VUB-DEPARTMENT

ETRO vl
OF ELECTRONICS : G
AND INFORMATICS Universiteit

Brussel

Personal Super Computing Competence Center

Jan Lemeire (jan.lemeire@vub.ac.be)

« Graduated as Engineer in 1994 at VUB
« Worked for 4 years for 2 IT-consultancy companies

« 2000-2007: PhD at the VUB while teaching as assistant

« Subject: probabilistic models for the performance analysis of parallel
programs

« Since 2008: postdoc en parttime professor at VUB, department of
electronics and informatics (ETRO)

« Teaching ‘Informatics’ for first-year bachelors; ‘parallel systems’ and
‘advanced computer architecture’ to masters

« Since 2012: also teaching for engineers industrial sciences
(‘industrial engineers’)

* Projects, papers, phd students in parallel processing (performance
analysis, GPU computing) & data mining/machine learning
(probabilistic models, causality, learning algorithms)

- http://parallel.vub.ac.be

2
Personal Super Computing Competence Center

A bit of History

The first computer, mechanical

Charles Babbage
1791-1871

4
Personal Super Computing Competence Center

Babbage Difference Engine made
with LEGO

http://acarol.woz.org/

This machine can evaluate polynomials of the form Ax2 + Bx + C
for x=0, 1, 2, ...n with 3 digit results.

5
Personal Super Computing Competence Center

http://acarol.woz.org/
http://acarol.woz.org/

The first informatician

Describes what software is

« She brings the insight that a
computer goes beyond plain
calculations

She writes the first
algorithm/program

¥ 3 _§

Ada Love‘lacé

1815 — 1852

6
Personal Super Computing Competence Center

o
L
s
E
-,
-
.
. s
v -

WY

njljsu] UelUOSYJIWS £661 @

John Mauchly and John Eckert, 1945

I Tioviial QUpTI wUITIPULT Yy wUITIYTLTIIVE walincl

ramming = rewiring,
. changing the hard?wa're

Prog

L
-
L
.
.
-
.
.
-

Lk B R B T T R
#FRR R YR AN

S e v andan

Von Neumann rethinks the computer

AL T | (e

.:“:’:!—;_;;_“ ;
TR

John Von Neumann

Personal Super Computing Competence Center

The Von Neumann-architecture

S
Q
S
c
)
O
()

al Super Computing Competenc

Person

Execute program step-by-step

(23]

1 |

73 |Leess#an tDEtSEI‘I]JDIE}E\I
24 |Initialiseer macht m = ¥
25 |Imitialiseer teller t
26 | Schrijf macht m —
2

27 |Verhoog macht: m = m * =4
28 |Verhoogteller:t=t+ 1

29 | Als macht < 1000 en teller kleiner dan 20, spring naar lijn 26

12

Personal Super Computing Competence Center

For acceleration: pipeline

 Long operations

« Combination of short operations

1l cdd el ¢ R

- Pipelining

]

(1D | 1 2|3 4
kel

time

Personal Super Computing Competence Center

Pipeline Design

« Typically five tasks in instruction execution
« IF: instruction fetch

« ID: instruction decode L. Instruction =
. OF: operand fetch e
« EX: instruction execution 2. L’éi‘;:’;““ D
 OS: operand store,

often called write-back WB 3. Operand 5

fetch

4. Instruction
execute

5. Operand

OS
store

oy ipupiniy

Petéonal Super Computing Competence Center

Superscalar out-of-order pipeline

fi T T 3 instructions simultaneously
Il (=pipeline width)
e .
R .
U (in order)
Dispatch
buffer
| | (out of order)
Y Y Y Y
EX ALU MEMI FPI BR . .
T T Independent instructions
MEM2 FP2 can overtake each other
Y
FP3
|
YY VY (out of order)
Reorder
buffer
U, (in order)
W T

Pefrsbnal Super Computing Competence Center

‘Sequential’ processor: super-
scalar out-of-order pipeline

| JJ, | (in order)
|
(out of order] . .
L | ; y | Different processing units
Plpellne depth ALU MEMI FPI BR
Y v :
(v | [Out-of-order execution
I__L Branch prediction
r Register renaming
(out of order]
|
ﬂ {in order)
| | |
: I |

Pipeline width e
Personal Super Computing Competence Center

Now we are
computing
sequentially!

Parallel
computing?

