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Jan Lemeire (jan.lemeire@vub.ac.be) 

• Graduated as Engineer in 1994 at VUB 

• Worked for 4 years for 2 IT-consultancy companies 

• 2000-2007: PhD at the VUB while teaching as assistant 

• Subject: probabilistic models for the performance analysis of parallel 
programs 

• Since 2008: postdoc en parttime professor at VUB, department of 
electronics and informatics (ETRO) 

• Teaching ‘Informatics’ for first-year bachelors; ‘parallel systems’ and 
‘advanced computer architecture’ to masters 

• Since 2012: also teaching for engineers industrial sciences 
(‘industrial engineers’) 

• Projects, papers, phd students in parallel processing (performance 
analysis, GPU computing) & data mining/machine learning 
(probabilistic models, causality, learning algorithms) 
 

• http://parallel.vub.ac.be 
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A bit of History 
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The first computer, mechanical 
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Charles Babbage 

1791-1871 
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Babbage Difference Engine made 
with LEGO 

• http://acarol.woz.org/ 

This machine can evaluate polynomials of the form Ax2 + Bx + C 
for x=0, 1, 2, …n with 3 digit results. 
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http://acarol.woz.org/
http://acarol.woz.org/
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The first informatician 

• Describes what software is 

• She brings the insight that a 
computer goes beyond plain 
calculations 

• She writes the first 
algorithm/program 

Ada Lovelace 

1815 – 1852 

6 



Pag. 
Personal Super Computing Competence Center  

 

7 



Pag. 
Personal Super Computing Competence Center  

 ENIAC   

First computer: WWII 

John Mauchly and John Eckert, 1945 8 
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Programming = rewiring,  

changing the hardware 

Parallel computer! 
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Von Neumann rethinks the computer 

John Von Neumann 
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The Von Neumann-architecture 
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Execute program step-by-step 

23
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For acceleration: pipeline 

• Long operations 
 

 

• Combination of short operations 
 

 

• Pipelining 
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Pipeline Design 
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• Typically five tasks in instruction execution 

• IF: instruction fetch 

• ID: instruction decode 

• OF: operand fetch 

• EX: instruction execution 

• OS: operand store,  
often called write-back WB 
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Superscalar out-of-order pipeline 

15 

3 instructions simultaneously  

(=pipeline width) 

Independent instructions 

can overtake each other 
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‘Sequential’ processor: super-
scalar out-of-order pipeline  

Pipeline depth 

Pipeline width 

Different processing units 

Out-of-order execution 

Branch prediction 

Register renaming 

… 
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Now we are 

computing 

sequentially! 



Parallel 

computing? 
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Super computer: BlueGene/L 

• IBM 2007 

• 65.536 dual core nodes 
• E.g. one processor dedicated to 

communication, other to 
computation 

• Each 512 MB RAM 

• No 8 in Top 500 
Supercomputer list (2010) 
• www.top500.org 
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Clusters 

• Made from commodity parts  

• or blade servers 

• Open-source software available 
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Distributed-Memory Architectures  

• Each process got his 
own local memory 

 

• Communication 
through messages 

 

• Process is in control 

CPU

M

CPU

M

CPU

MN
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BlueGene/L communication networks 

(a) 3D torus (64x32x32) for standard 

interprocessor data transfer 

• Cut-through routing (see later) 

 

(b) collective network for fast evaluation of 

reductions. 

 

(c) Barrier network by a common wire 

(a) 
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• The ability to send and receive messages is all we 
need 

 

• void send(message, destination) 

 

• message receive(source) 

 

• boolean probe(source) 
 

Message-passing 
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Multicore 

computing 
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Shared Address-space Architectures  

• Example: 
multiprocessors 

CPU CPU

M

CPU
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AMD Barcelona: 4 processor cores 
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Thread / core 

• A different thread per core 

• Each thread can run independently 

 

 Multi-threaded programming 

• Thread synchronization necessary 

 

• Multiple threads per core also possible 

• Context switches necessary 

• Hardware threads/hyperthreading 
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Latency Hiding 

28 

Faster CPU 
More 
threads 
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4 cores: x4 
Latency hiding: x3 



Next level 
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GPU vs CPU Peak Performance Trends 

 

 GPU peak performance has grown aggressively. 

