
Personal Super Computing Competence Center 

GPGPU Training

Personal Super Computing Competence Centre

PSC3

Jan G. Cornelis

1



Pag.

Personal Super Computing Competence Center 

Levels of Understanding

• Level 0

• Host and device

• Level 1

• Parallel execution on the device

• Level 2

• Device model and work groups

• Level 3

• Performance Considerations
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Host and Device
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A Heterogeneous System
Host and Device

4



Pag.

Personal Super Computing Competence Center 

Typical Sequence of Events
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OpenCL

• We need a way to

• Modify our program to use accelerators

• Specify the code that needs to run on the accelerators

• OpenCL 

• A host API

• OpenCL C language

• A model of

• A heterogeneous system

• An OpenCL device

• https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
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OpenCL Resources
A small sample

• www.khronos.org

• www.iwocl.org (*)

• www.streamcomputing.eu (*)

• developer.amd.com/tools-and-sdks/opencl-zone/

• www.eriksmistad.no/category/opencl/

• www.youtube.com

• AJ Guillon

(*) These sites include references to books
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http://www.khronos.org/
http://www.iwocl.org/
http://www.streamcomputing.eu/
http://developer.amd.com/tools-and-sdks/opencl-zone/
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HOST API
In this training

• We need only a little knowledge:

1. Select the appropriate GPU.

2. Allocate memory on the GPU.

3. Transfer data between CPU and GPU.

4. Compile and run code for/on the GPU.

• Understand what has to be modified.

• Seasoned programmers consult the manual pages
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml
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The basic platform and runtime APIs in 
OpenCL (using C)

arg [0] value

arg [1] value

arg [2] value

arg [0] value

arg [1] value

arg [2] value

In

Order

Queue

Out of

Order

Queue

GPU

Context

__kernel void

dp_mul(global const float *a,

global const float *b,

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

dp_mul

CPU program binary

dp_mul

GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues
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Host API
Concepts

Platform An OpenCL implementation e.g.
AMD, Intel, NVIDIA, …

Device An accelerator belonging to a 
platform

Context A container object to deal with
computation on the associated 
devices

Command
Queue

Interface with a device. Used to 
send commands to the device

Program A code container. Created from 
source or existing binaries

Kernel A function to be run on a device

Buffer A memory area on a device

NDRange An execution configuration. See 
later
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Context and Command-Queues

• Context: 
• The environment within which 

kernels execute and in which 
synchronization and memory 
management is defined. 

• The context includes:
• One or more devices
• Device memory 
• One or more command-queues

• All commands for a device 
(kernel execution, 
synchronization, and memory 
transfer operations) are 
submitted through a 
command-queue.  

• Each command-queue points 
to a single device within a 
context.

Queue

Context

Device

Device Memory
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HOST API
C++ Wrapper

• Pros

• Briefer
• Exceptions instead of 

error handling

• Certain methods 
equivalent to two C API 
function calls

• Automatic cleanup

• Cons

• May not be up to date

• Man page mapping

• Need some experience

12
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OpenCL: What is needed?

• A device and a device driver that support OpenCL

• A static or dynamic library

• OpenCL header files

• Windows

• A Visual Studio solution is provided

• Includes library and headers

• Mac OSX

• Supported out of the box. Compile with 

-framework OpenCL -DAPPLE

• Linux
• https://wiki.tiker.net/OpenCLHowTo#How_to_set_up_OpenCL_in_Linux
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deviceQuery
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Parallel Execution 

on the Device
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Parallel Execution on the Device
OpenCL Hello World

• A useless program?

• Copy data from one buffer to another

• A very useful program!

• Writing the first program is often a big hurdle

• How to use the host API?

