
PERFORMANCE FACTORS IN PARALLEL DISCRETE EVENT SIMULATION

Jan Lemeire
Erik Dirkx

Free University of Brussels
Faculty of Applied Sciences, INFO

Pleinlaan 2
B-1050 Brussels, Belgium

E-mail: jlemeire@info.vub.ac.be

Published in Proc. of the Int. Multiconference on Simulation and Modeling (ESM 2001), Prague, June, 2001

KEYWORDS
Discrete event simulation, parallel methods, performance
analysis.

ABSTRACT

Performance is a key issue in parallel simulation. This paper
proposes a standard approach for detailed performance
analysis of parallel discrete event simulation. We developed
it for our conservative simulation algorithm, but it can serve
for parallelisation in general as well. The parallel overhead
terms are introduced and model-dependency of the parallel
speedup is expressed by the performance factors.
Experimental results show that this analysis can serve for
speedup bottleneck detection. We propose this approach as a
workplan for in-depth investigation of the performance
(performance prediction, scalability analysis and algorithm
comparison).

INTRODUCTION

This paper deals with distributed - in our lab a cluster of
PC's - discrete event simulation (DES) (Ferscha 1995;
Fujimoto 1990) of logical process (lp) based models.
Simulating a model in parallel is a tricky business. First of
all, a parallel simulation algorithm is non-trivial.
Furthermore, the speedup is model-dependent and therefore
not guaranteed, but it is critical for the parallelisation field
(Fujimoto 1993).
This paper proposes a standard approach for detailed
performance analysis and develops it for our conservative
algorithm (Brissinck 1999; see also parallel.vub.ac.be for
more information), which is based on the traditional
Chandy/Misra/Bryant (CMB) algorithms (Bryant 1977;
Chandy and Misra 1979; Ferscha 1995).
The proposed approach is based on elaborating the
performance analysis in steps:
(1) Speedup of any parallelised sequential program can be
expressed by (Kumar et al. 1994):

)1(
1

runtimesequental
overheadparallel

pSpeedup
+

=

The partitioning, the communication, the synchronisation
and the processor idle time (due to load imbalances) are the
main causes of parallel overhead.
(2) We express the sequential and the parallel simulation
time for the domain of DES and more specific for our
algorithm.
(3) The model-dependency of the performance is studied by
the performance factors.
(4) Finally, we propose a channel-based approach for
prediction of the performance factors.
In the formulas we use the following naming conventions: C
for model-dependent constants, A for algorithm constants
and H for hardware constants. For the indexes we use i for
the processor, j for the overhead term, k for the cycle and l
for the channel.
The illustrating experiment is the simulation of a detailed IP-
switch (Geudens 2000) on our system, which is a cluster of 6
333MHz CPU’s connected by a 100Mb non-blocking
switch. The measurement of the different constants of the
equations is performed by Wei Zhu (2001).

SEQUENTIAL SIMULATION

Sequential simulation is the processing of events in
chronological order. The simulation algorithm consists
therefore mainly of a sorting of the eventlist (a skewheap
sort) and a processing of the events by the processes of the
model.
The performance is given by the time to simulate 1 second
realtime:

)2(.log.).(2
sp

sort
s

procev evevHevCASeqSimT ++=

• sev : number of events simulated in 1s realtime (event

density)
• pev : average number of events in the eventlist,

pev2log gives a good approximation for the average
number of sort iterations (Nicol 1998)

• procC : average time for processing 1 event by a logical

process
• evA : algorithm time to prepare 1 event to be processed

by the process (1,52 µs/event)

• sortH : time for 1 sort iteration (0,19µs/event)

Equation (2) can be rewritten as

)3(. s
sim evCSeqSimT =

where simC groups all the work to be done for the
simulation of one event.

Experimental results of the simulation of the detailed IP-
switch (on a 333MHz CPU) are shown in table 1. Our
sequential simulator achieves thus a performance of
simulating 100.000 events per second.

