
Personal Super Computing Competence Center

GPGPU Training

Personal Super Computing Competence Centre

PSC3

Jan G. Cornelis

1

Pag.

Personal Super Computing Competence Center

Levels of Understanding

• Level 0

• Host and device

• Level 1

• Parallel execution on the device

• Level 2

• Device model and work groups

• Level 3

• Performance Considerations

2

Level 0

Host and Device

3

Pag.

Personal Super Computing Competence Center

A Heterogeneous System
Host and Device

4

Pag.

Personal Super Computing Competence Center

Typical Sequence of Events

5

Pag.

Personal Super Computing Competence Center

OpenCL

• We need a way to

• Modify our program to use accelerators

• Specify the code that needs to run on the accelerators

• OpenCL

• A host API

• OpenCL C language

• A model of

• A heterogeneous system

• An OpenCL device

• https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/

6

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/

Pag.

Personal Super Computing Competence Center

OpenCL Resources
A small sample

• www.khronos.org

• www.iwocl.org (*)

• www.streamcomputing.eu (*)

• developer.amd.com/tools-and-sdks/opencl-zone/

• www.eriksmistad.no/category/opencl/

• www.youtube.com

• AJ Guillon

(*) These sites include references to books

7

http://www.khronos.org/
http://www.iwocl.org/
http://www.streamcomputing.eu/
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://www.eriksmistad.no/category/opencl/
http://www.youtube.com/

Pag.

Personal Super Computing Competence Center

HOST API
In this training

• We need only a little knowledge:

1. Select the appropriate GPU.

2. Allocate memory on the GPU.

3. Transfer data between CPU and GPU.

4. Compile and run code for/on the GPU.

• Understand what has to be modified.

• Seasoned programmers consult the manual pages
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml

8

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml

Pag.

Personal Super Computing Competence Center

The basic platform and runtime APIs in
OpenCL (using C)

arg [0] value

arg [1] value

arg [2] value

arg [0] value

arg [1] value

arg [2] value

In

Order

Queue

Out of

Order

Queue

GPU

Context

__kernel void

dp_mul(global const float *a,

global const float *b,

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

dp_mul

CPU program binary

dp_mul

GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

Pag.

Personal Super Computing Competence Center

Host API
Concepts

Platform An OpenCL implementation e.g.
AMD, Intel, NVIDIA, …

Device An accelerator belonging to a
platform

Context A container object to deal with
computation on the associated
devices

Command
Queue

Interface with a device. Used to
send commands to the device

Program A code container. Created from
source or existing binaries

Kernel A function to be run on a device

Buffer A memory area on a device

NDRange An execution configuration. See
later

10

Pag.

Personal Super Computing Competence Center

Context and Command-Queues

• Context:
• The environment within which

kernels execute and in which
synchronization and memory
management is defined.

• The context includes:
• One or more devices
• Device memory
• One or more command-queues

• All commands for a device
(kernel execution,
synchronization, and memory
transfer operations) are
submitted through a
command-queue.

• Each command-queue points
to a single device within a
context.

Queue

Context

Device

Device Memory

Pag.

Personal Super Computing Competence Center

HOST API
C++ Wrapper

• Pros

• Briefer
• Exceptions instead of

error handling

• Certain methods
equivalent to two C API
function calls

• Automatic cleanup

• Cons

• May not be up to date

• Man page mapping

• Need some experience

12

Pag.

Personal Super Computing Competence Center

OpenCL: What is needed?

• A device and a device driver that support OpenCL

• A static or dynamic library

• OpenCL header files

• Windows

• A Visual Studio solution is provided

• Includes library and headers

• Mac OSX

• Supported out of the box. Compile with

-framework OpenCL -DAPPLE

• Linux
• https://wiki.tiker.net/OpenCLHowTo#How_to_set_up_OpenCL_in_Linux

13

https://wiki.tiker.net/OpenCLHowTo#How_to_set_up_OpenCL_in_Linux

Intermezzo

deviceQuery

14

Level 1

Parallel Execution

on the Device

15

Pag.

Personal Super Computing Competence Center

Parallel Execution on the Device
OpenCL Hello World

• A useless program?