• How to write the OpenCL C code

• Helps to grasp the basic concepts

• Print-out of the code

16
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The OpenCL Host API
OpenCL Hello World (1)

• Initializing OpenCL

17

std::vector<cl::Platform> platforms;
std::vector<cl::Device> devices;
cl::Platform::get(&platforms);
platforms[0].getDevices(CL_DEVICE_TYPE_GPU, &devices);

cl::Context context(devices);

cl::CommandQueue queue(context, devices[0], CL_QUEUE_PROFILING_ENABLE);
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The OpenCL Host API
OpenCL Hello World (3)

• Allocating memory

• Transferring data

18

unsigned int size = data_count*sizeof(cl_float);

cl::Buffer source_buf(context, CL_MEM_READ_ONLY, size);
cl::Buffer dest_buf(context, CL_MEM_WRITE_ONLY, size); 

queue.enqueueWriteBuffer(source_buf, CL_TRUE, 0, size, source);

// ...

queue.enqueueReadBuffer(dest_buf, CL_TRUE, 0, size, dest);
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The OpenCL Host API
OpenCL Hello World (3)

• Compiling and executing code

• kernel_file: name of text file containing OpenCL C code

• kernel_name: name of the kernel function

19

cl::Program program = jc::buildProgram(kernel_file, context, devices);
cl::Kernel kernel(program, kernel_name.c_str());

kernel.setArg<cl::Memory>(0, source_buf);
kernel.setArg<cl::Memory>(1, dest_buf);
kernel.setArg<cl_uint>(2, data_count);

cl_ulong t = jc::runAndTimeKernel(kernel, queue, cl::NDRange(data_count));
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OpenCL C
OpenCL Hello World (4)

• kernel_file contains a function called floatCopy
• floatCopy specifies the work of a single work item

20

__kernel void floatCopy(
__global float * source,
__global float * dest,
unsigned int data_size
)

{
size_t index = get_global_id(0);

if (index >= data_size) {
return;

}

dest[index] = source[index];

return;
}
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OpenCL C
OpenCL Hello World (5)

• The programmer specifies the number of work items

• Enough work items to handle all data items

21

__kernel void floatCopy(
__global float * source,
__global float * dest,
unsigned int data_size
)

{
size_t index1 = 2*get_global_id(0);
size_t index2 = index1 + 1;

dest[index1] = source[index1];
if (index2 < data_size) {

dest[index2] = source[index1];
}

return;
}
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Beehive Metaphor
Memory – Data – Work items

Beehive – Honey – Bees

22
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OpenCL C C?
A language based on C99

Extensions

• Function qualifiers
__kernel

• Memory qualifiers
__global, __constant, 
__local, __private

• Workspace query 
functions
get_global_id(dimidx), ...

• Access qualifiers
__read_only, __write_only

Limitations

• No recursion

• No function pointers

• No dynamic memory

23
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Exercise
sumInts

• Implement the sum of lists

• Assume three lists A, B and C

• Element i of C:

• Ci = Ai + Bi;

• Extension:

• One work item processes more than one data 
item

24
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performance
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Performance?
Informal Definition

• Performance of a program?
• Linked to the run time

• Performance of a program is a function of
• Hardware

• Data on which the program is run

• Two implementations of the same algorithm: 
A and B

P(A, HW, D) > P(B, HW, D)  t(A, HW, D) < t(B, HW, D)

26
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Performance?
Quantification

• Operations performed per second

• For computationally bound code

• Bytes accessed per second

• For memory bound code

• Compare to the platform peak performance
• Memory bandwidth

• Gflops/s, Ops/s

• More on day 3

27
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Device Model and 

Work Groups
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OpenCL Device Model
How can we exploit this?

29
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Work groups

• Work items are divided in work groups

• A work group is executed on one compute 
unit
• From start to end

• Work items can share local memory
• Kind of explicit cache

• Within a work group synchronization is 
possible

• With the barrier statement.

• Work group size is determined by the 
programmer

• One size for all work groups
30
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OpenCL Work Space
Terminology and query functions

• N-dimensional range
• index space

• 1-, 2- or 3-dimensional

• Global NDRange: 
configuration of ALL work 
items

• Local NDRange: configuration 
of a work group

• Note:
• Global and Local ranges must 

have the same number of 
dimensions!