Table 1: Sequential Simulation

SeqSimT 6839s 100% sev = 661.259.000
Event processing 5030s 74%

procC = 6,08µs/ev

Event sorting 1809s 26% pev2log = 14,4

PARALLEL SIMULATION

Parallel simulation divides the simulation work among p
processors, but adds extra overhead. Parallel simulation time
for 1 second realtime is given by:

)4(. is
isimi overheadevCParSimTParSimT +==

where:
• i: the index of the processor
• s

iev : number of events simulated in 1s realtime on
processor i

• ioverhead : parallel overhead on processor i.
• p: number of processors

The simulation time for all processors is equal (they have to
wait for each other) and that ∑ =

i

ss
i evev . Equation (4) can

than be rewritten as:

)5(
.).(

p

overheadevC

p

overheadevC
ParSimT i

is
sim

i

is
isim ∑∑ +

=
+

=

The parallel overhead can be written as a sum of the several
overhead causes (indicated with index j), which we call the
parallel overhead terms jOT : ∑=

j

i
j

i OToverhead and

∑=
i

i
jj OTOT (the sum of the overhead over all

processors). Parallel performance, measured by the speedup
S, can than be written as (using (3) and (5)):

∑∑∑∑ +
=

+
==

j
s

sim

j

i j

i
j

i

s
isim

s
sim

evC
OT

p

OTevC
p

evC
ParSimT
SeqSimTS

.
1)..(1

.

We define
s

sim

j
j evC

OT
ST

.
= as the slowdown terms, they give

the ratio of the overhead versus the simulation work. They
are expressed in percentages, giving the impact of the
overhead on the parallel performance. This results in:

)6(
1 ∑+

=

j
jST

pS

Parallel discrete event simulation starts with partitioning
the model, this is the initial overhead term (partOT).

Conservative simulation happens in cycles of length CycleT
consisting of 4 phases:
1. Computation: simulation of the events advances the

realtime with CycleT.
2. Communication: send outgoing events to the other

processors.
3. Blocking: wait until all processors have finished with

the last cycle.
4. Synchronisation: determine next safe simulation cycle

(CycleT).
Phases 2, 3 and 4 cause the parallel overhead, respectively

commOT , blockOT and syncOT .

OVERHEAD TERMS

The next step is calculating the overhead terms for specific
algorithms. Here we neglect the partitioning overhead
because our research focusses on symmetric models, which
are straightforward to partition.
For our algorithm, each phase of the cycle results in 2
overhead terms.
The communication overhead (commOT) is the per event
overhead (1OT), which is proportional to the number of
communicated events between the processors, and second
the constant communication overhead (for setting up a
communication link) (2OT), proportional to the number of
links and the cycle frequency.
The synchronisation overhead (syncOT) is the processing in

each cycle of the synchronisation information (3OT). For
our conservative algorithm this is the null event processing.
Moreover, our algorithm induces extra overhead by the
conditional queue (4OT).
The blocking overhead (blockOT) is the processor idle time,
the waiting of all processors for the slowest processor (with
the largest computation phase), summed over all cycles. We
identified 2 types of load imbalances: the global load
imbalance (5OT), caused by inequal total work (number of
events to be simulated) of the processors and the temporal
load imbalance (6OT), caused by the fluctuations of the

processor load during simulation. This splitting up of the
load imbalance is important, but couldn’t be found in any
literature. 5OT is caused by bad partitioning, but 6OT
happens on any model for any partitioning. Moreover 6OT
increases with more processors and is difficult to counter. In
our experiments 5OT stays relatively small, but 6OT goes
up to 25% on 8 processors and causes the main slowdown.

The overhead terms can thus be written as:

56

max5

max65

43

21

0

).(

)(.

..

.
.

