
PhD Research: Anti-Parallel Patterns
Start Date: January 2011

Jan G. L. Cornelis
ETRO
VUB

Brussels, Belgium
Email: jgcornel@vub.ac.be

Promoter: Jan Lemeire
ETRO
VUB

Brussels, Belgium
Email: jan.lemeire@vub.ac.be

Abstract—This paper gives an overview of our PhD
research which investigates the usefulness of the concept
of anti-parallel patterns in the domain of parallel perfor-
mance analysis. We believe this concept is a promising
method that complements other methods that assist the
developer in analyzing, understanding and improving
the performance of her parallel programs. Anti-parallel
patterns are common parts of parallel programs that
cause the performance of the program to be less than
ideal, namely a speedup of p when running on p
processing elements.

First, the patterns provide a way of structuring
research and can be used to create an inventory. Next,
we will analyze whether a parallel application can be
completely characterized by the anti-parallel patterns
it contains. This depends on the orthogonality of the
decomposition. If orthogonality holds, the impact of
each pattern can be modeled separately. If a weaker
form of orthogonality holds, we might also have to
model the interaction between the patterns. For putting
patterns into practice, an important question is whether
they can be detected automatically. The impact on the
performance will be studied by benchmark programs.
These benchmarks can then be used to compare the
performance behavior of parallel platforms.

Keywords-performance analysis; performance model-
ing; patterns; orthogonality

I. INTRODUCTION

Parallel computing power is not for free. It puts an
extra burden on the software development and must be
backed by a performance analysis to ensure efficient
parallel execution. Our research aims at enhancing and
automating the performance analysis by introducing
a novel angle to look at the software-on-hardware
performance.

II. APPROACH

We propose Anti-Parallel Patterns (APPs) as a new
way to carry out a performance analysis. We define
anti-parallel patterns as common parts of parallel pro-
grams that cause these programs to have less than
ideal parallel performance, where the ideal speedup
equals the number of processors. We will study the
performance of a parallel program by identifying the
anti-parallel patterns it contains.

This approach is complementary to the one adopted
by traditional performance analysis approaches and
tools. These try to help programmers by finding the
main bottlenecks that cause their programs to have
less than ideal performance and then mapping the over-
heads to parts of the program that could be optimized.
For example, Paradyn [3] automatically locates poten-
tial bottlenecks in parallel code and tries to explain
why, where and when the problems occur. We analyze
performance in the opposite direction by mapping parts
of the program corresponding to APPs to sources of
overhead. We hypothesize that the relevant program
characteristics can be determined from the APPs it
contains, and that they can help us analyze, estimate
and improve the performance of a given program
running on a parallel platform, as well as compare
different hardware platforms and find the best platform
match for a given application.

The initial focus will be on GPUs and data-parallel
programs.

III. METHODOLOGY

To investigate the potential of our approach, the
following deliverables have been defined:



A. Inventory

Since APPs capture the program properties influenc-
ing the performance, they can be used to organize a
detailed inventory of these influences. This inventory
will contain a record for each APP that we identify
and will contain at least:

• the pattern’s description;
• its behavior and the overheads it generates;
• the parameters that determine its behavior and
• the remedies that alleviate the performance degra-

dation it causes.
Existing work will be ‘attached’ to this inventory

according to the patterns they describe. The inventory
will serve as a single point of information.

B. Performance Modeling

First we will study the individual impact of an APP
on the parallel performance. We will try to model the
performance of each pattern. To do so, we will create
a set of benchmark programs for each pattern. These
benchmark programs allow us to objectively measure
the behavior of a pattern in function of its parameters.
They will be dummy programs that exhibit only one
APP and that are configurable to any parameter setting
(any instance of the APP). The results of running these
benchmark programs, together with our understanding
of the parallel platform on which the benchmark is run
will allow us to model the performance of each APP
qualitatively and quantitatively.

Next, we will model the impact on the performance
of combinations of patterns. The complexity of such a
global model depends on the orthogonality of the APP
decomposition.

