Programming Framework for a NgpEm.
T0GESCHOOIL Multi-Accelerator Multi-Core

BRUSSEI HI

High-Performance Platform UNIVERSITEIT

ERASMUS

Laurent Segers, Bart Spiers, An Braeken, Bruno Da Silva, Erik H. D’'Hollander,

Jan Lemeire, Abdellah Touhafi, Jan G. Cornelis

Erasmus University College, Brussels,
Vrije Universiteit Brussel, Ghent University

Introduction Heterogeneous platform Plugin

= “GUDI” i1s a combined GPU/FPGA desktop for The image processing algorithms run on different — Figure 6. Shared library class diagram
accelerating image processing applications. A hardware platforms: e T] oor llorary nherlts e ProcessEfect
. . . +Process(in Inputimage, out Outputimage) : Proc_Info £c ”
GUI is developed to demonstrate the functionality . CPU: The baseline aldorith od “Plugininfol) : PLugin_Inf visible for both the library and the GUI.
and performance of this system. |mage : € baseline algorithms are executed on = application. The Picturing implementation
. . . the host CPU. however is only visible within the library.
processing algorithms are selectively executed on Picturing
the CPU or one of the accelerators. = GPU: The algorithms are adapted and —
. . -Frocessimagel) . Froc_inTto . .
= A modular design approach is proposed resultin recompiled to run on the GPU platform using * Plugin_Info Is called
In several plugins I?/{/Dhich can pbepused in Qt ag the OpenCL API. The GPU is then programmed e e v_vhen the shared
WE” as |n GIMP and the data IS Sent to the GPU GDDR5 +getTiming() : double +getPlatform() : char Ilbrary IS Ioaded at
| ' memory. The GPU stores the data back into the rgetParallelThreads() - Int | [*getAlgo() - char Startup
GDDR5 memory, from which the data can be = Proc_Info is returned when the shared libary
' collected by the host. plugin finishes processing.
X Y L- | S Erosion | GUI Picturing GUI
Q, Bl < GPU : i rrr— N ST
enemipuposecry e l i | 2 /B iformation |
Dbl OpenCL API / GPU driver EH.tIhgd;"‘,,.tfm Ge”eratej”tﬁt e |
N _ l Figure 3. Dataflow on the GPU. ‘ - Figure _7. Image dataflow and
Ful::zggns ’ . Generate processing generation of process
Bitmap Files 9 GPU GDDR5 information information. Each shared
. I (Memory ACCESS) Select corresponding plugin J L Iibrary processes an input
_ _ S l J image and returns the
= "f-— ETT N 2 e eing Infer il processing Information
synthesis ot e —— IFe ‘ | GUI (processing time, number of
-:.n;;__lr-_._:f-,-ﬁ..:. 5 Launch plugin with image parallel executions,...).

HDL tool chain

= FPGA: The algorithms are rewritten using High-

Figure 1. GUDI Tool chain. An algorithm is split in several parts which are executed on

different technologies in order to speed up its final performance. | evel Synthesis tools for the FPGA pla’[form_ = All shared libraries have the same way of
i i 'I;]he cc;]mhmunl_catlon W't?] the FPGA I1s managed Interacting with the main (GUI) application,
Obj ectives through the Pico-API. The data can be sent and therefore they are considered as plugins
received using streams or using the DDRS3
memory.
= Transparent remote procedure call to accelerators Erosion ACCGSS 1N g a p | U g 1N
In a heterogeneous computer system. FPfA
) De\lltglopln? atcommﬁ_ntfrohnt-elnd tol atlf multi-core, ”API Since the main application contains several plugins,
multi-acceieraton, multiftechnology platiorm. - J'B . th' FPGA¢DDR3 these plugins are saved into a pool.The application
. . ICODBUS IcosStream . .
= Separate platform-independent GUI design from (Register operation) | | (Full-duplex channel) TS e s loads all the plugins irom a directory and stores
platform-dependent code execution. v v) them into the plugin pool.
FPGA Board void Run()
{

m Figure 4.Dataflow on the FPGA. //-- ui represents the GUI-object
e O n S ra. O r QModellndex idx = ui->ResultTable->currentindex();

//-- idx represents the last selected cell in the grid

Supporting mUItIpIe platforms increases the std::string HW = HardwareList-=at(idx.column());
il . //-- take the name of the hardware platform
= The GUI| Is developped With Qt-Creator* ShOW|ng COmpI|I-ﬂ-g COmp|eXIty and | reduces | software /jff’;;ite”f:gﬁni(szh{:'g;oﬂjﬁ;n>at(idX'“’WO);
the images bEfOre and after prOceSSing in a reusablllty' MOdUIar prOgrammlng teChnlqueS help std::vector<IProcessEffect*>::const_iterator processltr
Overcoming these problems_ = std::find_if(pluginPool.begin(), pluginPool.end().findCorrectAlgo(HW, ALGO));

userfriendly way.

