
Personal Super Computing Competence Center

General introduction:
GPUs and the realm of parallel
architectures

GPU Computing Training

August 17-19th 2015

Pag.
Personal Super Computing Competence Center

Jan Lemeire (jan.lemeire@vub.ac.be)

• Graduated as Engineer in 1994 at VUB

• Worked for 4 years for 2 IT-consultancy companies

• 2000-2007: PhD at the VUB while teaching as assistant

• Subject: probabilistic models for the performance analysis of parallel
programs

• Since 2008: postdoc en parttime professor at VUB, department of
electronics and informatics (ETRO)

• Teaching ‘Informatics’ for first-year bachelors; ‘parallel systems’ and
‘advanced computer architecture’ to masters

• Since 2012: also teaching for engineers industrial sciences
(‘industrial engineers’)

• Projects, papers, phd students in parallel processing (performance
analysis, GPU computing) & data mining/machine learning
(probabilistic models, causality, learning algorithms)

• http://parallel.vub.ac.be

2

A bit of History

Pag.
Personal Super Computing Competence Center

The first computer, mechanical

4

Charles Babbage

1791-1871

Pag.
Personal Super Computing Competence Center

Babbage Difference Engine made
with LEGO

• http://acarol.woz.org/

This machine can evaluate polynomials of the form Ax2 + Bx + C
for x=0, 1, 2, …n with 3 digit results.

5

http://acarol.woz.org/
http://acarol.woz.org/

Pag.
Personal Super Computing Competence Center

The first informatician

• Describes what software is

• She brings the insight that a
computer goes beyond plain
calculations

• She writes the first
algorithm/program

Ada Lovelace

1815 – 1852

6

Pag.
Personal Super Computing Competence Center

7

Pag.
Personal Super Computing Competence Center

 ENIAC

First computer: WWII

John Mauchly and John Eckert, 1945 8

Pag.
Personal Super Computing Competence Center

Programming = rewiring,

changing the hardware

Parallel computer!
9

Pag.
Personal Super Computing Competence Center

Von Neumann rethinks the computer

John Von Neumann

10 10

Pag.
Personal Super Computing Competence Center

The Von Neumann-architecture

11

Pag.
Personal Super Computing Competence Center

Execute program step-by-step

23

12

Pag.
Personal Super Computing Competence Center

For acceleration: pipeline

• Long operations

• Combination of short operations

• Pipelining

1 2 3 4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

time

IF

ID

OF

EX

1

1

1

1 2

2

2

2

3

3

3

3

4

4

4

4

13

Pag.
Personal Super Computing Competence Center

Pipeline Design

14

• Typically five tasks in instruction execution

• IF: instruction fetch

• ID: instruction decode

• OF: operand fetch

• EX: instruction execution

• OS: operand store,
often called write-back WB

14

Pag.
Personal Super Computing Competence Center

Superscalar out-of-order pipeline

15

3 instructions simultaneously

(=pipeline width)

Independent instructions

can overtake each other

15

Pag.
Personal Super Computing Competence Center

‘Sequential’ processor: super-
scalar out-of-order pipeline

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution

Branch prediction

Register renaming

…

16

Now we are

computing

sequentially!

Parallel

computing?

Pag.
Personal Super Computing Competence Center

Super computer: BlueGene/L

• IBM 2007

• 65.536 dual core nodes
• E.g. one processor dedicated to

communication, other to
computation

• Each 512 MB RAM

• No 8 in Top 500
Supercomputer list (2010)
• www.top500.org

19

Pag.
Personal Super Computing Competence Center

Clusters

• Made from commodity parts

• or blade servers

• Open-source software available

20

Pag.
Personal Super Computing Competence Center

Distributed-Memory Architectures

• Each process got his
own local memory

• Communication
through messages

• Process is in control

CPU

M

CPU

M

CPU

MN

21

Pag.
Personal Super Computing Competence Center

BlueGene/L communication networks

(a) 3D torus (64x32x32) for standard

interprocessor data transfer

• Cut-through routing (see later)

(b) collective network for fast evaluation of

reductions.

(c) Barrier network by a common wire

(a)

22

Pag.
Personal Super Computing Competence Center

• The ability to send and receive messages is all we
need

• void send(message, destination)

• message receive(source)

• boolean probe(source)

Message-passing

23

Multicore

computing

Pag.
Personal Super Computing Competence Center

Shared Address-space Architectures

• Example:
multiprocessors

CPU CPU

M

CPU

25

Pag.
Personal Super Computing Competence Center

AMD Barcelona: 4 processor cores

26

Pag.
Personal Super Computing Competence Center

Thread / core

• A different thread per core

• Each thread can run independently

 Multi-threaded programming

• Thread synchronization necessary

• Multiple threads per core also possible

• Context switches necessary

• Hardware threads/hyperthreading

27

Pag.
Personal Super Computing Competence Center

Latency Hiding

28

Faster CPU
More
threads

28

4 cores: x4
Latency hiding: x3

Next level

Pag.
Personal Super Computing Competence Center

30

GPU vs CPU Peak Performance Trends

 GPU peak performance has grown aggressively.

