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Abstract- This paper presents a modularization strategy
for linear genetic programming (GP) based on a sub-
string compression/substitution scheme. The purpose
of this substitution scheme is to protect building blocks
and is in other words a form of learning linkage. The
compression of the genotype provides both a protection
mechanism and a form of genetic code reuse. This pa-
per presents results for synthetic genetic algorithm (GA)
reference problems like SEQ and OneMax as well as sev-
eral standard GP problems. These include a real world
application of GP to data compression. Results show
that despite the fact that the compression substrings as-
sumes a tight linkage between alleles, this approach im-
proves the search process.

1 Introduction

Genetic algorithms (GA) and genetic programming (GP)
search the space of possible solutions by manipulating
the solution representation using genetic operators like
crossover and mutation. Variable length representations al-
low the structure of the solution to be evolved but are still
limited by the genetic primitives used to build the solutions.
If GA and GP are to address more complex problems it be-
comes necessary to adapt the representation to the problem.
Modularization adapts the representation by extending the
set of genetic primitives with problem specific functionali-
ties. In this text we explore a low level modularisation tech-
nique. The presented compressed GA (cGA) attempts to
identify usefull combination of genes in the population and
makes these available as new primitives. The search process
can then benefit from these new functionalities to progress
more quickly through the search space. The cGA achieves
modularisation by applying a compression operator to the
population of candidate solutions.

This paper is structured as follows Section 2 describes
related work. In Section 3 the compression/substitution
scheme is presented in detail. In Section 4 the different
experiments are presented, each of them having different
characteristics which impact on the performance of our al-
gorithm. Results are presented in Section 5.

2 Related work

The benefits of modularization for the GP search process are
well known [10][1][7]. Modularization fosters code reuse
on one hand, and on the other hand allows the GP system to
identify and use high level functionalities. Different modu-

larization strategies for tree based GP have been explored.
Automatically Defined Functions (ADF) is the most promi-
nent approach. It consists of a main tree which evolves to-
gether with a predefined number of additional trees. Those
additional trees can be called from the main tree and, as
such, complement the set of primitives available to the GP
system. An alternative method is encapsulation. It replaces
a subtree by a new symbol and adds it to the primitive set of
the system [6][10]. The symbol created in this way corre-
sponds to a terminal/leaf node since it has no arguments. A
third method, module acquisition, works in a similar fash-
ion, but can create both function nodes (modules) and leaf
nodes. If the depth of the selected subtree exceeds a cer-
tain threshold the subtrees below this level are removed. In
this case a function node will be created by adding an ar-
gument for each removed subtree [2][3]. Although modu-
larization has mainly been of interest to the GP community
it is of course related to the search of building blocks in
a GA. In [5] a module acquisition algorithm is presented
which exploits modularity and hierarchy. Despite the use of
a variable length representation, the problem of modularity
is approached purely from a GA point of view. A module
is defined as a set of gene values that correspond to a max-
imum fitness for the individual. As in the work of [5] our
algorithm relies on a substitution scheme but with notable
differences in the substitution strategy. Another difference
is that the compressed genotype scheme of the cGA was de-
veloped with its use in a linear GP system in mind. The lin-
ear encoding a GP program exhibits a much tighter linkage
than is the case for standard GA problems. This assumption
is important as it justifies the use of the simple compres-
sion scheme which supposes a strong dependency between
adjacent values.

3 A compressed GA

This section presents the compressed genetic algorithm
(cGA) which consist of a GA extended with a substitu-
tion/compression based modularization mechanism. Figure
1 contains the pseudo code for cGA loop. The cGA adds
a compression and a decompression step in the GA loop.
Compression is applied to the individuals of the population
prior to the creation of the next generation. As a result the
genetic operators, 1-point crossover and 1-point mutation,
are applied to a compressed genotype representations. Af-
ter the creation of the next generation the individuals are
decompressed so that their fitness can be evaluated.