/*- findCorrectAlgo looks if Algo and HW correspond to current plugin-in,
if yes, return 1 so a valid iterator is returned -*/

= The application processes images using different if (processltr 1= pluginPool.end())
algorithms, such as erosion, dilation, edge L processeffect *process = *processi:

detection, .. Modular concept

Ipllmage *out; //-- openCV image object
Iplimage™ selectedlmage=Images|[ui->ImageSelector->currentindex()];

] User can Select the appropnate algonthm and .//——%a‘r‘rhecorrec‘rimagewiThTheselec‘redindexfror_n‘rheimagescombobox
]] .] .] info=process->process(selectedimage,&out);
platform on which to perform the Image Each image processing algorithm on a particular , Display(out,info); //-- Displays the resulfs and the output image in the GUI
orocessing. platform (CPU,GPU,FPGA) Is considered as one 3
: : : module. Consequently, for one algorithm, there are Code snippet : When the user selects a cell in the grid (GUI), the Run() function is
= Performance analysis of the image processing

invoked. This functions looks for the selected cell indices (HW, ALGO) and starts a
process to execute the algorithm ALGO on the image using the processing element HW.

3 different modules (plugins).

algorithms on the different platforms is shown.

GUI
Qt
m C:1 R:3 (on IWT-SRV-GUDI) - — .
Conclusions and future
R = m = Y S "‘-...__*
: 2y ot Lo GUI to Plugin Interface
l l l : work
v
plugin plugin plugin plugin
_ _ Erosion . Erosion) .
o oer o Heertom> » The modular approach enables the combination
| I . . .
Opench - PimlAPI ottt Apls of several algorithms running on different
I | ' hardware platforms into one application.
*
Host
< W cPU GPU FPGA sRatfoms = Asimilar approach is used by GIMP*, By adapting
Source image - the “GUI to Plugin Interface”, the plugins can be
Plot algorithm Hardware Done! Figure 5. Depending on the platform on which the processing algorithm is run, the plugin - - -
INVERT 7| |Frea - By i el interfaces the platform using the appropriate API libraries. The plugin also loads the used into the well-known appllcatlon.
Select image # Iterations | ' /032 k=11 |6273ps]16 2359 ps]|1 | accelerator code ““Algfile”” (Algorithm-file: Erosion kernel for the GPU or Erosion bitmap * . : e -
Jhome/gudiguiworl =| |1 E{ B EDGEDETECE || 17367 s | 1 | 7859 ps | 16 o5 psil | file for the FPGA) onto the corresponding platform. GIMP: GNU Image Manipulator Program - http:/fwww.gimp.org/
EROSION 81915 us|1 |4918 ps| 16 13078 s | 1
= == i LT b - - o (SR
FPGA: 16 streams are processed in parallel AC kn OWl ed g em ents
| C:1 R:3 2 . . " i
Figure 2. GUI of the application: the left image represents the original image, while the Thlsbr_eszarch 1 /been m;dek possiile th?nks S Ia UEifE gt MO0z i Contact detalls
output is shown in the right image. One can choose to process an image with a given Com_ lne_ GP-GPU ,I,:PGA esktop system for acce eratln_g eElgfe p_rocessmg Laurent Segers, laurent.segers@ehb.be
algorithm on a selected platform by clicking on the corresponding cell in the grid. applications (GUDI)" of the Flanders agency for Innovation by Science and ! ' '
Technology. Bruno Da Silva, brunotiago.da.silva.gomes@ehb.be

*Qt: Integrated Development Editor, http://gt.digia.com
Presented at HIPAEC ‘13 in Berlin

mailto:brunotiago.da.silva.gomes@ehb.be
mailto:brunotiago.da.silva.gomes@ehb.be

	Slide Number 1