C. Orthogonality Study

The question of the orthogonality study is whether
the decomposition of a program into its APPs results
in a decomposition of the performance, i.e. whether the
total performance degradation is a simple combination
of the degradation resulting from each pattern individ-
ually, as shown in Figure 1. We suspect that a weaker
form of orthogonality must be considered. This means
that we also have to model the interaction of patterns.

The orthogonality question can be expressed as
follows. Overhead is expressed as the deviations from
the optimal parallel execution:

overhead = p.Tpar − Tseq. (1)

Figure 1. APPs add an extra layer to the performance analysis.
The performance of an application can be completely characterized
by the APPs it contains, if the decomposition is orthogonal with
respect to these APPs.

where p is the number of processors and Tseq and
Tpar respectively the sequential and parallel run time.
Ideally, when having p processors, the run time needed
to complete the task is Tseq/p. The additional processor
cycles used by the parallel execution are considered
overhead or lost cycles, as conceived by the lost
cycle approach [2]. Orthogonality would mean that
the overhead generated by each pattern is independent
from the occurrence of other patterns. The overhead
overheadi generated by a single pattern i having
parameter configuration Pi is modeled as

overheadi = fi(Pi). (2)

Note that Pi is a vector and fi a function which also
depends on the hardware. Orthogonality would mean
that the total overhead overheadtotal can be calculated
as

overheadtotal =
∑
i

overheadi (3)

for any parallel application. A weaker form of orthog-
onality is expressed by the possibility to model the
performance as

overheadtotal = f(P1 . . .Pn) (4)

The orthogonality properties will be derived by
searching and constructing counter examples and ex-
amining them. Ideally, we will come up with a math-
ematical model that approaches reality close enough.

D. Automation

Positive answers to the orthogonality question deter-
mine the usefulness of APPs in a performance analysis.
If useful, we will study to what extent APPs can be



integrated into a performance tool. For each pattern
we will try to establish whether it can be identified
automatically by a tool either at compile time (static)
or at run time (dynamic). A proof of concept for static
identification can be developed by extending existing
compilers or by using existing compiler frameworks.
For dynamic identification it should be possible to start
from existing trace analyzers.

E. Performance Study of Parallel Platforms

The benchmark programs developed in III-B serve
a double purpose: apart from helping us model the
behavior of an APP on a given platform, they can
also serve to measure the performance of a given
architecture in the face of a given APP. In this way, the
hardware’s behavior can be characterized. The detailed
results of running each benchmark on different parallel
platforms will allow us to compare parallel platforms
in the context of APPs.

The success of these benchmarks for characterizing
the performance behavior for parallel applications in
general will depend on the degree of orthogonality
of the APPs. If perfectly orthogonal, the benchmark
results fully characterize the hardware. If not, the
interactions should be taken into account by making
them explicit.

F. Application - Platform Match

Finally, the work performed up to this point will
be used to match platforms to applications. This can
be done by establishing which APPs are present in an
application and to which degree and by determining
which platform has the best performance for this spe-
cific combination of APPs. A number of case studies
will be performed to determine the validity of this
approach.

IV. SIGNIFICANCE

We approach performance analysis and estimation
from a new angle. The novelty is the introduction of an
intermediate layer between program and performance
analysis such that once a program is decomposed into
its APPs, the performance analysis is given by the
specific combination of APPs (Figure 1). Moreover,
the performance analysis of APPs can be performed
independently from the applications. The significance
of the approach will depend on the orthogonality of
the decomposition.

We will try the “anti-parallel pattern” concept for
many parallel platforms and programming paradigms,
thus hopefully providing a unified way to reason about
parallel performance that is complementary to current
approaches. The answers to the questions asked above
will determine the significance of APPs. The most
important questions are whether there exists an ex-
haustive list of patterns that explain all performance
degradation, and to which degree the decomposition
of a program into its APPs results in a decomposition
of its performance. Also, questions about the automata-
bility of the detection and remediation of APPs need to
be answered. All these questions will be tackled during
our research.

V. RELATED WORK

As far as we know there is no work that uses this
perspective. Furthermore, a great deal of existing and
future work can be integrated in/organized according
to this APP framework.