Compression is applied to the genotype to protect



0. Choose initial population
1. Evaluate each individual’s fitness
2. Repeat
3. Compress individuals
4. Select best-ranking individuals to reproduce
5. Mate pairs at random
6. Apply crossover operator
7. Apply mutation operator
8. Decompress individuals
9. Evaluate each individual’s fitness
10. Until terminating condition

Figure 1: The standard GA pseudo code with 2 new steps.
Step 3 adds the compression of the individual prior to the
creation of the next generation. Step 8 decompresses the
individuals so that their fitness can be evaluated.

substrings that represent building blocks (above average
schemata). This protection would guarantee the preserva-
tion of good allele combinations and be beneficial to the
search process. Compression can shorten the representation
of the building blocks thus reduce the chance of disruption
by crossover. Crossover which is modelled by the schema
theory as mostly disruptive for building blocks. Since prob-
ability of disruption by crossover is proportional to the
defining length of the building block, making the shorter
protects them. This idea lead to step 2 of the cGA which
will be described in the remainder of this section.

Compressing the genotype can protect building blocks.
But it does not by itself provide modularization compara-
ble to that of ADFs, encapsulation or module acquisition.
Modularization implies that a form of code reuse should be
present. Code reuse is achieved by the cGA by adhering
to several conditions. First of all, the representation used
by the cGA is adapted during the search. A new symbol
is added to the alphabet of the genetic system for each po-
tential building block identified by the cGA. Second, the
genetic operator must be unrestricted. Which means that no
distinction is made between compressed symbols and sym-
bol of the original alphabet. Mutation for instance can re-
place a compressed symbol by an original symbol and vice
versa. The third condition is that no distinction is made be-
tween individuals with and without compressed genotype.
There are two possible reasons for having uncompressed in-
dividuals in the population. An individual can simply not be
compressible by the cGA. Or, as will be explained in sec-
tion 3.3, only a fraction of the population is subjected to
compression. By not discriminating between original genes
and compressed genes, the cGA can make full use of the ge-
netic combinations that where identified as possible build-
ing blocks. It then becomes possible for the cGA to address
problems where repetition is present. Crossover and mu-
tation operators serve as natural mechanism to obtain this
form of translocation of genetic information. Translocation
occurs when a part of a chromosome is detached and reat-
tached at a position different from the its original position in
the chromosome. Before presenting the compression strat-
egy of the cGA the basic compression algorithm will be de-

0. D = build dictionary();
1. current = in; /* in input string */
2. out = ””; /* Empty output */
3. For e in D /* Loop A */
4. For pos = 1 to |in| /* Loop B */
5. If match(pos, current, e.str) Then
6. out[pos] = current[pos];
7. Else
8. out[pos] = e.ref;
9. pos = pos + |e.str|;
10. End;
11. End
12. current = out;
13.End

Figure 2: Pseudo code for the substitution step of the coder
used in the cGA. Given are the dictionary D and the input
string in. The coder searches for a match for each dictionary
entry (loop A). If a match is found the reference is placed
in the output, otherwise the original symbol. The inner loop
(loop B) can be replaced by the more efficient string match-
ing algorithms with a linear runtime complexity.

scribed. In Subsection 2 the basics of the substitution coder
used by the cGA to perform compression are presented. The
compression of the individuals is a stochastic process in two
stages: building the dictionary and selecting the individuals
to which compression will be applied. Subsection 3.2 ex-
plains how the dictionary used for the compression is built.
Subsection 3.3 describes how compression is applied to the
population of the cGA.

3.1 Substitution coder

A substitution coder is a lossless1 compression algorithm.
Compression is obtained by replacing substrings in the in-
put by a shorter reference. A substitution coder maintains
a dictionary which contains the substrings that need to be
substituted and associates a placeholder symbol with each
string. Compression involves two phases: 1) building a dic-
tionary and 2) performing the substitutions. Figure 2 rep-
resents the pseudo code of a substitution coder. Since the
content of the dictionary is critical for the compression per-
formance, research in data compression studies algorithms
to build the dictionary. Section 3.2 describes how the dic-
tionary is built in the cGA. The substitution step is compu-
tationally expensive since it involves searching for a match
for each dictionary entries in the input string. If a match for
substring s is found its placeholder symbol is placed in the
output instead of the original symbols. The decompression
step involves the replacing the placeholder symbols by the
original strings. Decompression is much faster since it does
not involve any search.

Suppose a dictionary D = {”101” → α, ”00” →
β, ”11” → γ} the substitution coder would compress the in-
dividual ”1010001011101” to ”αβ0α1α”. One can observe

1Lossless compression means that the original data is restored after
compression.



that the order in which the dictionary entries are ordered is
important. If the opposite order had been used (11,00 and
101) the result would have been ”αβ010γα”.