• Copy data from one buffer to another

• A very useful program!

• Writing the first program is often a big hurdle

• How to use the host API?

• How to write the OpenCL C code

• Helps to grasp the basic concepts

• Print-out of the code

16

Pag.

Personal Super Computing Competence Center

The OpenCL Host API
OpenCL Hello World (1)

• Initializing OpenCL

17

std::vector<cl::Platform> platforms;
std::vector<cl::Device> devices;
cl::Platform::get(&platforms);
platforms[0].getDevices(CL_DEVICE_TYPE_GPU, &devices);

cl::Context context(devices);

cl::CommandQueue queue(context, devices[0], CL_QUEUE_PROFILING_ENABLE);

Pag.

Personal Super Computing Competence Center

The OpenCL Host API
OpenCL Hello World (3)

• Allocating memory

• Transferring data

18

unsigned int size = data_count*sizeof(cl_float);

cl::Buffer source_buf(context, CL_MEM_READ_ONLY, size);
cl::Buffer dest_buf(context, CL_MEM_WRITE_ONLY, size);

queue.enqueueWriteBuffer(source_buf, CL_TRUE, 0, size, source);

// ...

queue.enqueueReadBuffer(dest_buf, CL_TRUE, 0, size, dest);

Pag.

Personal Super Computing Competence Center

The OpenCL Host API
OpenCL Hello World (3)

• Compiling and executing code

• kernel_file: name of text file containing OpenCL C code

• kernel_name: name of the kernel function

19

cl::Program program = jc::buildProgram(kernel_file, context, devices);
cl::Kernel kernel(program, kernel_name.c_str());

kernel.setArg<cl::Memory>(0, source_buf);
kernel.setArg<cl::Memory>(1, dest_buf);
kernel.setArg<cl_uint>(2, data_count);

cl_ulong t = jc::runAndTimeKernel(kernel, queue, cl::NDRange(data_count));

Pag.

Personal Super Computing Competence Center

OpenCL C
OpenCL Hello World (4)

• kernel_file contains a function called floatCopy
• floatCopy specifies the work of a single work item

20

__kernel void floatCopy(
__global float * source,
__global float * dest,
unsigned int data_size
)

{
size_t index = get_global_id(0);

if (index >= data_size) {
return;

}

dest[index] = source[index];

return;
}

Pag.

Personal Super Computing Competence Center

OpenCL C
OpenCL Hello World (5)

• The programmer specifies the number of work items

• Enough work items to handle all data items

21

__kernel void floatCopy(
__global float * source,
__global float * dest,
unsigned int data_size
)

{
size_t index1 = 2*get_global_id(0);
size_t index2 = index1 + 1;

dest[index1] = source[index1];
if (index2 < data_size) {

dest[index2] = source[index1];
}

return;
}

Pag.

Personal Super Computing Competence Center

Beehive Metaphor
Memory – Data – Work items

Beehive – Honey – Bees

22

Pag.

Personal Super Computing Competence Center

OpenCL C C?
A language based on C99

Extensions

• Function qualifiers
__kernel

• Memory qualifiers
__global, __constant,
__local, __private

• Workspace query
functions
get_global_id(dimidx), ...

• Access qualifiers
__read_only, __write_only

Limitations

• No recursion

• No function pointers

• No dynamic memory

23

Pag.

Personal Super Computing Competence Center

Exercise
sumInts

• Implement the sum of lists

• Assume three lists A, B and C

• Element i of C:

• Ci = Ai + Bi;

• Extension:

• One work item processes more than one data
item

24

Intermezzo

performance

25

Pag.

Personal Super Computing Competence Center

Performance?
Informal Definition

• Performance of a program?
• Linked to the run time

• Performance of a program is a function of
• Hardware

• Data on which the program is run

• Two implementations of the same algorithm:
A and B

P(A, HW, D) > P(B, HW, D)  t(A, HW, D) < t(B, HW, D)

26

Pag.