Super computer: BlueGene/L

IBM 2007
65.536 dual core nodes

« E.g. one processor dedicated to
communication, other to
computation

Each 512 MB RAM

No 8 in Top 500
Supercomputer list (2010)
« www.top500.0rg

Personal Super Computing Competence Center

Clusters

« Made from commodity parts
 or blade servers

« Open-source software available

Personal Super Computing Competence Center

Distributed-Memory Architectures

Personal Super Computing Competence Center

Each process got his
own local memory

Communication
through messages

Process is in control

BlueGene/L communication networks

w [!

Personal Super Computing Competence Center

(a) 3D torus (64x32x32) for standard
interprocessor data transfer
« Cut-through routing (see later)

(b) collective network for fast evaluation of
reductions.

(c) Barrier network by a common wire

Message-passing

« The ability to send and receive messages is all we
need

« void send(message, destination)
* message receive(source)

* boolean probe(source)

Personal Super Computing Competence Center

Multicore
computing

Shared Address-space Architectures

« Example:
multiprocessors

Personal Super Computing Competence Center

AMD Barcelona: 4 processor cores

HT PHY, link 1 |Slow |/o||=uses|

128-bit FPU

Load/| L1 Data
2MB | Store | Cache |[512kB
Shared X 2 L2 Core 2
L3 Execution o Cache
Cache | Fetch/

. Decode/ | L1 Instr
: Branch | Cache

L
-

HT PHY, link 2

Northbridge

q
»
<I7T TOO

Core 4 Core 3

HT PHY, link 3

EEEEEREE il HT PHY, link 4 [Slow I/O[Fuses

Personal Super Computing Competence Center

Thread / core

« A different thread per core
« Each thread can run independently

= Multi-threaded programming
« Thread synchronization necessary

« Multiple threads per core also possible
« Context switches necessary
 Hardware threads/hyperthreading

Personal Super Computing Competence Center

Latency Hiding

Software Thre ad Compute Cycles — -
A -
- s
Memory Wait Cyeles _ll)_ira“Z]E p - Compute Cycle‘;.
— - h{I read Execu “3"{' 4 Memory Wait Cycles
) -
to — compute Hm & t

t - memoryaccess ime

- MM ’

Time

M

M

M

M

M
M

More Core 3
Faster CPU threads

Sottware Thread t Core 2

‘ te — faster processor, less g

Hme g

t - memory access Hme iz ol Time saved &

the same witth faster
Prce S8or
Core 1
o~
Processor — Jw - h{ - h{ - h{
5 4 cores: x4

Time Latency hiding: x3

Personal Super Computing Competence Center

Next level

es/second
tors GPU

Parallel processors

CPUs DSPs Multicores GPUs (arrays) FPGAs
Single Cores Multicores Coarse-Grained Fine-Grained
Coarse-Grained Massively Parallel Massively
CPUs and DSPs Processor Arrays Parallel Arrays
Courtesy of /aN0[SR¥2)

Personal Super Computing Competence Center

GPU Architecture

. Custom kernel _ .
Application | [libcuda PTX code streaming multiprocessor
CPU Shader Cores l
Core‘ ‘Core Core‘ ‘Core Core Core
Memory []
4 ‘ Interconnection Network ‘
i B : B
Memory Memory |, .. | Memory
Controller || Controller Controller
\ > ‘DRAM H DRAM‘ ‘DRAM‘
cudaMemcpy \

global memory

Personal Super Computing Competence Center

1 Streaming Multiprocessor

r r)
Shader Core -
| Thread WarE
[Thread Warp | The Same Instruction is
- executed on Multiple Data (SIMD
L SchedulerJ
SN / width of pipeline: 8 - 32

A 4
[Fetch } /
v
[Decode /
local/global access | I | |
(or L1 miss); texture i REFRF
or const cache miss \"ATANFANY
L1 L1 L i Shared
< > W t | 10 al&; M
ex ||cons tgloba 1. em.

To interconhect

All threads
Data] hitin L1?
MSHRs
[Writeback J
n l J
. - J

Personal Super Computing Competence Center

Why are GPUs faster?

Control

CPU

GPU

Devote transistors to... computation

34

GPU processor pipeline

« *24 stages (old), now = 8
* in-order execution!!

 no branch prediction!!

« no forwarding!!

* NO register renaming!!