As mentioned earlier in section II, our approach is
complementary to the already large volume of work
in the domain of parallel performance analysis. An
approach that comes close to ours is found in [4]. They
try to predict the performance of an application using
algebraic mappings - convolutions - of application pro-
files to machine signatures of the machines on which
the application will run. The difference is that we
decompose this characterization into APPs. This might
make the task of analyzing the performance of parallel
applications easier. [2] fits overhead measurements to
analytical forms in order to predict the performance of
a given application.

VI. PAST AND FUTURE WORK

In the context of a master’s thesis [1], we explored
the anti-parallel pattern concept for fine-grain data
parallel programs that run on NVIDIA GPUs. We
identified 4 APPs and tried to model their behavior
using simple benchmarks. The following subsections
briefly present each APP and give the highlights for
each of them.

A. Branching

Definition: Branching refers to code that contains
conditional statements, such that, when run in parallel,
it causes different processing elements to follow dif-
ferent execution paths.



Discussion: From the benchmarks it became clear
that the behavior of branching on NVIDIA GPUs is
very deterministic. As a consequence it is easy to
model the lost cycles caused by branching. Further-
more, we presented a generic solution to alleviate its
effect and showed that branching can be detected in a
straightforward manner.

B. Limited Parallel Data Access

Definition: Limited parallel data access refers to
the lack of concurrent access by different processing
elements to shared memory.

Discussion: We looked at the effect of non-ideal
access patterns for the two main memory types found
on NVIDIA GPUs. To do so we created benchmark
programs that are configurable by their memory access
pattern. We provided guidelines that can be followed
to optimize the memory access, but did not provide
a generic solution. Finally, detecting less than ideal
memory access is best done at runtime.

C. Synchronization Points

Definition: Synchronization points are points in
the program at which processing elements join up to
ensure that a part of the work has been done.

Discussion: As can be expected and as shown
by the benchmarks, the effect of synchronization on
performance depends upon the amount of computation
that is available between synchronization points. It is
not possible to provide a generic solution to alleviate
the effects of synchronization, given that these are
generally necessary in a given application. Detecting
synchronization points, however, can be easily done
by analyzing the application’s source code.

D. Data Partitioning and Mapping

Definition: Data partitioning and mapping refers
to the way data is mapped to the processors that
execute the computation.

Discussion: The way we partition the data in
blocks and the way data elements are mapped to
processing elements can have a dramatic impact on
the performance of a program running on a GPU. This
was shown by running a few simple benchmarks. For
a given kernel it should be possible to calculate the
optimal partitioning, for example NVIDIA provides
an Excel sheet with similar functionality. Determining
the ideal mapping of data elements to processing

elements might be more intricate given the number
of conflicting aspects that are involved. In this case it
could be interesting to instrument the code to measure
the average runtime of a thread block.

E. First Orthogonality Results

Branching on GPUs is orthogonal with respect to
the other patterns. The overhead is independent from
the occurrence of other patterns. The last two patterns
determine to which degree the latency caused by the
second pattern can be hidden. As such, these patterns
are not orthogonal. It might be possible to add latency
hiding as an extra dimension of our decomposition, and
to expand Equation 4 with the parameters of latency
hiding.

F. Conclusion

We used a case study - a parallel prefix sum - to
try the usefulness of the APP concept. This case study
showed that the concept is a promising approach to
look at parallel performance, but also that more work
is needed to elaborate this approach.

The master’s thesis introduced the anti-parallel pat-
terns concept and provided a first exploration of it.
The section about the methodology explains how the
in-depth study of the PhD will be carried out.

REFERENCES

[1] Jan Cornelis. Anti-parallel patterns in fine-grain data-
parallel programs. Master’s thesis, Vrije Universiteit
Brussel, Belgium, 2010.

[2] Mark E. Crovella and Thomas J. LeBlanc. Parallel
performance prediction using lost cycles analysis. In
Proceedings of Supercomputing ’94, pages 600–609,
1994.

[3] Barton P. Miller, Mark D. Callaghan, Jonathan M.
Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam, and Tia
Newhall. The paradyn parallel performance measure-
ment tool, November 1995.

[4] Allan Snavely, Nicole Wolter, and Laura Carrington.
Modeling application performance by convolving ma-
chine signatures with application profiles, 2001.