Personal Super Computing Competence Center

Performance?
Quantification

• Operations performed per second

• For computationally bound code

• Bytes accessed per second

• For memory bound code

• Compare to the platform peak performance
• Memory bandwidth

• Gflops/s, Ops/s

• More on day 3

27

Level 2

Device Model and

Work Groups

28

Pag.

Personal Super Computing Competence Center

OpenCL Device Model
How can we exploit this?

29

Pag.

Personal Super Computing Competence Center

Work groups

• Work items are divided in work groups

• A work group is executed on one compute
unit
• From start to end

• Work items can share local memory
• Kind of explicit cache

• Within a work group synchronization is
possible

• With the barrier statement.

• Work group size is determined by the
programmer

• One size for all work groups
30

Pag.

Personal Super Computing Competence Center

OpenCL Work Space
Terminology and query functions

• N-dimensional range
• index space

• 1-, 2- or 3-dimensional

• Global NDRange:
configuration of ALL work
items

• Local NDRange: configuration
of a work group

• Note:
• Global and Local ranges must

have the same number of
dimensions!

• Work group size in a certain
dimension must be a whole
divisor of the global size in this
direction

• Query functions

get_global_id(dimidx)

get_global_size(dimidx)

get_group_id(dimidx)

get_local_id(dimidx)

get_local_size(dimidx)

get_num_groups(dimidx)

get_work_dim()

31

Pag.

Personal Super Computing Competence Center

OpenCL Work Space
Quick test

get_global_id(0) = ______

get_global_id(1) = ______

get_global_size(0) = ______

get_global_size(1) = ______

get_group_id(0) = ______

get_group_id(1) = ______

get_local_id(0) = ______

get_local_id(1) = ______

get_local_size(0) = ______

get_local_size(1) = ______

get_num_groups(0) = ______

get_num_groups(1) = ______

get_work_dim() = ______

32

Pag.

Personal Super Computing Competence Center

OpenCL Work Space – Exercise
queryWorkSpace

• Write the result of the query functions to global memory
• Visualize the resulting matrix from the host

• Tip: for a readable result use small matrices and small workgroup sizes
• E.g. 16x16 matrix 4x4 work group

Usage: queryWorkSpace.exe <kernel_file> <kernel_name> <data_width> <data_height> <wg_width> <wg_height>

$./queryWorkSpace.exe kernels.ocl queryWorkSpace 16 16 2 4
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

33

Which query function did I
call?

Pag.

Personal Super Computing Competence Center

OpenCL Memory Model
Explicit Memory Hierarchy

• In your kernel code:

34

__kernel void similarity_constant_local
(

__global float * tags_min, // 0
__global float * tags_max, // 1
__constant float * query_min, // 2
__constant float * query_max, // 3
__global float * shifted_weights, // 4
__global float * scores, // 5
__global uint * indices, // 6
__global int * offsets, // 7
unsigned int tags_size, // 8
unsigned int num_windows, // 9
unsigned int index_resolution, // 10

__local float * l_scores, // 11
__local uint * l_indices, // 12
__local float * l_tags_min, // 13
__local float * l_tags_max, // 14
unsigned int tag_count // 15

)
{

// kernel body omitted
}

Pag.

Personal Super Computing Competence Center

OpenCL Memory Model
using local memory

In the kernel body
#define N 256

__kernel void similarity_constant_local

(

__global float * in,

__global float * out

unsigned int size

)

{

unsigned int index = get_global_id(0);

__local float shared[N];

// populate

shared[get_local_id(0)] =

index < size ? In[index] : 0;

barrier(CLK_LOCAL_MEM_FENCE);

// use local memory

// …

}

As a kernel argument

__kernel void similarity_constant_local

(

__global float * in,

__global float * out,

__local float * shared,

unsigned int size

)

{

unsigned int index = get_global_id(0);

// populate

shared[get_local_id(0)] =

index < size ? In[index] : 0;

barrier(CLK_LOCAL_MEM_FENCE);

// use local memory

// …

}

35

kernel.setArg<cl::LocalSpaceArg>(2, cl::__local(N)); // N can be variable

Pag.