 Hardware has kept up with Moore’s law

Source : NVIDIA

2010
350 Million triangles/second
3 Billion transistors GPU

1995
5,000 triangles/second
800,000 transistors GPU

30

Pag.
Personal Super Computing Competence Center

Parallel processors

Courtesy of

GPUs (arrays)

31

Pag.
Personal Super Computing Competence Center

GPU Architecture

streaming multiprocessor

global memory

32

Pag.
Personal Super Computing Competence Center

1 Streaming Multiprocessor

hardware threads
grouped by 32 threads
(warps), executing in
lockstep (SIMD)

In each cycle, a warp is
selected of which the next
instruction is put in the
pipeline

The Same Instruction is

executed on Multiple Data (SIMD)

 width of pipeline: 8 - 32

33

Pag.
Personal Super Computing Competence Center

Why are GPUs faster?

Devote transistors to… computation

34

Pag.
Personal Super Computing Competence Center

• ±24 stages (old), now ± 8

• in-order execution!!

• no branch prediction!!

• no forwarding!!

• no register renaming!!

• Memory system:

• relatively small

• Until recently no caching

• On the other hand: much more registers (see later)

GPU processor pipeline

35

Pag.
Personal Super Computing Competence Center

Multi-Threading (MT) possibilities

Context switch

36

Pag.
Personal Super Computing Competence Center

Processing power not for free

Obstacle 1
Hard(er) to implement

Obstacle 2
Hard(er) to get efficiency

37

Algorithm

Implementation

Compiler

Automatic

optimization

Low latency of

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual

Computer science

is not about

computers

Application

Identification of
compute-intensive

parts

Feasibility study of
GPU acceleration

GPU implementation

GPU optimization

Hardware

Skeleton-
based

OpenCL

Pragma-based

Automatic
parallelization

Programmability solutions

libraries

41

Computer science

is not about

computers

Optimization

Compiler

Algorithms

Implementation

performance programmability

portability

Challenges of GPU computing

Intel Xeon Phi

Pag.
Personal Super Computing Competence Center

Single Instruction Multiple Data (SIMD)

• Operate elementwise on vectors of data
• E.g., MMX and SSE instructions in x86

• Multiple data elements in 128-bit wide registers

• Data has to be moved explicitly to/from vector registers

• All processors execute the same instruction at the
same time
• Instruction has to be fetched only once

Instructions can be performed at once

on all elements of vector registers

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers

+

45

Pag.
Personal Super Computing Competence Center

Vector processors (SIMD)

• Highly pipelined function units

• Stream data from/to vector registers to units

• Data collected from memory into registers

• Results stored from registers to memory

• Has long be viewed as the solution for high-
performance computing

• Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

• However: difficult to program

• Is SIMT (OpenCL) a better alternative??

46

Pag.
Personal Super Computing Competence Center

Intel’s Xeon Phi coprocessor

Intel’s response to
GPUs…

60 cores

RAM

ring network

47

Pag.
Personal Super Computing Competence Center

Intel’s Xeon Phi’s core

4 hardware

threads

512-bit

Vector unit

(SIMD)

Thread scheduler

48

Pag.
Personal Super Computing Competence Center

Vectorization needed for peak
performance!!

_m512 register

_mm512_add operations

Automatic vectorization only

works in simple cases

49

Conclusions

Pag.
Personal Super Computing Competence Center

51

The third pillar
of the scientific world

Parallel Programming Paradigms

52

Message-
passing

MPI

Explicit
multi-

threading

OpenCL/CUDA

OpenMP

Explicit vector
instructions

PROC

M

PROC

M

PROC

MN

PROC PROC

M

PROC

P P P P

M

P P P P

M

M

PROC PROC PROC

M

Distributed memory Shared memory

coarse-grain
parallelism

fine-grain
parallelism

SIMD

coarse-grain
parallelism

SIMT

Pag.
Personal Super Computing Competence Center

Hardware? Software?

• You need to have insight into the hardware!

• No universal hardware/programming model (yet)

• Intel-approach (SIMD)

• Intel sticks to x86 architecture

• That’s what programmers know & they
won’t change

• Vectorization necessary

• OpenCL-approach (SIMT)

• Will semi-abstract model remain valid?

53