3.2 Building the dictionary

The dictionary has to be built before the substitution(s) can
be performed. This section explains the stochastic algo-
rithm used in the cGA to build the dictionary as it differs
from the algorithm(s) used for pure data compression ap-
plications. In this case we seek to build a dictionary which
contains building blocks. Reducing memory needed to rep-
resent the individuals is not the goal of the compression.
The problem of identifying building blocks is recurrent in
all the modularization algorithms. In [5] the identification
of a set of alleles as a module involves additional fitness
evaluations. These are used to determine whether an alter-
native set of alleles with a better fitness exists. If no such
set can be found the allele set will be used as a module. An-
other approach, used by [11], uses a separate block fitness
function to evaluate the merits of a subpart of a genetic pro-
gram. This function is presented as scaled down version of
the fitness function which consider a smaller version of the
original problem. The strategy adopted in this work is to see
a GA as the building block discovery process. Since by def-
inition building blocks are contributing in a positive way to
the fitness of an individual, they are bound to be present in
the better individuals of a population. We believe that this
approach is more general as it 1) relies on the information
already present in the population, 2) avoids additional com-
putations and 3) does not require additional fitness functions
to be engineered. Especially the last two are unacceptable
when it comes to real world applications.

The cGA builds the dictionary in two stages. In the
first stage, a pool of M individuals is selected stochasti-
cally from the population. The genotype of these individual
that will be used to fill the dictionary in the second stage.
The individuals in the pool are selected using fitness pro-
portional selection. This pool will thus mainly consist of
above average individuals, yet with a minimum of diversity.
Once this pool has been created every substring of length
l of each individual is added to the dictionary. In the cur-
rent implementation of the cGA the dictionary does only
contain strings of the same length2. For example, suppose
a non-binary alphabet {a, b, c, d} and the substring length l

equal to 3. In this case the individual ”abccdabc” would add
the substring (and their respective placeholder) ”abc” → α,
”bcc” → β, ”ccd” → γ, ”cda” → δ and ”dab” → σ to
the dictionary. In the current cGA implementation the dic-
tionary contains next to the substrings and their placeholder
symbol a counter of the occurrence of every substring in
the selected pool. This counter is used to order entries of
the dictionary. We have chosen to sort the dictionary en-
tries based on the occurrence of each substring, the most
frequently occurring substring(s) will be substituted first.

In the current version of the algorithm the dictionary is
rebuilt for each generation. This allows to update the con-

2In traditional substitution coders the dictionary can contain entries of
different lengths

tent of the dictionary with information that reflects the evo-
lution of the population. This differs from [5] where the
module formation algorithm is applied periodically. This
also excludes the presence of dictionary entries containing
references to other entries.

3.3 Compressing the population

Once the dictionary has been built the substitution coder
(Subsection 2) can be used to compress the individuals in
the population. The cGA applies compression stochasti-
cally to a fraction of the population. A fraction κ (∈ [0, 1])
of the population will be compressed. This fraction κ of
individuals are selected using fitness proportional selection.
Since the compression setup is repeated anew for each gen-
eration this means that the cGA does not systematically
compress the same individuals. This makes it possible to
explore the benefit of the different modules (dictionary en-
tries) in different contexts (ie. allele combinations).

3.4 Lossless and stochastic

The cGA applies a deterministic transformation, compres-
sion, to some of the individuals in the population. Since
the compression is lossless the (genetic) information present
in the population of the cGA or a GA is exactly the same.
Yet, as described above, a stochastic component has been
added to the overall population compression process. Both
the creation of the dictionary and the choice of the individ-
uals for compression are non-deterministic processes. This
stochastic component is meant to counter balance the effect
of the substitutions on the search process. The protection
against crossover provided by the compression does have
a negative impact on the population diversity. Several fac-
tors explain this phenomenon. First the search efficiency
of the crossover operator is reduced by the compression of
the genotype. Second, the compression of the individuals is
detrimental for the sampling of schemata. A last reason is
that the dictionary entries are not guaranteed to correspond
to building blocks. This situation is especially exacerbated
during the first generation as the population has yet to dis-
cover promising gene combinations. This was illustrated
by experiments with κ set to 1. Those have invariably lead
to premature convergence and consequently suboptimal re-
sults. The parameter κ is a way to limit the decrease in
the population diversity. The other non-deterministic steps
were introduced for the same reason as they maintain a min-
imum of diversity at the substring level.