Personal Super Computing Competence Center

OpenCL Memory Model
using local memory – example

Matrix Multiplication Device code
__kernel void mul(__global int *A, __global int *B, __global int *C, int
size)

{

__local int sharedA[16][16];

__local int sharedB[16][16];

int sum = 0;

int aStart = get_global_id(1)*size + get_local_id(0);

int aEnd = aStart + size;

int bStart = get_local_id(1)*size + get_global_id(0);

int aStep = 16; // move 16 colums

int bStep = 16*size; // move 16 rows

for (int a = aStart, b = bStart; a < aEnd; a += aStep, b += bStep){

sharedA[get_local_id(1)][get_local_id(0)] = A[a];

sharedB[get_local_id(1)][get_local_id(0)] = B[b];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (int j = 0; j < 16; ++j)

sum += sharedA[get_local_id(0)][j] *

sharedB[j][get_local_id(0)];

barrier(CLK_LOCAL_MEM_FENCE);

}

C[y*size + x] = sum;

}

36

Pag.

Personal Super Computing Competence Center

OpenCL Execution Model

• Execution of N work groups of m work items

• Work groups are assigned to compute units
• A work group stays there until it completes

• Compute units may execute multiple work groups concurrently
• See later

• Work groups not yet assigned to a compute unit must wait

• The order in which work groups execute is non-deterministic

• Consequences

• There can be no interaction between work groups

• OpenCL code scales inherently

37

Pag.

Personal Super Computing Competence Center

Inherent Scaling

38

Device

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Work groups

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Device

WG 0 WG 1 WG 2 WG 3

WG 4 WG 5 WG 6

time

GPU with 2 CUs
GPU with 4 CUs

Pag.

Personal Super Computing Competence Center

Advanced OpenCL

• OpenCL is a large topic.

• You cannot know everything in 3 days:

• Images and OpenGL interoperability

• Runing code on multiple devices

• Atomic operations

• Mapped memory

• Streaming

• Events

• …

• Extend your knowledge as needed.

• But don’t try to run before you can walk!

39

Pag.

Personal Super Computing Competence Center

Runtime math library

• Two ways to compute standard mathematical
functions

• func(): slow but precise

• native_func(): less precise but fast

• For example

• cos(), native_cos()

• sqrt(), native_sqrt()

• Special hardware for native functions

40

Pag.

Personal Super Computing Competence Center

The Main Challenge of OpenCL

41

Pag.

Personal Super Computing Competence Center

Exercise: Matrix Vector Operation
matrixVector

• Matrix A mxn

• Vector B n

• Computation?

• Repeat N times:

• A[i,j] = A[i,j] + A[i,j]*B[j]

• Observe

• Data throughput in function of N

• Computational throughput in function of N

42

Pag.

Personal Super Computing Competence Center

Exercise: Erosion
listErosion – matrixErosion

• Typical operation in image processing

• Given an input pixel the value of the corresponding output pixel is the
minimum of values of pixels under a mask centered on the input pixel

• Example Erosion with a 3x3 mask on a binary image:

• Implement erosion for one-dimensional data for a parameterizable mask
width

1. Doing everything in global memory

2. Using local memory

• Try two-dimensional erosion

43

Level 3

Performance

Considerations

44

Pag.

Personal Super Computing Competence Center

NVIDIA GPU
Fermi Architecture

45

Pag.

Personal Super Computing Competence Center

AMD GPU
GCN Architecture

46

Pag.

Personal Super Computing Competence Center

NVIDIA Compute Unit
a.k.a. Streaming Multiprocessor

• SM:

• 32 cores
• Processing elements

• 4 special function units

• 64 KB local memory/cache
• __local memory

• 32K 32 bit registers
• __private memory

• SMX:

• 192 cores

• 32 special function units

• 64 KB local memory/cache

• 64K 32 bit registers

47

Pag.

Personal Super Computing Competence Center

Execution of Work groups

• Work group executed on a compute unit

• Groups of 32/64 work items operate together

• NVIDIA: warp consists of 32 work items

• AMD: wavefront consists of 64 work items

• It is necessary to think in terms of warps or
wavefronts to obtain optimal performance

48

Pag.