 Hardware has kept up with Moore’s law  

 

Source : NVIDIA 

2010 
350 Million triangles/second 
3 Billion transistors GPU 

1995 
5,000 triangles/second 
800,000 transistors GPU 
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Parallel processors 

Courtesy of 

GPUs (arrays) 
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GPU Architecture 

streaming multiprocessor 

global memory 
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1 Streaming Multiprocessor 

hardware threads 
grouped by 32 threads 
(warps), executing in 
lockstep (SIMD) 

 

In each cycle, a warp is 
selected of which the next 
instruction is put in the 
pipeline 

 

The Same Instruction is  

executed on Multiple Data (SIMD) 

 

      width of pipeline: 8 - 32 
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Why are GPUs faster? 

Devote transistors to… computation 

34 



Pag. 
Personal Super Computing Competence Center  

• ±24 stages (old), now ± 8  

• in-order execution!! 

• no branch prediction!! 

• no forwarding!! 

• no register renaming!! 

• Memory system:  

• relatively small 

• Until recently no caching 

• On the other hand: much more registers (see later) 

GPU processor pipeline 
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Multi-Threading (MT) possibilities 

Context switch 
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Processing power not for free 

Obstacle 1 
Hard(er) to implement 

 

Obstacle 2 
Hard(er) to get efficiency 
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Algorithm 

Implementation 

Compiler 

Automatic 

optimization 

Low latency of 

each instruction! 

Write once 

Run everywhere 

efficiently! 

CPU computing 

automatic 

manual 



Computer science  

is not about  

computers 



Application 

Identification of 
compute-intensive 

parts 

Feasibility study of  
GPU acceleration 

GPU implementation 

GPU optimization 

Hardware 

Skeleton-
based 

OpenCL 

Pragma-based 

Automatic 
parallelization 

Programmability solutions 

libraries 
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Computer science  

is not about  

computers 



Optimization 

Compiler 

Algorithms 

Implementation 

performance programmability 

portability 

Challenges of GPU computing 



Intel Xeon Phi 
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Single Instruction Multiple Data (SIMD) 

• Operate elementwise on vectors of data 
• E.g., MMX and SSE instructions in x86 

• Multiple data elements in 128-bit wide registers 

• Data has to be moved explicitly to/from vector registers 

• All processors execute the same instruction at the 
same time 
• Instruction has to be fetched only once 

 

Instructions can be performed at once  

on all elements of vector registers 

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers 

+
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Vector processors (SIMD) 

• Highly pipelined function units 

• Stream data from/to vector registers to units 

• Data collected from memory into registers 

• Results stored from registers to memory 

• Has long be viewed as the solution for high-
performance computing 

• Why always repeating the same instructions (on 
different data)? => just apply the instruction 
immediately on all data 

• However: difficult to program 

• Is SIMT (OpenCL) a better alternative?? 
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Intel’s Xeon Phi coprocessor 

Intel’s response to 
GPUs… 

 

60 cores 

RAM 

ring network 
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Intel’s Xeon Phi’s core 

4 hardware 

threads 

512-bit 

Vector unit 

(SIMD) 

Thread scheduler 
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Vectorization needed for peak 
performance!! 

_m512 register 

_mm512_add operations 

Automatic vectorization only 

works in simple cases 
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Conclusions 
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The third pillar  
of the scientific world 



Parallel Programming Paradigms 
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Message-
passing 

MPI 

Explicit 
multi-

threading 

OpenCL/CUDA 

OpenMP 

Explicit vector 
instructions 

PROC

M

PROC

M

PROC

MN

PROC PROC

M

PROC

P P P P

M

P P P P

M

M

PROC PROC PROC

M

Distributed memory Shared memory 

coarse-grain 
parallelism 

fine-grain 
parallelism 

SIMD 

coarse-grain 
parallelism 

SIMT 
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Hardware? Software? 

• You need to have insight into the hardware! 

• No universal hardware/programming model (yet) 

• Intel-approach (SIMD) 

• Intel sticks to x86 architecture 

• That’s what programmers know & they 
won’t change 

• Vectorization necessary 
 

• OpenCL-approach (SIMT) 

• Will semi-abstract model remain valid? 
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