3.5 Further changes

Although the cGA is meant to be a minimal extension to the
standard GA a few extra modification were required. The
biggest difference is an unavoidable transition to a variable
length linear representation.

3.5.1 Variable length

Despite the use of a lossless compression algorithm and the
fact that the cGA, like a standard GA, starts with a popula-



tion of individuals of identical size, individuals of different
sizes quickly emerge. This phenomenon, due to the use of
compression, occurs through several mechanisms:

1. not all the individual are compressed

2. different individuals compress to different sizes

3. the genetic operators can create individuals of very
different sizes

Since the cGA does not discriminate between normal
symbols and placeholder symbols recombination and mu-
tation can add or remove symbols representing a substring
and vice versa. This can result in an important change in
length. Depending on the scenario the individual can ex-
ceed the initial individual size or be shorter. Consider the
following example. Suppose the dictionary D = {”xy” →
α, ”zz” → β} over the alphabet {x, y, z}. Mutating the
second gene of the individual of length two from x to α cre-
ates ”xα”. The decompressed genotype of this individual is
now ”xxy”. Similar scenarios exists for crossover.

3.5.2 Recombination and mutation

As illustrated above the genetic operators can create indi-
viduals with very different sizes. As a result a maximum
individual length has to be enforced to avoid bloat. Individ-
uals created by crossover that exceed the maximum length
are truncated. Yet in the case of both mutation and crossover
one problem remains. As illustrated in the previous para-
graph it is possible for an individual to exceed the maxi-
mum once it has been decompressed. In this case the cGA
truncates the genotype after decompression. A minor modi-
fication to the mutation operator is needed since it has to be
able to cope with a variable alphabet size.

4 Experiments

Although the cGA has been designed to be used in a lin-
ear GP setup, it has first been tested using non GP settings
first. The cGA has been used to solve two categories of
problems. The first category of problems was used to as-
sess the compression based modularization mechanism of
the cGA. More in particular its ability to identify the sub-
string that correspond to building blocks and to reuse them.
The second category is directly related to the use of the cGA
in linear GP system. Here two standard GP problems and a
real world data compression application served as a testbed.
The different problems are introduced below.

4.1 OneMax and SEQ

The problems presented in this section are artificial in nature
but provide a testbed to assess the modularization capabili-
ties of the cGA. The OneMax problem [12] consists in max-
imizing the number of ones of a binary bitstring. The fitness
function is then simply F (~x) =

∑N

i=1 xi. This problem
contains much repetition and is thus used to test the ability
of the cGA to reuse the acquired genetic combinations. This
problem has been extended by using a non-binary alphabet.

A larger alphabet puts more strain on the dictionary building
process.

The second problem, the sequence problem (SEQ) [5]
does not feature repetition. It is designed to evaluate the
module acquisition abilities of an algorithm. The SEQ prob-
lem is defined as the search for a string of size n over an
alphabet of equal size n. The problem defines two global
optima, the strings containing all the symbols either in as-
cending or in descending order. The fitness function of this
problem combines two aspects. Individual genes contribute
a value of 1 to the fitness if they have a correct value (as-
cending or descending). In addition, any pair of neighbour-
ing genes positions (2j, 2j + 1) (with j ∈ [0, n

2 ]) with cor-
rect values adds another 2 points to the fitness. This fitness
function thus favours correct genes values as well as correct
combinations of genes.

4.2 Symbolic regression, Even-5-parity

The assumption of tight linkage between individual genes
(cfr substrings) used by the cGA was made with the use of
the cGA in a linear GP system in mind. A linear GP sys-
tem uses a linear representation similar to that used by a
GA [4][13]. Following the approach used by [13] the GP
loop is consists of a standard (generational) GA on top of
which a problem specific evaluator is placed to simulate the
program execution. This cGA driven linear GP has been
tested on three problems. First the standard symbolic re-
gression and Even-5-parity problem described in this sub-
section were used. The next subsection details the use of
cGA in a compression application. The nature of these three
problems is quite different. They were chosen to illustrate
the applicability of the cGA’s modularization scheme. The
problems are briefly described below together with a more
in depth presentation evaluators used for each problem.