Personal Super Computing Competence Center

Occupancy

• Occupancy =
#𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑜𝑛 𝑎 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑈𝑛𝑖𝑡

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑜𝑛 𝑎 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑈𝑛𝑖𝑡

• Limited resources may limit the occupancy:

• Registers needed per work group

• Local memory needed per work group

• Maximum number of concurrent work groups

• The most constrained resource determines the
occupancy

• A higher occupancy means more work can be
scheduled

49

Pag.

Personal Super Computing Competence Center

Pipeline model for performance analysis
Our research

• To understand several aspects influencing the
performance, one should understand the behavior
of pipelined processors

• Our performance analysis is based on the
simulation of a dual pipeline model

• The GPU is modeled with 2 pipelines: one for the
computational units, another for the memory units

• It does not intend to reflect a hardware accurate
model nor a cycle accurate simulation

50

http://parallel.vub.ac.be/pipeline/

Pag.

Personal Super Computing Competence Center

Single Pipeline

• One warp and only dependent instructions

 Completion latency (Λ) determines performance

= length of the pipeline

• Several warps or independent instructions:

 latency hiding

 Issue latency (λ) determines performance

= 1 cycle for simple pipeline

Determines the peak performance:

51

Model ‘3 computations (all dependent)’

Increase #warps/#WG and/or #concurrent work groups

Model ‘3 computations (two independent instructions)’

Parameters #multiprocessors and #work items in 1 warp/wavefront

Pag.

Personal Super Computing Competence Center

Dual Pipeline

• Computation and communication (Memory access)

• Memory access is modeled as a single pipeline

• Λmem >> Λcomp and λmem >> λcomp

 More concurrency needed for peak performance

• Communication vs memory bound

• The cost of barrier synchronization

52

Model ‘3 computations and communications (all dependent)’

Compare models with and without barrier

Models ‘balanced graph’, ‘communication-bound graph’ and
‘computation-bound graph’

Pag.

Personal Super Computing Competence Center

Real GPU is not a simple pipeline

• NVIDIA generations
• Tesla: 8 cores  1 warp every 4 clock cycles

• Fermi: 32 cores  1 warp every clock cycle

• Kepler: 192 cores  6 warps every clock cycle

• Maxwell: 128 cores  4 warps every clock cycle

• Pipeline model

• one computation pipeline λcomp = f(generation)
• λcomp(Tesla) = 4 clock cycles

• λcomp(Fermi) = 1 clock cycles

• λcomp(Kepler) = 1/6 clock cycles

• λcomp(Maxwell) = 1/4 clock cycles

• One communication pipeline

• Latencies depend on type of memory request

• Longer for non-ideal memory access

53

Pag.

Personal Super Computing Competence Center

Programming for Performance
Minimizing the overall run time

• Minimize idle time

• Maximize parallelism

• Minimize dependencies

• Minimize synchronization

• Minimize software and hardware overheads

• Memory access

• Data placement

• Global memory access patterns

• Local memory access patterns

• Computation

• Minimize excess computations

• Minimize branching

• Remembering data access is slow and computation fast

54

Pag.

Personal Super Computing Competence Center

Maximize Parallelism
On the device

• Number of work groups:

• A multiple of the number of compute units

• A multiple of the number of compute units times the
occupancy in work group count

• In practice: a very large number

• Work group size:

• Not too large: could limit occupancy

• A multiple of the warp/wavefront size

• In practice: 256 is a good number

55

Pag.

Personal Super Computing Competence Center

Maximize Parallelism
On the compute unit

• Maximize occupancy

• Scheduler has more choice

• Instruction Level Parallelism can help

• Independent instructions within one warp

• Can be executed concurrently

• Data Level Parallelism can help

• Independent memory requests for one warp

• Can be serviced concurrently

• Peak performance is reached for fewer warps if the
ILP and MLP are increased

56

Pag.

Personal Super Computing Competence Center

Minimize Dependencies
ILP and MLP

Thread-Level Parallelism
• Independent threads

Instruction-Level Parallelism
• Independent instructions

57

Memory-Level Parallelism
• One thread reading / writing 2, 4, 8, 16, … floating point values

Pag.