« Memory system:
» relatively small
« Until recently no caching
* On the other hand: much more registers (see later)

Personal Super Computing Competence Center

Multi-Threading (MT) possibilities

Issue slots ——

Thread A Thread B
HE HER
H HE
Time
HE |]
HEEE BN
L[]
HE
B HE
HEE
Issue slots ——
Coarse MT Fine MT
Time HIN]
[|
]

HENR
| | |
Context switch — NN

Personal Super Computing Competence Center

Thread C

Thread D

w
=
3

Processing power not for free

Obstacle 1

Hard(er) to implement

Obstacle 2
Hard(er) to get efficiency

CPU computing

manual

automatic

Algorithm

J

Implementation

J

Compiler

Write once
Run everywhere
efficiently!

Automatic
optimization

¥

Low latency of
each instruction!

Computer science
IS hot about

computers

Programmability solutions

Application

Identification of
compute-intensive
parts

L

Feasibility study of
GPU acceleration

Automatic
parallelization

Pragma-based ;
Skeleton- GPU implementation
based
OpenCL t

GPU optimization

libraries f

Hardware

Auto-parallelization

- Key requirements
— A compiler must not alter the program semantics

— |If the compiler cannot determine all dependencies, it has to
forego parallelization

« Compilers sometimes need to act very conservatively
— Pointers make it hard for the compiler to deduce memory layout
— Codes may produce overlapping arrays through pointer arithmetics
— If the compiler can't tell, it does not parallelize

Past 30 years have shown that auto-parallelizc
— is a tough problem in general

— is only applicable to very regular loops
anot take care of manual parallelization task

Computer science

IS N@§ about

computers

Challenges of GPU computing

Algorithms

J

Implementation

programmability @ performance
Optimization

~ Compiler

portability

Intel Xeon Phi

Single Instruction Multiple Data (SIMD)

128-bit vector registers
71812]|-1

Instructions can be performed at once
on all elements of vector registers

10| 5|7 |-8l¢

« Operate elementwise on vectors of data
« E.g., MMX and SSE instructions in x86
« Multiple data elements in 128-bit wide registers
« Data has to be moved explicitly to/from vector registers
* All processors execute the same instruction at the
same time
« Instruction has to be fetched only once

Personal Super Computing Competence Center

Vector processors (SIMD)

« Highly pipelined function units

« Stream data from/to vector registers to units
« Data collected from memory into registers
« Results stored from registers to memory

- Has long be viewed as the solution for high-
performance computing

 Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

« However: difficult to program
« Is SIMT (OpenCL) a better alternative??

Personal Super Computing Competence Center

Intel’s Xeon Phi coprocessor

Intel’s response to

|51

5 S -—s 60 cores
lcooRid| - -l il - - il -

(cooRre| -
_l* T LJqRAM

\
ring network

Personal Super Computing Competence Center

Inte

@

I’'s Xeon Phi’s core

XEON PHI”

Thread scheduler

4 hardwareé
threads

7

To On-Die Interconnect

512-bit
Vector unit
(SIMD)

512bSIMD
L1 TLB and 32KB Data Cache

X86 specific logic < 2% of core + L2 area

Personal Super Computing Competence Center

Vectorization needed for peak
performance!!

ASM code (addps) Programming control

_m512 register

Vector Intrinsics (mm_add_ps()) .
_mmb512 add operations

SIMD Intrinsic Class (F32vec4 add)

SIMD Vectorization (#pragma simd)

Automatic vectorization only
works in simple cases

Auto-vectorization Hints (#pragma ivdep)

Automatic Vectorization Ease of use

Personal Super Computing Competence Center

Conclusions

COMPUTATION

Parallel Programming Paradigms

Message-
passing

coarse-grain
parallelism

coarse-grain
parallelism

\)

v =@ ,-
PROC® 1PROCs PROC?
¢ s Y

Explicit

multi-

< Explicit vector >
(OHenCL‘CUDA)

fine-grain
parallelism

(OgenMP)

[d a1 4 ®qF LK Y
YPROC!PROC!PROC?
)] [Y

Hardware? Software?

 You need to have insight into the hardware!
 No universal hardware/programming model (yet)
 Intel-approach (SIMD)

« Intel sticks to x86 architecture

* That's what programmers know & they
won’t change

* Vectorization necessary

« OpenCL-approach (SIMT)
 Will semi-abstract model remain valid?

Personal Super Computing Competence Center