The symbolic regression task is that of discovering a
function (in symbolic form) given a set of data points. This
experiment has been done with two target functions. The
first f1(x) = x4 + x3 + x2 + x features much repetition,
the second f2(x) = cos(x) + sin(x) not. Each time the
data set consisted of 20 values for x, randomly chosen in
the intervals [−1, 1] and [−2, 2] for f1 and f2 respectively,
and the corresponding y = f(x) values. The terminals was
T = {x}. To offer a fair comparison different function sets
were used F1 = {+,−,×, %, sin, cos, rlog, exp} for f1

and F2 = {+,−,×, %} for f2. The raw fitness (fraw) is
the sum of the absolute value of the error between the com-
puted y value and the target value. The standard fitness:
fstd = 1

1+fraw

4.2.1 Stack based evaluator

The individual for the symbolic regression problem are en-
coded using a postfix representation. This allow their eval-
uation using a stack based virtual machine. The virtual ma-
chine provides the standard3 arithmetic operations. The op-
erations take their operands from the stack and push their re-

3As is usual in GP the operations are protected. Division by zero returns
zero, rlog(x) returns zero for any x smaller or equal to zero.



sult onto it. The execution of an operation is skipped when-
ever there are not enough values on the stack. As a terminal
we use x which is implemented by pushing the value of the
independent variable on the stack. Ephemeral random con-
stants were not used. The result of the program is the value
of the top of the stack after evaluation. The individual [ sin,
x, +, cos, x, +, exp] represents the equation exp(x+cos(x)).

The Even-n-Parity problem requires the correct classi-
fication of bit strings of length n having an even number
of 1’s. This classification is formulated as a boolean func-
tion returning the value true for an even number of 1’s and
false otherwise. The terminals and function set are T =
{b0, b1, b2, b3, b4} and F = {AND, OR, NAND, NOR}.
The raw fitness (fraw) is the ratio of correct classifications
over the entire data set. The standard fitness is equal to the
raw fitness for this problem.

4.2.2 Boolean evaluator

The Even-5-parity individuals are postfix encoded as well
and evaluated by a stack based virtual machine as described
in [9]. Its instruction set provides the four boolean op-
erators4 and five terminals. The operations take their 2
operands from the stack and push their result onto it. The
terminal instructions correspond to a push of the individual
input bits on the stack. As for the numerical evaluator the
result of the program is the value of the top of the stack
after evaluation. The individual [b0, NOR, NAND, b0, b4,
OR, AND, b2, OR, b2, NOR, NAND ] corresponds to the
boolean expression (b0 OR b4) NAND (b2 NOR b2).

4.3 Compression preprocessors

The last problem used to evaluate the cGA is a lossless data
compression application. In this setting genetic program-
ming is used to find a transformation, denoted T (d), which
improves the compression ratio of data d [8]. The trans-
formation is applied to the data prior to compression and
needs to be undone after decompression. The purpose of
this GP based application is to further reduce the size of
medical images obtained from MRI, CT and PET scanners.
The GP system generates image specific transformations.
The critical nature of the information requires lossless com-
pression. To meet the lossless requirements the GP gen-
erated transformation needs to be reversible. This condi-
tion can be meet with a correct design of the GP instruc-
tion set. The instruction set for this problem consists of
basic transformations. Each of this transformation can re-
move certain forms of redundancy, thus lower the entropy
of the data. The terminals set T contains the constants
from 1 to n, T = {1, 2, 3, · · · , n}. These will be used
for the index and parameter of the different transformations
(see 4.3.1). The function set contains basic transformations
F = {dpcm, raw, min, inv}. The size of the data d after
being transformed with T (d) and compressed with an algo-
rithm C should be smaller than without the transformation.

4Following the observations of [9] the lazy version of the operators was
implemented.

This condition is capture in Equations 1. The reversibility
of the transformation is formalized in Equation 2.

|C(T (d))| < |C(d)| (1)

∀T, ∃T ′|T ′(T (d)) = d (2)

In order to avoid computation expense of Equation 1 the
problem statement is reformulated as searching a function
which reduces the information content of the data. The in-
formation content corresponds to the theoretical amount of
information, expressed in bits, present in the message m.
It can be computed by multiplying the entropy of a mes-
sage (H(m)) by the length of the message(|m|). The en-
tropy of a message corresponds to the average bits of in-
formation per symbol in that message. Equation 3 gives
the equation for the entropy of a message m. The marginal
probability of a symbol in the message m is denoted by pi.
The raw fitness is the ratio of the information content of
the original data and the data after transformation by T 5 :
fraw = H(d)×|d|

H(T (d))×|T (d)| . The standard fitness equals the raw
fitness for this problem.