Personal Super Computing Competence Center

Computational Performance
A function of TLP and ILP

• ILP = 1, 2, 3, 4

TLP: work items per compute unit

58

Pag.

Personal Super Computing Competence Center

Memory throughput
A function of TLP and MLP

• MLP: 1 float, 2 float, 4 float, 8 float, 8 float2, 8 float4 and 14 float4

• TLP: occupancy

59

Pag.

Personal Super Computing Competence Center

Memory Access Overhead
Data Placement (1)

• Data placement is crucial for performance

• Use the memory hierarchy:

• Global memory

• Share data between GPU and CPU

• Large latency and low throughput
•  Access should be minimized

• Cached in L2-cache

• Constant memory

• Share read-only data between GPU and CPU

• Is cached in L1 cache

• Limited size. Typically 64 KB

• Prefer it to local memory for small read-only data

60

Pag.

Personal Super Computing Competence Center

Memory Access Overhead
Data Placement (2)

• Texture memory

• Like global memory but 2D and 3D caching

• Discussion on images

• Local memory

• Share data within a work group

• Use it if the same data is used by multiple work items in
the same work group

• Private memory (registers)

• Lowest latency highest throughput

• ! Private arrays will be stored in global memory

• Cached in L1-cache

61

Pag.

Personal Super Computing Competence Center

Memory Access Overhead
Global Memory Access (1)

• Global memory is organized in segments

• Memory requests of warp are handled together

• Ideal situation:

• The number of bytes that need to be accessed to
satisfy a warp memory request is equal to the number
of bytes actually needed by the warp for the given
request

• A few examples will clarify this

62

Pag.

Personal Super Computing Competence Center

Global Memory Access
Impact of size of accessed elements

63

• Multiple copy kernels on an AMD Radeon HD 7950

Pag.

Personal Super Computing Competence Center

Global Memory Access
Impact of strided access

• 2-D and 3-D data stored in flat memory space

• Strided access is not a good idea e.g. access columns

64

Pag.

Personal Super Computing Competence Center

Memory Access Overhead
Global Memory Access (3)

• Array of struct vs
struct of arrays

65

typedef struct {

float a;

float b;

float c;

} triplet_t;

__kernel void aos(__global triplet_t *triplets,

// ...)

{

float a = triplets[get_global_id(0)].a;

// ...

}

__kernel void soa(__global float *as,

__global float *bs,

__global float *cs, // ...)

{

float a = as[get_global_id(0)];

// ...

}

AOS introduces strides
If elements are visited at different moments

SOA removes strides

Pag.

Personal Super Computing Competence Center

Memory Access Overhead
Local Memory access (1)

• Local memory is organized in banks

• Each bank can service one address per cycle

• Simultaneous access by work items of same warp of
the same bank is a bank conflict

• Accesses are serialized

• Maximum cost = maximum bank conflict degree

• No bank conflicts when

• All work items of warp access another bank

• All work items of warp read the same address

• AMD avoids bank conflicts in hardware

Pag.

Personal Super Computing Competence Center

Memory Access Overhead
Local Memory access (2)

• Word storage order:
• Banks are 4 bytes wide

• Next word in next bank modulo 32

• Row access
__local float sh[32][32];

Pag.

Personal Super Computing Competence Center

Memory Access Overhead
Local Memory access (3)

• Column access
__local float sh[32][32];

• Column access
__local float sh[32][33];

Pag.

Personal Super Computing Competence Center

Computation Overhead
Excess Computation

• Unroll loops with a fixed number of iterations

• Removes loop overhead

• Index computations and tests

• Increases ILP and DLP

• Use #pragma unroll

• Let one work item process multiple data items

• Thread index calculation overhead is ammortized

• ILP and DLP will increase

• Extra potential for loop unrolling

69

Pag.

Personal Super Computing Competence Center

Computation Overhead
Branching – Definition

• A warp|wavefront runs in lockstep

• 32|64 work items execute the same instruction

• For example:

if (x<5) y = 5; else y *= 2;

• SIMD performs the 3 steps:

• Test condition

• then branch executed for threads for which condition holds

• else branch executed for threads for which condition doen’t
hold

• Branch divergence decreases performance!