• Work group size in a certain 
dimension must be a whole 
divisor of the global size in this 
direction

• Query functions

get_global_id(dimidx)

get_global_size(dimidx)

get_group_id(dimidx)

get_local_id(dimidx)

get_local_size(dimidx)

get_num_groups(dimidx)

get_work_dim()

31
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OpenCL Work Space
Quick test

get_global_id(0) = ______

get_global_id(1) = ______

get_global_size(0) = ______

get_global_size(1) = ______

get_group_id(0) = ______

get_group_id(1) = ______

get_local_id(0) = ______

get_local_id(1) = ______

get_local_size(0) = ______

get_local_size(1) = ______

get_num_groups(0) = ______

get_num_groups(1) = ______

get_work_dim() = ______

32
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OpenCL Work Space – Exercise 
queryWorkSpace

• Write the result of the query functions to global memory
• Visualize the resulting matrix from the host

• Tip: for a readable result use small matrices and small workgroup sizes
• E.g. 16x16 matrix 4x4 work group

Usage: queryWorkSpace.exe <kernel_file> <kernel_name> <data_width> <data_height> <wg_width> <wg_height>

$ ./queryWorkSpace.exe kernels.ocl queryWorkSpace 16 16 2 4
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

33

Which query function did I 
call?
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OpenCL Memory Model
Explicit Memory Hierarchy

• In your kernel code:

34

__kernel void similarity_constant_local
(

__global float * tags_min,         //  0
__global float * tags_max,         //  1
__constant float * query_min,        //  2
__constant float * query_max,        //  3
__global float * shifted_weights,  //  4
__global float * scores,           //  5
__global uint * indices,          //  6      
__global int * offsets,          //  7
unsigned int tags_size,            //  8
unsigned int num_windows,          //  9
unsigned int index_resolution,     // 10

__local float * l_scores,         // 11
__local uint * l_indices,        // 12
__local float * l_tags_min,       // 13
__local float * l_tags_max,       // 14
unsigned int tag_count // 15

)
{

// kernel body omitted
}
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OpenCL Memory Model
using local memory

In the kernel body
#define N 256

__kernel void similarity_constant_local

(

__global float * in,

__global float * out

unsigned int   size

)

{

unsigned int index = get_global_id(0);

__local float shared[N];

// populate

shared[get_local_id(0)] = 

index < size ? In[index] : 0;

barrier(CLK_LOCAL_MEM_FENCE);

// use local memory

// …

}

As a kernel argument

__kernel void similarity_constant_local

(

__global float * in,

__global float * out,

__local  float * shared,

unsigned int   size

)

{

unsigned int index = get_global_id(0);

// populate

shared[get_local_id(0)] = 

index < size ? In[index] : 0;

barrier(CLK_LOCAL_MEM_FENCE);

// use local memory

// …

}

35

kernel.setArg<cl::LocalSpaceArg>(2, cl::__local(N)); // N can be variable
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OpenCL Memory Model
using local memory – example 

Matrix Multiplication Device code
__kernel void mul(__global int *A, __global int *B, __global int *C, int
size)

{

__local int sharedA[16][16];

__local int sharedB[16][16];

int sum = 0;

int aStart = get_global_id(1)*size + get_local_id(0);

int aEnd = aStart + size;

int bStart = get_local_id(1)*size + get_global_id(0);

int aStep = 16;      // move 16 colums

int bStep = 16*size; // move 16 rows

for (int a = aStart, b = bStart; a < aEnd; a += aStep, b += bStep){

sharedA[get_local_id(1)][get_local_id(0)] = A[a];

sharedB[get_local_id(1)][get_local_id(0)] = B[b];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (int j = 0; j < 16; ++j)

sum += sharedA[get_local_id(0)][j] *

sharedB[j][get_local_id(0)];

barrier(CLK_LOCAL_MEM_FENCE);

}

C[y*size + x] = sum;

}

36
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OpenCL Execution Model

• Execution of N work groups of m work items

• Work groups are assigned to compute units
• A work group stays there until it completes

• Compute units may execute multiple work groups concurrently
• See later

• Work groups not yet assigned to a compute unit must wait

• The order in which work groups execute is non-deterministic

• Consequences

• There can be no interaction between work groups

• OpenCL code scales inherently

37
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Inherent Scaling

38

Device

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Work groups

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Device

WG 0 WG 1 WG 2 WG 3

WG 4 WG 5 WG 6

time

GPU with 2 CUs
GPU with 4 CUs
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Advanced OpenCL

• OpenCL is a large topic.

• You cannot know everything in 3 days:

• Images and OpenGL interoperability

• Runing code on multiple devices

• Atomic operations

• Mapped memory

• Streaming

• Events

• …

• Extend your knowledge as needed.