H(m) = −

n∑

i=1

pi. log2(pi) (3)

4.3.1 Transformation Virtual Machine

This virtual machine reads the data from disk and splits it
into chunks of equal size prior to the execution of a pro-
gram. The number of chunks is currently fixed a priori as
our implementation does (for simplicity’s sake) not allow
to re-segment the data during evaluation. The instructions
transform one chunk at a time. The general form of an in-
struction is a 3-tuple: < instr, index, param >. The first
byte is the instruction number, the second the index of the
chunk to be processed and the last a parameter for the trans-
formation6. This instruction set is both simple and flexi-
ble. Chunks can be processed several times in any order or
skipped altogether. To assure the reversibility of the trans-
formation extra information is required. In addition to the
transformed data every instruction produces a header with
decoding information. This increases the size of the chunk
each time its data is processed. At the end of the evalua-
tion the VM concatenates the content of all the chunks to
produce the output data. The basic transformations are de-
scribed shortly below.

• dpcm : stands for differential pulse code modula-
tion. {x0, x1, x2, x3, . . . , xn} ⇒ {x0, x1 − x0, x2 −
x1, x3 − x2, . . . , xn − xn−1} This operation has a
stride/step parameter.

• raw : no transformation is applied at all to the data.
{x0, x1, x2, x3, . . . , xn} ⇒ {x0, x1, x2, x3, . . . , xn}

5This fitness function does not preclude an increase of the data size
after transformation. Some transformation in fact increase the size of the
data, see Section 4.3.1.

6Not all the transformation require a parameter, yet we have chosen to
use a fixed format for the instructions.



Alphabet GA cGA
2 0.581 0.692
8 0.181 0.273

Table 1: The raw fitness of the best of population (aver-
aged over 100 runs) for the OneMax problem. Target string
length is 1024.

• min : This operation uses the average of all the sym-
bols (binary representation) in the current chunk. A
symbol is replaced by the difference between the av-
erage and the symbol. This operation expands the
data by 1 symbol, the symbol which represents the
average7.

{x0, x1, x2, x3, . . . , xn} ⇒ {xavg, x0 − xavg , x1 −
xavg , x2 −xavg , x3 −xavg , . . . , xn −xavg} This op-
eration has a stride/step parameter.

• inv : inversion. {x0, x1, x2, x3, . . . , xn} ⇒
{MAX(x) − x0, MAX(x) − x1, MAX(x) −
x2, MAX(x) − x3, . . . , MAX(x) − xn} Here
MAX(x) represents the maximum value that can be
represent by the data type used to represent the sym-
bols. This operation has a stride/step parameter.

5 Results

All the results presented here are the average of 100 in-
dependent runs, using randomly seeded initial populations.
The genotype length is 32. Other settings were: crossover
rate 80%, mutation rate 5% and the top 5% of the popula-
tion was kept for every generation. Every experiment used
50 generations.

For the runs with the cGA the following values were
used: 33% of the population was selected for compression
(κ) and substrings of length 2 were used as dictionary en-
tries. A pool of 10 individuals is used to build the dictionary.

5.1 OneMax

Two instances of the OneMax problem were used. A first
instance using a binary alphabet and second with an alpha-
bet size equal to eight. For both instances the string size was
1024. Table 1 compares the raw fitness of the best individ-
ual from a population of size 500. As one might expect, the
repetition present in this problem is favorable to the cGA.

5.2 SEQ

Two instances of the SEQ problem were used, each time
with a population of 500 individuals. The string lengths
were 32 and 128 (the alphabet size equals the string length).
The experiments show that the GA systems performs very
poorly for this task, score of the best individual(s) remaining
much lower than the theoretical maximum score. This may
be due to inappropriate choice of parameters. The results

7min (stride=1) changes the series 2 5 3 2 5 6 7 to -2 1 -1 1 2 3 + 4
(the average)

Pop. size GA (f1) cGA (f1) GA (f2) cGA (f2)
50 0.138 0.182 0.094 0.095
100 0.175 0.290 0.100 0.110
500 0.341 0.527 0.128 0.161

Table 2: The raw fitness of the best of population (averaged
over 100 runs) for function f1. One can see that for this
problem the cGA outperforms the GA for the different pop-
ulation sizes

indicate that the modularization used by the cGA degrades
the performance compared to the GA. The raw fitness of the
best individuals drops from 18.66 (GA) to 17.78 (cGA) for
the size 128 problem instance and from 21.69 to 18.40 for
the size 32 problem instance.