70

Pag.

Personal Super Computing Competence Center

Computation Overhead
Branching – Remedies

• Lookup table

• Static thread reordering

• Typical in reduction operations

• See extended example

• Dynamic thread reordering

• Reorder at runtime

• Time lost reordering < time won due to reordering

71

Pag.

Personal Super Computing Competence Center

Minimize Idling
Local and global synchronization (1)

• Local sycnhronization:

• Work items of the same group can synchronize:

barrier(CLK_LOCAL_MEM_FENCE);

• Work items that reach the barrier must wait

• Cannot be chosen by the scheduler

•  Less potential for latency hiding

• Global synchronization

• A new kernel must be launched!

• Data must be written to and read from global memory

Pag.

Personal Super Computing Competence Center

Minimize Idling
Local and global synchronization (2)

• Local synchronization:

• Keep work groups small  less effect

• No synchronization needed within warp/wavefront

• Global synchronization

• Exchange computation for data access

• E.g. Hotspot: calculate heat chip floorplan

• Heatcell = f(heatneighbors)

• Calculate NxN tiles and synchronize each time?

• No: calculate

• Iteration 0: (N+k)x(N+k) tile

• …

• Iteration k-1: NxN tile

Pag.

Personal Super Computing Competence Center

Parallel Sum

• Parallel Sum:

• binary tree algorithm

• 6 different versions

Pag.

Personal Super Computing Competence Center

Parallel Sum 1 and 2
From global to local memory

Pag.

Personal Super Computing Competence Center

Parallel Sum 3
Reduce idling threads

Divergence!

Pag.

Personal Super Computing Competence Center

Parallel Sum 4
Thread reordering

Pag.

Personal Super Computing Competence Center

Parallel Sum 5 and 6
Multiple elements per work item and loop unrolling

Pag.

Personal Super Computing Competence Center

Resulting Performance
[GB/s]

79

0

10

20

30

40

50

60

70

80

90

100

reduction1 reduction2 reduction3 reduction4 reduction5 reduction6

Tesla C2050

AMD Radeon HD7950

Images

80

Pag.

Personal Super Computing Competence Center

OpenCL Images
Background

• GPUs have texture memory

• Special hardware to deal with images

• Take advantage of:

• 2D- caching

• Hardware interpolation of pixel values

• Automatic handling of out-of-bounds access

• To work with images you need to create:

• Image buffers

• Cfr regular buffers

• Image samplers

• To access your image

81

Pag.

Personal Super Computing Competence Center

OpenCL Images
image buffers

Host Code

cl_mem clCreateImage(

cl_context context,

cl_mem_flags flags,

const cl_image_format *format,

const cl_image_desc *image_desc,

void *host_ptr,

cl_int *errcode_ret)

• Image description:

• Image dimensions

• Image format:
• Channel order

• Channel data type

• OpenCL <= 1.1:
• clCreateImage1D, clCreateImage2D

and clCreateImage3D

Device Code

__kernel void manipulateImage(

__read_only image2d_t src_image,

__write_only image2d_t dst_image,

__global sampler_t sampler)

• Image:

• read_only XOR write_only

• Sampler:

• Necessary to access the
image

• See next

82

Pag.

Personal Super Computing Competence Center

OpenCL Images
image samplers

Host Code

cl_sampler clCreateSampler (

cl_context context,

cl_bool normalized_coords,

cl_addressing_mode addressing_mode,

cl_filter_mode filter_mode,

cl_int *errcode_ret)

• Normalized coordinates:
• If true: coordinates in [0, 1.0]

• Addressing mode:
• Behaviour for out of bounds access

• Filter mode:
• Interpolation behaviour

Device Code

__kernel void darkenImage(

__read_only image2d_t src_image,

__write_only image2d_t dst_image,

__global sampler_t sampler)

{

int2 coord = (int2)(get_global_id(0),

get_global_id(1));

uint offset = get_global_id(1)*0x4000 +

get_global_id(0)*0x1000;

uint4 pixel = read_imageui(src_image,

sampler,

coord);

pixel.x -= offset;

write_imageui(dst_image, coord, pixel);

}

83