• But don’t try to run before you can walk!

39
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Runtime math library

• Two ways to compute standard mathematical 
functions

• func(): slow but precise

• native_func(): less precise but fast

• For example

• cos(), native_cos()

• sqrt(), native_sqrt()

• Special hardware for native functions

40
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The Main Challenge of OpenCL

41
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Exercise: Matrix Vector Operation
matrixVector

• Matrix A mxn

• Vector B n

• Computation?

• Repeat N times:

• A[i,j] = A[i,j] + A[i,j]*B[j]

• Observe 

• Data throughput in function of N

• Computational throughput in function of N

42
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Exercise: Erosion
listErosion – matrixErosion

• Typical operation in image processing

• Given an input pixel the value of the corresponding output pixel is the 
minimum of values of pixels under a mask centered on the input pixel

• Example Erosion with a 3x3 mask on a binary image:

• Implement erosion for one-dimensional data for a parameterizable mask 
width

1. Doing everything in global memory

2. Using local memory

• Try two-dimensional erosion

43
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Performance 

Considerations

44
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NVIDIA GPU
Fermi Architecture

45
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AMD GPU
GCN Architecture

46
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NVIDIA Compute Unit
a.k.a. Streaming Multiprocessor

• SM:

• 32 cores
• Processing elements

• 4 special function units

• 64 KB local memory/cache
• __local memory

• 32K 32 bit registers
• __private memory

• SMX:

• 192 cores

• 32 special function units

• 64 KB local memory/cache

• 64K 32 bit registers

47
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Execution of Work groups

• Work group executed on a compute unit

• Groups of 32/64 work items operate together

• NVIDIA: warp consists of 32 work items

• AMD: wavefront consists of 64 work items

• It is necessary to think in terms of warps or 
wavefronts to obtain optimal performance

48
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Occupancy

• Occupancy =
#𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑜𝑛 𝑎 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑈𝑛𝑖𝑡

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑜𝑛 𝑎 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑈𝑛𝑖𝑡

• Limited resources may limit the occupancy:

• Registers needed per work group

• Local memory needed per work group

• Maximum number of concurrent work groups

• The most constrained resource determines the 
occupancy

• A higher occupancy means more work can be 
scheduled

49
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Pipeline model for performance analysis
Our research

• To understand several aspects influencing the 
performance, one should understand the behavior 
of pipelined processors

• Our performance analysis is based on the 
simulation of a dual pipeline model

• The GPU is modeled with 2 pipelines: one for the 
computational units, another for the memory units

• It does not intend to reflect a hardware accurate 
model nor a cycle accurate simulation

50

http://parallel.vub.ac.be/pipeline/
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Single Pipeline

• One warp and only dependent instructions

 Completion latency (Λ) determines performance

= length of the pipeline

• Several warps or independent instructions:

 latency hiding

 Issue latency (λ) determines performance

= 1 cycle for simple pipeline

Determines the peak performance:

51

Model ‘3 computations (all dependent)’

Increase #warps/#WG and/or #concurrent work groups

Model ‘3 computations (two independent instructions)’

Parameters #multiprocessors and #work items in 1 warp/wavefront
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Dual Pipeline

• Computation and communication (Memory access)

• Memory access is modeled as a single pipeline

• Λmem >> Λcomp and λmem >> λcomp

 More concurrency needed for peak performance

• Communication vs memory bound

• The cost of barrier synchronization

52

Model ‘3 computations and communications (all dependent)’

Compare models with and without barrier

Models ‘balanced graph’, ‘communication-bound graph’ and 
‘computation-bound graph’



Pag.

