictionary and the selection of the individ-
uals for compression are non-deterministic processes. This
stochastic component is meant to counter balance the ef-
fect of the substitutions on the search process. The pro-
tection against crossover provided by the compression has
a negative impact on the population diversity. Several fac-
tors explain this phenomenon. First the search efficiency
of the crossover operator is reduced by the compression of
the genotype. Second, the compression of the individuals is
detrimental for the sampling of schemata. A last reason is
that the dictionary entries are not guaranteed to correspond
to building blocks. This situation is especially exacerbated
during the first generation as the population still needs to
discover promising gene combinations. This was illustrated
by experiments where the entire population underwent com-
pression. These experiments have invariably lead to prema-
ture convergence and consequently suboptimal results. The
parameter κ is a way to limit the decrease in the popula-
tion diversity. The other non-deterministic steps were intro-
duced for the same reason as they maintain a minimum of
diversity at the substring level.

3.6 Further changes

Although the cGA is meant to be a minimal extension to the
standard GA a few extra modification were required. The
biggest difference is an unavoidable transition to a variable

length linear representation. This change is due to the com-
pression scheme.

3.6.1 Variable length

Despite the use of a lossless compression algorithm and the
fact that the cGA, like a standard GA, starts with a popula-
tion of individuals of identical size, individuals of different
sizes quickly emerge. This phenomenon, due to the use of
compression, occurs through several mechanisms:

1. not all the individual are compressed

2. different individuals compress to different sizes

3. the genetic operators can create individuals of very
different sizes

Since the cGA does not discriminate between place-
holder symbols and original symbols, recombination and
mutation can add or remove symbols representing a sub-
string and vice versa. This can result in an important change
in length. Depending on the situation individuals can ex-
ceed the initial individual size or be shorter. Consider the
following example. Suppose the dictionary D = {”xy” →
α, ”zz” → β} over the alphabet {x, y, z}. Mutating the
second gene of the individual with genotype ”xx” from x

to α creates ”xα”. The decompressed version of this indi-
vidual’s genotype is now ”xxy”. Similar scenarios exists
for the crossover.

3.6.2 Recombination and mutation

As illustrated above the genetic operators can create indi-
viduals of very different sizes. As a result a maximum indi-
vidual length has to be enforced to avoid bloat. Individuals
created by crossover that exceed the maximum length are
truncated. Yet in the case of both mutation and crossover
one problem remains. As illustrated in the previous para-
graph it is possible for an individual to exceed the maxi-
mum once it has been decompressed. In this case the cGA
truncates the genotype after decompression. The mutation
operator was modified to be able to cope with a variable
alphabet sizes.

4 Experiment

The advantage of the modularization of the cl-GP, provided
by the cGA, has been illustrated in different GP problems:
symbolic regression, classification and a real world data ap-
plication. This section presents the experiments used to
study the impact of the parameters of the cl-GP. We used the
Even-n-parity problem for our different experiments. It has
been chosen since it is a standard GP problem. Furthermore
the difficulty of this problem can be adjusted by modifying
the number of input bits n. The cl-GP introduces three new
parameters: the size of the pool used to build the dictionary,
κ the fraction of the population being compressed and l, the
length of the dictionary entries.

The number of individuals used to build the dictionary
should influence the quality of the dictionary entries. It is
expected at a large pool performs better than a small one.

κ controls the population compression. Compressing a
big fraction of the population is expected to have a negative
influence on the search. The protection against crossover,
the result of the cl-GP compression, reduces the number of
possible individuals create by the crossover thus the popu-
lation diversity.

The last parameter is the length of the dictionary entries.
The cl-GP assumes there is a tight linkage in the representa-
tion. Using large substrings as dictionary entries is expected
to reduce the performance. This is due to the increasing
difficulty of identifying substring which corresponds to a
schema of length l as the value of l increases.

4.1 Even-n-parity

The Even-n-Parity problem requires the correct clas-
sification of bit strings of length n having an even
number of 1’s. This classification is formulated as a
boolean function returning the value true for an even
number of 1’s and false otherwise. The terminals
and function set are T = {b0, b1, · · · , bn} and F =
{NOOP,AND,OR,NAND,NOR}. The NOOP in-
struction is not executed during the evolution. This instruc-
tion allows to represent programmas of variable length us-
ing a fixed length representation [11]. We believe the inclu-
sion of this instruction is necessary in order to compare the
l-GP, driven by a GA (fixed length), and the cl-GP driven
by the cGA (variable length). The raw fitness (fraw) is
the ratio of correct classifications over the entire data set:
fraw = 1 − #errors

2n
. The standard fitness is equal to the

raw fitness for this problem. The evaluator used for this
problem is described in the next section.

