
 The GUI is developped with Qt-creator* showing 
the images before and after processing in a 
userfriendly way.  

 The application processes images using different 
algorithms, such as erosion, dilation, edge 
detection,... 

 User can select the appropriate algorithm and 
platform on which to perform the image 
processing. 

 Performance analysis of the image processing 
algorithms on the different  platforms is shown. 

Contact details 

Laurent Segers, laurent.segers@ehb.be 

Bruno Da Silva, brunotiago.da.silva.gomes@ehb.be 

Acknowledgements 

This research has been made possible thanks to a Tetra grant 100132  "A 
combined GP-GPU/FPGA desktop system for accelerating image processing 
applications (GUDI)” of the Flanders agency for Innovation by Science and 
Technology. 

 

 

 

 

 

 

 

 Proc_Info is returned when the shared libary 
plugin finishes processing. 

 

 

 

 

 

 

 

 All shared libraries have the same way of 
interacting with the main (GUI) application, 
therefore they are considered as plugins  

 

 

Conclusions and future 
work 

Heterogeneous platform 

Laurent Segers, Bart Spiers, An Braeken, Bruno Da Silva,  Erik H. D’Hollander,  
 Jan Lemeire, Abdellah Touhafi, Jan G. Cornelis  

Erasmus University College, Brussels,  
Vrije Universiteit Brussel, Ghent University 

 

 Programming Framework for a 
Multi-Accelerator Multi-Core  
High-Performance Platform 

 “GUDI” is a combined GPU/FPGA desktop for 
accelerating image processing applications. A 
GUI is developed to demonstrate the functionality 
and performance of this system. Image 
processing algorithms are selectively executed on 
the CPU or one of the accelerators.  

 A modular design approach is proposed resulting 
in  several plugins which can be used in Qt as 
well as in GIMP.  

Introduction 

Objectives 

Demonstrator 

Presented at HiPAEC ‘13 in Berlin 

Modular concept 
Each image processing algorithm on a particular 
platform (CPU,GPU,FPGA) is considered as one 
module. Consequently, for one algorithm, there are 
3 different modules (plugins). 

 

 

 

 

 

 

 

 

 

The image processing algorithms run on different 
hardware platforms: 

 CPU: The baseline algorithms are executed on 
the host CPU. 

 GPU: The algorithms are adapted and 
recompiled  to run on the GPU platform using 
the OpenCL API. The GPU is then programmed 
and the data is sent to the GPU GDDR5 
memory. The GPU stores the data back into the 
GDDR5 memory, from which the data can be 
collected by the host.  

 

 

 

 

 

 

 FPGA: The algorithms are rewritten using High-
Level Synthesis tools for the FPGA platform. 
The communication with the FPGA is managed  
through the Pico-API. The data can be sent and 
received using streams or using the DDR3 
memory. 

 

 

 

 

 

 

Supporting multiple platforms increases the 
compiling complexity and reduces software 
reusability. Modular programming techniques help 
overcoming these problems. 

 

Figure 5. Depending on the platform on which the processing algorithm is run, the plugin 
interfaces the platform using the appropriate API libraries. The plugin also loads the 
accelerator code “Algfile” (Algorithm-file: Erosion kernel for the GPU or Erosion bitmap 
file for the FPGA) onto the corresponding platform.  

*Qt: Integrated Development Editor, http://qt.digia.com  

 The modular approach enables the combination 
of several algorithms running on different 
hardware platforms into one application.  

 A similar approach is used by GIMP*. By adapting 
the “GUI to Plugin Interface”, the plugins can be 
used into the well-known application.  

 

Plugin 

*GIMP: GNU Image Manipulator Program - http://www.gimp.org/  

Figure 6. Shared library class diagram. 
Each library inherits the IProcessEffect 
interface with “Picturing”. The interface is 
visible for both the library and the GUI-
application. The Picturing implementation 
however is only visible within the library.   

Accessing a plugin 
Since the main application contains several plugins, 
these plugins are saved into a pool.The application 
loads all the plugins from a directory and stores 
them into the plugin pool. 

 

 

 

 

 

 

 

 

 

 Code snippet : When the user selects a cell in the grid (GUI), the Run() function is 
invoked. This functions looks for the selected cell indices (HW, ALGO) and starts a 
process to execute the algorithm ALGO on the image using the processing element HW. 

void Run() 
{ 
       //-- ui represents the GUI-object 
       QModelIndex idx = ui->ResultTable->currentIndex();       
       //-- idx represents the last selected cell in the grid 
       std::string HW = HardwareList->at(idx.column());         
       //-- take the name of the hardware platform 
        std::string ALGO = AlgoList->at(idx.row());             
       //-- take the name of the algorithm 
       std::vector<IProcessEffect*>::const_iterator processItr  
       = std::find_if(pluginPool.begin(), pluginPool.end(),findCorrectAlgo(HW, ALGO)); 
       /*- findCorrectAlgo looks if Algo and HW correspond to current plugin-in,  
            if yes, return 1 so a valid iterator is returned -*/ 
        
       if (processItr != pluginPool.end()) 
       { 
               IProcessEffect *process = *processItr; 
               Proc_Info* info; 
               IplImage *out; //-- openCV image object 
               IplImage* selectedImage=Images[ui->ImageSelector->currentIndex()]; 
               //-- get the correct image with the selected index from the imagescombobox 
               info=process->process(selectedImage,&out); 
               Display(out,info); //-- Displays the results and the output image in the GUI 
       }        
} 

 Transparent remote procedure call to accelerators 
in a heterogeneous computer system. 

 Developing a common front-end to a multi-core, 
multi-accelerator, multi-technology platform. 

 Separate platform-independent GUI design from 
platform-dependent code execution. 

Figure 4.Dataflow on  the FPGA. 

Figure 3. Dataflow on the GPU.  

 Plugin_Info is called 
when the shared 
library is loaded at 
startup 

Figure 7. Image dataflow and 
generation of process 
information. Each shared 
library processes an input 
image and returns the 
processing information 
(processing time, number of 
parallel executions,...).     

Figure 2. GUI of the application: the left image represents the original image, while the 
output is shown in the right image. One can choose to process an image with a given 
algorithm on a selected platform by clicking on the corresponding cell in the grid.  

Figure 1. GUDI Tool chain. An algorithm is split in several parts which are executed on 
different technologies in order to speed up its final performance. 

mailto:brunotiago.da.silva.gomes@ehb.be
mailto:brunotiago.da.silva.gomes@ehb.be

	Slide Number 1