Personal Super Computing Competence Center 

Real GPU is not a simple pipeline

• NVIDIA generations
• Tesla: 8 cores  1 warp every 4 clock cycles

• Fermi: 32 cores  1 warp every clock cycle

• Kepler: 192 cores  6 warps every clock cycle

• Maxwell: 128 cores  4 warps every clock cycle

• Pipeline model

• one computation pipeline λcomp = f(generation)
• λcomp(Tesla) = 4 clock cycles

• λcomp(Fermi) = 1 clock cycles

• λcomp(Kepler) = 1/6  clock cycles

• λcomp(Maxwell) = 1/4 clock cycles

• One communication pipeline

• Latencies depend on type of memory request

• Longer for non-ideal memory access

53
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Programming for Performance
Minimizing the overall run time

• Minimize idle time

• Maximize parallelism

• Minimize dependencies

• Minimize synchronization

• Minimize software and hardware overheads

• Memory access

• Data placement

• Global memory access patterns

• Local memory access patterns

• Computation

• Minimize excess computations

• Minimize branching

• Remembering data access is slow and computation fast

54
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Maximize Parallelism
On the device

• Number of work groups:

• A multiple of the number of compute units

• A multiple of the number of compute units times the 
occupancy in work group count

• In practice: a very large number

• Work group size:

• Not too large: could limit occupancy

• A multiple of the warp/wavefront size

• In practice: 256 is a good number

55
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Maximize Parallelism
On the compute unit

• Maximize occupancy

• Scheduler has more choice

• Instruction Level Parallelism can help

• Independent instructions within one warp

• Can be executed concurrently

• Data Level Parallelism can help

• Independent memory requests for one warp

• Can be serviced concurrently

• Peak performance is reached for fewer warps if the 
ILP and MLP are increased

56
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Minimize Dependencies
ILP and MLP

Thread-Level Parallelism
• Independent threads

Instruction-Level Parallelism
• Independent instructions

57

Memory-Level Parallelism
• One thread reading / writing 2, 4, 8, 16, … floating point values
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Computational Performance
A function of TLP and ILP

• ILP = 1, 2, 3, 4

TLP: work items per compute unit

58
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Memory throughput
A function of TLP and MLP

• MLP: 1 float, 2 float, 4 float, 8 float, 8 float2, 8 float4 and 14 float4

• TLP: occupancy

59
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Memory Access Overhead
Data Placement (1)

• Data placement is crucial for performance

• Use the memory hierarchy:

• Global memory

• Share data between GPU and CPU

• Large latency and low throughput
•  Access should be minimized

• Cached in L2-cache

• Constant memory

• Share read-only data between GPU and CPU

• Is cached in L1 cache

• Limited size. Typically 64 KB

• Prefer it to local memory for small read-only data

60
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Memory Access Overhead
Data Placement (2)

• Texture memory

• Like global memory but 2D and 3D caching

• Discussion on images

• Local memory

• Share data within a work group

• Use it if the same data is used by multiple work items in 
the same work group

• Private memory (registers)

• Lowest latency highest throughput

• ! Private arrays will be stored in global memory

• Cached in L1-cache

61
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Memory Access Overhead
Global Memory Access (1)

• Global memory is organized in segments

• Memory requests of warp are handled together

• Ideal situation:

• The number of bytes that need to be accessed to 
satisfy a warp memory request is equal to the number 
of bytes actually needed by the warp for the given 
request

• A few examples will clarify this

62
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Global Memory Access
Impact of size of accessed elements

63

• Multiple copy kernels on an AMD Radeon HD 7950 
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Global Memory Access
Impact of strided access

• 2-D and 3-D data stored in flat memory space

• Strided access is not a good idea e.g. access columns

64
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Memory Access Overhead
Global Memory Access (3)

• Array of struct vs 
struct of arrays

65

typedef struct {

float a;

float b;

float c;

} triplet_t;

__kernel void aos(__global triplet_t *triplets,

// ... )

{

float a = triplets[get_global_id(0)].a;

// ...

}

__kernel void soa(__global float *as,

__global float *bs,

__global float *cs, // ... )

{

float a = as[get_global_id(0)];

// ...

}

AOS introduces strides
If elements are visited at different moments

SOA removes strides
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Memory Access Overhead
Local Memory access (1)

• Local memory is organized in banks

• Each bank can service one address per cycle

• Simultaneous access by work items of same warp of 
the same bank is a bank conflict

• Accesses are serialized

• Maximum cost = maximum bank conflict degree

• No bank conflicts when

• All work items of warp access another bank

• All work items of warp read the same address

• AMD avoids bank conflicts in hardware
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Memory Access Overhead
Local Memory access (2)

• Word storage order:
• Banks are 4 bytes wide

• Next word in next bank modulo 32

• Row access
__local float sh[32][32];
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Memory Access Overhead
Local Memory access (3)