4.1.1 Boolean evaluator

The Even-n-parity individuals are postfix encoded and eval-
uated by a stack based virtual machine as described in [8].
Its instruction set provides the four boolean operators3 and
five terminals. The operations take their 2 operands from
the stack and push their result onto it. The terminal instruc-
tions correspond to a push of the individual input bits on the
stack. As for the numerical evaluator the result of the pro-
gram is the value of the top of the stack after evaluation. The
individual [b0, NOR, NAND, b0, b4, OR, AND, b2, OR, b2,
NOOP, NOR, NAND] corresponds to the boolean expres-
sion (b0 OR b4) NAND (b2 NOR b2).

5 Results

All the results presented here are the average of 100 inde-
pendent runs, using randomly seeded initial populations of
500 individuals. The genotype length is 32. Other settings
were: crossover rate 80%, mutation rate 5% and the top 5%
of the population was kept at every generation. Every ex-
periment lasted 50 generations. If not mentioned otherwise
the following values were used for the runs using the cl-GP:

3Following the observations of [8] the lazy version of the operators was
implemented.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generation

sGA (500)
sGA (100)
cGA (500)
cGA (100)

Figure 3: An example run for the Even-5-parity problem
for population size of 100 and 500. The linear GP system
driven by the cGA (cl-GP) outperforms the same system
using the GA.

κ = 0.30 (tournament size 4) and the length of the dictio-
nary entries equals two. A pool of 10 individuals (fitness
proportional selected) is used to build the dictionary. Be-
fore presenting the results for the different experiments, the
next subsection illustrates the benefit of using the cl-GP for
two Even-n-parity problem instances. It should be noted
that large problem instances (n >= 10) could not be solved
with the given genetic primitives.

5.1 cl-GP (cGA) vs l-GP (GA)

This subsection compares the results for the Even-5-parity
problem instance using runs with 2 different population
sizes. The use of substitution has a positive effect on the
performance of the GP system. Figure 3 compares the fit-
ness of the best of population for both algorithms.

In order to further compare the performance of the two
algorithms the cumulative probability of success for Even-
5-parity has been computed using runs of 200 generations
(population 500). The linear GP driven by the GA achieves
a 28% probability of success after 200 generations. The
same setup but using the cGA, the cl-GP, obtains a prob-
ability of success of 74%. For the Even-6-parity problem
these numbers become 8% and 28% respectively.

5.2 Population compression, κ

Table 1 contains the raw fitness for the best individuals of
the population for different problem instances. The second
column, 0% of population selected for compression, serves
as the reference since in this case the cl-GP is equivalent to
a normal l-GP. As was expected high values do not lead to
improved performance. This is most noticeable for small
problem instances (n = 5 for example). Surprisingly, this
tendency seems to reverse as the problem size increases.

Table 2 illustrates the effect of κ on the average individ-
ual length. Subjecting a larger fraction of the population to
compression logically results in a lower average individual
size.

n κ = 0.0 0.3 0.6 0.9
5 0.891 0.964 0.950 0.949
7 0.680 0.783 0.796 0.769
9 0.5 0.528 0.530 0.536

Table 1: The number of individuals that are selected for
compression influence the performance of the system. High
values (60% and 90%) reduce the diversity and reduce the
overall performance.

n κ = 0.0 0.3 0.6 0.9
5 32 20.76 17.85 17.25
7 32 21.99 18.63 17.35
9 32 22.71 19.03 17.63

Table 2: The average individual size after 50 generations.
The reduction in size decreases slightly as the problem in-
stances become harder to solve.

5.3 Pool size, N

Table 3 presents the raw fitness of the best of population
when using different pool sizes. The use of fitness propor-
tional selection (with overselection) makes the cl-GP rela-
tively insensitive to the pool size. This can be explained by
the fact that overselection makes it possible for the some in-
dividuals to be present several time in the pool. As a result
pools of different sizes can in fact show little differences in
diversity.

5.4 Substring length, l

Table 4 contains the fitness of the best individual when us-
ing different substring lengths. Using longer dictionary en-
tries decreases the performance. This decreasing trend can
be observed for all the problem instances. As the substrings
get longer it becomes harder for the cl-GP to protect good
schemata. This clearly illustrates that by protecting sub-
optimal building blocks the performance of the cl-GP is pe-
nalized.