5.3 Symbolic regression

This first GP problem has been run with different population
sizes. Table 2 contains the value of the best individual of the
population of both the GA and the cGA for both functions.
No parameter tuning has been done, consequently we are
aware of the fact that these results may not be competitive
with state of the art EA based implementations.

As could be expected the population size is an impor-
tant factor, as one can see the fitness consistently improve
as the population grows. But more importantly one can see
that the addition of compression in the genetic loop has a
positive influence on the search process. The difference in
performance is significant for all population sizes (see sec-
tion 6).

One can argue that those differences are due to the vari-
able length representation of the cGA. Although this may be
a factor, several facts do not sustain this assertion. First, an
analysis of the average genotype length revealed a decrease
of the genotype length from 32 down to 27 chromosomes
over 50 generations, a 15% decrease. It seems unlikely that
such a minor difference in size alone could explain the dif-
ference in performance. To confirm this hypothesis 100 ad-
ditional runs using the GA with an initial population seeded
with individuals of sizes ranging 27 to 32 were done. The
results, with an average best raw fitness of 0.362 shows lit-
tle difference with the constant length GA. Which suggests
that having a range of program sizes alone is insufficient.

5.4 Even 5-parity

The even 5-parity problem was run with 2 different popula-
tion sizes. Again no parameter tuning has been performed.
For this problem too, the use of substitution had a posi-
tive effect on the performance of the GP system. Figure
3 compares the fitness of the best of population for both
algorithms. As for the symbolic regression problem the dif-
ference in fitness is significant.

In order to compare the performance of the two algo-
rithms the cumulative probability of success has been com-
puted using runs of 200 generations (population 500). 200
generations being more than sufficient for both algorithms
to convergence. The linear GP driven by the GA achieves a
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Figure 3: The even 5-parity problem for population size of
100 and 500. For this problem too the cGA outperforms the
GA.

Table 3: Medical image set
Filename Size (bytes) Resolution Slices
ADAM.bin 17039360 256x256 130
Bone.bin 2805264 1386x2024 1
Pacemaker.bin 6555120 1716x1910 1
MRINormal.bin 15990784 256x256 244

28% probability of success after 200 generations. The same
setup but using the cGA obtains a probability of success of
74%.

5.5 Data compression

The medical images listed in Table 3 were used to test our
approach. Being genuine medical images none of the files
are less than 2 megabytes in size. This implies that our lin-
ear GP system will process huge amounts of data during a
run. For this reason a population size of 50 was used.

Table 4 contains the relative reduction in entropy
achieved by transforming the data. With the given data set,
the linear GP has been able to reduce the randomness, hence
improves the compression ratio, of the given files. Using the
cGA to drive the linear GP one can systematically achieve
higher gains compared to the GA. For the Pacemaker image
there is a relative increase of 5% ( 19.7%−18.7%

18.7% ).
The size after compression with the GZIP compression

algorithm can be found in table 5. It contains the com-
pressed size both without and with image specific trans-
formation (indicated by GP+GZIP). The current design of
the virtual machine, with its generic transformation, do not
consider the two and three dimensional nature of the med-

Filename GA cGA gain
ADAM.bin 1.7% 2.5% 47%
Bone.bin 45.3% 45.8% 1%
Pacemaker.bin 18.7% 19.7% 5%
MRINormal.bin 5.2% 5.8% 11%

Table 4: Reduction in entropy after transformation for each
image (average of 100 runs). One can for example remove
roughly 20% of the randomness of the Pacemaker.bin file
(before compression) and this without loss of information.

Filename Size GZIP GP+GZIP
ADAM.bin 17039360 6604349 6563025
Bone.bin 2805264 1904731 1407500
Pacemaker.bin 6555120 5900586 5013531
MRINormal.bin 15990784 13836484 13792211

Table 5: Comparison between the compressed size of the
original and the transformed data (GP+GZIP). The com-
pression algorithm used is gzip.
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Figure 4: Comparison of the average fitness and best fitness
for a population size of 500. Despite the difference in fitness
of the best individual, the average fitness for the GA and
cGa follow a very similar evolution.

ical images. This inherently limits the absolute compres-
sion gain that can be achieved and therefore deserves further
work (see Section 8).