• Column access
__local float sh[32][32];

• Column access
__local float sh[32][33];
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Computation Overhead
Excess Computation

• Unroll loops with a fixed number of iterations

• Removes loop overhead

• Index computations and tests

• Increases ILP and DLP

• Use #pragma unroll

• Let one work item process multiple data items

• Thread index calculation overhead is ammortized

• ILP and DLP will increase

• Extra potential for loop unrolling
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Computation Overhead
Branching – Definition

• A warp|wavefront runs in lockstep

• 32|64 work items execute the same instruction

• For example:

if (x<5) y = 5; else y *= 2;

• SIMD performs the 3 steps:

• Test condition

• then branch executed for threads for which condition holds

• else branch executed for threads for which condition doen’t 
hold

• Branch divergence decreases performance!
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Computation Overhead
Branching – Remedies

• Lookup table

• Static thread reordering

• Typical in reduction operations

• See extended example

• Dynamic thread reordering

• Reorder at runtime

• Time lost reordering < time won due to reordering
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Minimize Idling
Local and global synchronization (1)

• Local sycnhronization:

• Work items of the same group can synchronize:

barrier(CLK_LOCAL_MEM_FENCE);

• Work items that reach the barrier must wait

• Cannot be chosen by the scheduler

•  Less potential for latency hiding

• Global synchronization

• A new kernel must be launched!

• Data must be written to and read from global memory
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Minimize Idling
Local and global synchronization (2)

• Local synchronization:

• Keep work groups small  less effect

• No synchronization needed within warp/wavefront

• Global synchronization

• Exchange computation for data access

• E.g. Hotspot: calculate heat chip floorplan

• Heatcell = f(heatneighbors)

• Calculate NxN tiles and synchronize each time?

• No: calculate

• Iteration 0: (N+k)x(N+k) tile

• …

• Iteration k-1: NxN tile
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Parallel Sum

• Parallel Sum: 

• binary tree algorithm

• 6 different versions
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Parallel Sum 1 and 2
From global to local memory
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Parallel Sum 3
Reduce idling threads

Divergence!
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Parallel Sum 4
Thread reordering
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Parallel Sum 5 and 6
Multiple elements per work item and loop unrolling
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Resulting Performance
[GB/s]
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OpenCL Images 
Background

• GPUs have texture memory

• Special hardware to deal with images

• Take advantage of:

• 2D- caching

• Hardware interpolation of pixel values

• Automatic handling of out-of-bounds access

• To work with images you need to create:

• Image buffers

• Cfr regular buffers

• Image samplers

• To access your image
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OpenCL Images 
image buffers

Host Code

cl_mem clCreateImage( 

cl_context context,

cl_mem_flags flags,

const cl_image_format *format,

const cl_image_desc *image_desc,

void *host_ptr,

cl_int *errcode_ret)

• Image description:

• Image dimensions

• Image format:
• Channel order

• Channel data type

• OpenCL <= 1.1:
• clCreateImage1D, clCreateImage2D 

and clCreateImage3D

Device Code

__kernel void manipulateImage(

__read_only image2d_t src_image,

__write_only image2d_t dst_image,

__global sampler_t sampler)

• Image:

• read_only XOR write_only

• Sampler:

• Necessary to access the 
image

• See next
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OpenCL Images 
image samplers

Host Code

cl_sampler clCreateSampler ( 

cl_context context,

cl_bool normalized_coords,

cl_addressing_mode addressing_mode,

cl_filter_mode filter_mode,

cl_int *errcode_ret)

• Normalized coordinates:
• If true: coordinates in [0, 1.0]

• Addressing mode:
• Behaviour for out of bounds access

• Filter mode:
• Interpolation behaviour

Device Code

__kernel void darkenImage(

__read_only image2d_t src_image,

__write_only image2d_t dst_image,

__global sampler_t sampler)

{

int2 coord = (int2)(get_global_id(0),

get_global_id(1));

uint offset = get_global_id(1)*0x4000 +

get_global_id(0)*0x1000;

uint4 pixel = read_imageui(src_image, 

sampler, 

coord);

pixel.x -= offset;

write_imageui(dst_image, coord, pixel);

}
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