6 Discussion

The cl-GP uses the cGA presented in this paper. The cGA
provides a low level modularization mechanism based on
compression. Although the linear GP system performs bet-
ter when using the cGA than the GA, the differences get
smaller as the problem instances become harder. This can

n N = 10 20 50 100
5 0.964 0.964 0.964 0.965
7 0.783 0.795 0.785 0.774
9 0.528 0.537 0.531 0.524

Table 3: The raw fitness of the best of population as a func-
tion of the pool size used to build the dictionary of the sub-
stitution coder. The difference between various pool size is
less pronounced compared to influence of κ on the perfor-
mance.

n l = 2 3 4 5
5 0.964 0.948 0.931 0.909
7 0.783 0.753 0.750 0.717
9 0.528 0.524 0.527 0.522

Table 4: Increasing the length of the dictionary entries
makes it less likely for the assumption of tight linkage be-
tween gene values to hold. For the problem sizes the raw
fitness decrease as the substring length increases.

be explained by the fact that the cGA, being an extension
to the standard GA, capitalizes on the GA’s ability to find
good combinations. When the GA fails to identify build-
ing blocks it becomes impossible for the cGA to reuse these
combinations to its advantage. In that respect the influence
of the substring length l and the population compression ra-
tio κ suggests that it is better to make moderate use of geno-
type compression. Longer substrings give higher compres-
sion ratios but put more strain on the tight linkage assump-
tion of the cGA. Similarly, a high κ indirectly restricts the
population diversity and reduces the performance.

7 Conclusions

In this paper we introduce the cl-GP system which uses a
GA variant which uses compression as a modularization
mechanism. The modularization scheme of the cGA as-
sumes a tight linkage between elements of building blocks.
This allows it to replace substrings in the genotype with a
shorter reference. This scheme was designed to be used in
a linear GP system (cl-GP) where the assumption is more
likely to hold. We performed a empirical study of the in-
fluence of the different the cl-GP parameters using sev-
eral Even-n-parity problem instances. Results illustrate the
strong influence of the substring length and population com-
pression ratio κ on the performance.

8 Future work

The influence of the parameters of the cl-GP needs to be
studied on a wider range of GP problems. Although sub-
strings of length 2 seem to be best at this point, it may be
interesting to allow this size to change during the course of
evolution. Alternatives to the used of fitness proportional
selection for creating the pool of individuals should be ex-
plored.

Bibliography

[1] M. Ahluwalia and L. Bull. Coevolving functions in ge-
netic programming. Journal of Systems Architecture,
47(7):573–585, July 2001.

[2] P. J. Angeline and J. B. Pollack. The evolutionary in-
duction of subroutines. In Proceedings of the Four-
teenth Annual Conference of the Cognitive Science So-
ciety, Bloomington, Indiana, USA, 1992. Lawrence
Erlbaum.

[3] P. J. Angeline and J. B. Pollack. Coevolving high-level
representations. In C. G. Langton, editor, Artificial
Life III, volume XVII of SFI Studies in the Sciences
of Complexity, pages 55–71, Santa Fe, New Mexico,
15-19 June 1992 1994. Addison-Wesley.

[4] M. Brameier and W. Banzhaf. Effective linear genetic
programming. Technical report, Department of Com-
puter Science, University of Dortmund, 44221 Dort-
mund, Germany, 2001.

[5] E. D. de Jong and D. Thierens. Exploiting modular-
ity, hierarchy, and repetition in variable-length prob-
lems. In K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer,
E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Fos-
ter, M. Harman, O. Holland, P. L. Lanzi, L. Spector,
A. Tettamanzi, D. Thierens, and A. Tyrrell, editors,
Genetic and Evolutionary Computation – GECCO-
2004, Part I, volume 3102 of Lecture Notes in Com-
puter Science, pages 1030–1041, Seattle, WA, USA,
26-30 June 2004. Springer-Verlag.

[6] D. Howard. Modularization by multi-run frequency
driven subtree encapsulation. In R. L. Riolo and
B. Worzel, editors, Genetic Programming Theory and
Practise, chapter 10, pages 155–172. Kluwer, 2003.

[7] J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Ri-
olo, editors. Genetic Programming 1996: Proceedings
of the First Annual Conference, Stanford University,
CA, USA, 28–31 July 1996. MIT Press.

[8] T. Perkis. Stack-based genetic programming. In Pro-
ceedings of the 1994 IEEE World Congress on Com-
putational Intelligence, volume 1, pages 148–153, Or-
lando, Florida, USA, 27-29 June 1994. IEEE Press.

[9] S. C. Roberts, D. Howard, and J. R. Koza. Evolv-
ing modules in genetic programming by subtree en-
capsulation. In J. F. Miller, M. Tomassini, P. L. Lanzi,
C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon,
editors, Genetic Programming, Proceedings of Eu-
roGP’2001, volume 2038 of LNCS, pages 160–175,
Lake Como, Italy, 18-20 Apr. 2001. Springer-Verlag.

[10] J. P. Rosca and D. H. Ballard. Hierarchical self-
organization in genetic programming. In Proceedings
of the Eleventh International Conference on Machine
Learning. Morgan Kaufmann, 1994.

[11] K. Stoffel and L. Spector. High-performance, paral-
lel, stack-based genetic programming. In J. R. Koza,
D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 224–229, Stanford Univer-
sity, CA, USA, 28–31 July 1996. MIT Press.