6 Discussion

The cGA introduced in this paper provides a form of modu-
larization at the lowest level of representation. Through the
identification and substitution of substrings the cGA cre-
ates a series of very short pieces of genetic code which
can be compared to small subroutines/macros in assembler.
The unpaired Wilcoxon-Mann-Whitney test has been used
to confirm that the difference in performance is indeed sig-
nificant for all the presented problems.

The difference in performance between the runs with the
GA and cGA appears to be the result of the protective effect
of the substitutions. One could hypothesise that the substitu-
tion has an impact on the genetic operators. Indeed one can
suppose that since the operators are unrestricted, the per-
turbations due to the operators are potentially much higher.
For example mutating a symbol which replaces a substring
is a much more significant change than in the traditional
case. A similar scenario exist when crossover moves much
more symbols by exchanging compressed symbols. In other
words, since both algorithms use elitism, the cGA should
then correspond to a GA with a higher mutation rate. Figure
4 depicts the average and best fitness for both algorithms.
One can observe that the progress of the average fitness of
the GA and cGA are very similar. If the previous hypothesis
would be correct one would except a lower average fitness



for the cGA than for the GA.

7 Conclusions

In this paper we introduce a GA variant which uses com-
pression as a modularisation mechanism. Assuming a tight
linkage between elements of building blocks the cGA re-
places substrings in the genotype with a shorter reference.
This scheme was designed to be used in a linear GP system
where the assumption is more likely to hold. We demon-
strate the cGA on a wide range of test problems, going from
synthetic problems to a real world data compression GP ap-
plication, to illustrate the feasibility of our approach. Re-
sults show that although the cGA seemed to perform poorly
on one of the synthetic problems it performs reliably on the
GP problems.

8 Future work

The influence of the parameters of the cGA needs to be stud-
ied in greater detail. Currently the length of the substrings
has empirically been set to 2. Strategies to let the size of the
substrings evolve during a run should be considered. This
would allow to build modules for higher order schemata.
One possibility would be to merge adjacent substrings. Sim-
ilarly parameters like the pool size used to build the dictio-
nary and the percentage of the population being compressed
need to be studied.

Bibliography

[1] M. Ahluwalia and L. Bull. Coevolving functions in ge-
netic programming. Journal of Systems Architecture,
47(7):573–585, July 2001.

[2] P. J. Angeline and J. B. Pollack. The evolutionary in-
duction of subroutines. In Proceedings of the Four-
teenth Annual Conference of the Cognitive Science So-
ciety, Bloomington, Indiana, USA, 1992. Lawrence
Erlbaum.

[3] P. J. Angeline and J. B. Pollack. Coevolving high-level
representations. In C. G. Langton, editor, Artificial
Life III, volume XVII of SFI Studies in the Sciences
of Complexity, pages 55–71, Santa Fe, New Mexico,
15-19 June 1992 1994. Addison-Wesley.

[4] M. Brameier and W. Banzhaf. Effective linear genetic
programming. Technical report, Department of Com-
puter Science, University of Dortmund, 44221 Dort-
mund, Germany, 2001.

[5] E. D. de Jong and D. Thierens. Exploiting modular-
ity, hierarchy, and repetition in variable-length prob-
lems. In K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer,
E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Fos-
ter, M. Harman, O. Holland, P. L. Lanzi, L. Spector,
A. Tettamanzi, D. Thierens, and A. Tyrrell, editors,

Genetic and Evolutionary Computation – GECCO-
2004, Part I, volume 3102 of Lecture Notes in Com-
puter Science, pages 1030–1041, Seattle, WA, USA,
26-30 June 2004. Springer-Verlag.

[6] D. Howard. Modularization by multi-run frequency
driven subtree encapsulation. In R. L. Riolo and
B. Worzel, editors, Genetic Programming Theory and
Practise, chapter 10, pages 155–172. Kluwer, 2003.

[7] J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Ri-
olo, editors. Genetic Programming 1996: Proceedings
of the First Annual Conference, Stanford University,
CA, USA, 28–31 July 1996. MIT Press.

[8] J. Parent and A. Nowe. Evolving compression prepro-
cessors with genetic programming. In W. B. Langdon,
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