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Introduction Heterogeneous platform Plugin

= “GUDI” i1s a combined GPU/FPGA desktop for The image processing algorithms run on different — Figure 6. Shared library class diagram
accelerating image processing applications. A hardware platforms: e T ] oor llorary nherlts e ProcessEfect
. . . +Process(in Inputimage, out Outputimage) : Proc_Info £c ”
GUI is developed to demonstrate the functionality . CPU: The baseline aldorith od “Plugininfol) : PLugin_Inf visible for both the library and the GUI.
and performance of this system. |mage : € baseline algorithms are executed on = application. The Picturing implementation
. . . the host CPU. however is only visible within the library.
processing algorithms are selectively executed on Picturing
the CPU or one of the accelerators. = GPU: The algorithms are adapted and —
. . -Frocessimagel) . Froc_inTto . .
= A modular design approach is proposed resultin recompiled to run on the GPU platform using * Plugin_Info Is called
In several plugins I?/{/Dhich can pbepused in Qt ag the OpenCL API. The GPU is then programmed e e v_vhen the shared
WE” as |n GIMP and the data IS Sent to the GPU GDDR5 +getTiming() : double +getPlatform() : char Ilbrary IS Ioaded at
| ' memory. The GPU stores the data back into the rgetParallelThreads() - Int | [*getAlgo() - char Startup
GDDR5 memory, from which the data can be = Proc_Info is returned when the shared libary
' collected by the host. plugin finishes processing.
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N _ l Figure 3. Dataflow on the GPU. ‘ - Figure _7. Image dataflow and
Ful::zggns ’ . Generate processing generation of process
Bitmap Files 9 GPU GDDR5 information information. Each shared
. I (Memory ACCESS) Select corresponding plugin J L Iibrary processes an input
_ _ S l J image and  returns  the
= "f-— ETT N 2 e eing Infer il processing Information
synthesis ot e —— IFe ‘ | GUI (processing time, number of
_-_:.n;;__lr-_._:f-,-ﬁ..:. 5 Launch plugin with image parallel executions,...).

HDL tool chain

= FPGA: The algorithms are rewritten using High-

Figure 1. GUDI Tool chain. An algorithm is split in several parts which are executed on

different technologies in order to speed up its final performance. | evel Synthesis tools for the FPGA pla’[form_ = All shared libraries have the same way of
i i 'I;]he cc;]mhmunl_catlon W't?] the FPGA I1s managed Interacting with the main (GUI) application,
Obj ectives through the Pico-API. The data can be sent and therefore they are considered as plugins
received using streams or using the DDRS3
memory.
= Transparent remote procedure call to accelerators Erosion ACCGSS 1N g a p | U g 1N
In a heterogeneous computer system. FPfA
) De\lltglopln? atcommﬁ_ntfrohnt-elnd tol atlf multi-core, ”API Since the main application contains several plugins,
multi-acceieraton, multiftechnology platiorm. - J'B . th' FPGA¢DDR3 these plugins are saved into a pool.The application
. . ICODBUS IcosStream . .
= Separate platform-independent GUI design from (Register operation) | | (Full-duplex channel) TS e s loads all the plugins irom a directory and stores
platform-dependent code execution. v v ) them into the plugin pool.
FPGA Board void Run()
{

m Figure 4.Dataflow on the FPGA. //-- ui represents the GUI-object
e O n S ra. O r QModellndex idx = ui->ResultTable->currentindex();

//-- idx represents the last selected cell in the grid

Supporting mUItIpIe platforms increases the std::string HW = HardwareList-=at(idx.column());
il . //-- take the name of the hardware platform
= The GUI| Is developped With Qt-Creator* ShOW|ng COmpI|I-ﬂ-g COmp|eXIty and | reduces | software /jff’;;ite”f:gﬁni(szh{:'g;oﬂjﬁ;n>at(idX'“’WO);
the images bEfOre and after prOceSSing in a reusablllty' MOdUIar prOgrammlng teChnlqueS help std::vector<IProcessEffect*>::const_iterator processltr
Overcoming these problems_ = std::find_if(pluginPool.begin(), pluginPool.end().findCorrectAlgo(HW, ALGO));

userfriendly way.

/*- findCorrectAlgo looks if Algo and HW correspond to current plugin-in,
if yes, return 1 so a valid iterator is returned -*/

= The application processes images using different if (processltr 1= pluginPool.end())
algorithms, such as erosion, dilation, edge L processeffect *process = *processi:

detection, .. Modular concept

Ipllmage *out; //-- openCV image object
Iplimage™ selectedlmage=Images|[ui->ImageSelector->currentindex()];

] User can Select the appropnate algonthm and .//——%a‘r‘rhecorrec‘rimagewiThTheselec‘redindexfror_n‘rheimagescombobox
] ] . ] . ] info=process->process(selectedimage,&out);
platform  on which to perform the Image Each image processing algorithm on a particular , Display(out,info); //-- Displays the resulfs and the output image in the GUI
orocessing. platform (CPU,GPU,FPGA) Is considered as one 3
: : : module. Consequently, for one algorithm, there are Code snippet : When the user selects a cell in the grid (GUI), the Run() function is
= Performance analysis of the image processing

invoked. This functions looks for the selected cell indices (HW, ALGO) and starts a
process to execute the algorithm ALGO on the image using the processing element HW.

3 different modules (plugins).

algorithms on the different platforms is shown.
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Conclusions and future
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plugin plugin plugin plugin
_ _ Erosion . Erosion ) .
o oer o Heertom> » The modular approach enables the combination
| I . . .
Opench - PimlAPI ottt Apls of several algorithms running on different
I | ' hardware platforms into one application.
*
Host . . . .
< W cPU GPU FPGA sRatfoms = Asimilar approach is used by GIMP*, By adapting
Source image - the “GUI to Plugin Interface”, the plugins can be
Plot algorithm Hardware Done! Figure 5. Depending on the platform on which the processing algorithm is run, the plugin - - -
INVERT 7| |Frea - By i el interfaces the platform using the appropriate API libraries. The plugin also loads the used into the well-known appllcatlon.
Select image # Iterations | ' /032 k=11 |6273ps]16 2359 ps]|1 | accelerator code ““Algfile”” (Algorithm-file: Erosion kernel for the GPU or Erosion bitmap * . : e -
Jhome/gudiguiworl =| |1 E{ B EDGEDETECE || 17367 s | 1 | 7859 ps | 16 o5 psil | file for the FPGA) onto the corresponding platform. GIMP: GNU Image Manipulator Program - http:/fwww.gimp.org/
EROSION 81915 us|1 |4918 ps| 16 13078 s | 1
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Figure 2. GUI of the application: the left image represents the original image, while the Thlsbr_eszarch 1 /been m;dek possiile th?nks S Ia UEifE gt MO0z i Contact detalls
output is shown in the right image. One can choose to process an image with a given Com_ lne_ GP-GPU ,I,:PGA esktop system for acce eratln_g eElgfe p_rocessmg Laurent Segers, laurent.segers@ehb.be
algorithm on a selected platform by clicking on the corresponding cell in the grid. applications (GUDI)" of the Flanders agency for Innovation by Science and ! ' '
Technology. Bruno Da Silva, brunotiago.da.silva.gomes@ehb.be

*Qt: Integrated Development Editor, http://gt.digia.com
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