0

OTOTOT

CompTCompTpOT

CompTCompTpOTOTOT

evAevCOTOTOT
CycleT

HC
evHOTOTOT

OTOT

block

avg

cycles

k

k
avg

k
block

cond
cond

null
syncsync

setuplinkcomm
commcomm

part

−=

−=

−=+=

+=+=

+=+=

≈=

∑

where:
• commev : density of communicated events

• nullev : density of null events

• condev : density of conditional events

• linkC : number of links between the processors
• CycleT: average cycle time
• syncC : average time to process a null event

• s
isimi evCCompT .= : time to process the events on

processor i. Max and avg denote respectively the
maximum and the average over all processors. Index k
denotes the cycle.

• condA : time to process a conditional event (0,48µs/ev)

• commH : time for communicating 1 event (10,3µs/ev)

• setupH : time to setup a communication link between

two processors (285µs/link)

PERFORMANCE FACTORS

The impact of the model on the slowdown terms

jST translates in the parallel performance factors (Table 2).

• The first overhead term (1OT), the per event

communication overhead, leads to 1PF : the ratio

communication versus simulation or commev / sev .

• 2OT leads to evSim/cycle (2PF), the number of
simulated events per cycle. This ratio is called
granularity or grain size (Choi 1995) (or event
simultaneity in Peterson 1993).

• 3OT is the synchronisation overhead per cycle. It is

proportional to nullev / sev (3PF).

• 4OT leads to condev / sev (4PF).

• 5OT leads to 5PF : the relative deviation of the
workload of the processors.

• Finally, 6OT is the sum of the per cycle sev
fluctuation (6PF).

Note that 2PF must be as big as possible for better speedup,
whereas the other 5 PF's as small as possible.

Table 2: Parallel Performance Factors

Causes Performance Factors

Communication
1OT 1ST 1PF commev / sev

2OT 2ST 2PF sev / cycle

Synchronisation
3OT 3ST 3PF nullev / sev

4OT 4ST 4PF condev / sev

Computation
5OT 5ST 5PF (sevmax - s

avgev) / sev

6OT 6ST 6PF (temporal ∆ sev) / sev

EXPERIMENTAL RESULTS

The parallel simulation time (with 6 processors) of 1s
realtime was 1683s, resulting in a speedup of 4,06. The total
slowdown of 45,6% (equation (6)) was caused by:

Table 3: Experimental Performance Results

commST syncST blockST

14,4 % 4,3 % 26,9 %
1ST 2ST 3ST 4ST

5ST 6ST
3,8 % 10,6 % 4,3 % 0 % 7,0 % 19,9 %

1PF 2PF 3PF
4PF 5PF 6PF

4,1% 7601 1,4% 0 5,5% 15,9%

Our parallel simulator achieves thus a performance of
simulating 400.000 events per second with ‘good’
parallelisable models .

Another experiment done at the lab, the simulation of Field
Programmable Gate Arrays (FPGAs) (Bousis 2000) revealed
a low speedup of 0,7. This is due to a low 2PF (70 events
per cycle), leading to an commOT up to 25%, and a high 3PF
(470%), giving a very high syncOT . The very low granularity

(2PF) causes the communication and synchronisation
overhead to overwhelm the parallelisation. This indicates the
need for a more specific algorithm with less synchronisation
overhead.

This performance analysis is integrated in our simulation
environment. It measures and calculates automatically the
OT’s, ST’s and PF’s.

PERFORMANCE PREDICTION

For performance prediction, we should estimate the
performance factors. We propose a novel channel-based
approach. The model-characteristics are calculated by
summation over the channels:

∑=
ch

s
l

s evev

∑=
ch

p
l

p evev

∑=
cch

s
l

c evev

• ch: the total number of channels. (= degree of

parallelism)
• cch : the communication channels

Then, the event densities (s

lev and s
pev) of each channel

must be estimated. They are determined by the type of the
channel and the channel parameters.
For example, for a ‘bandwidth channel’, characterised by a
rate of events (the bandwidth BW), a certain delay and a
load, the channel characteristics are:

)7(.loadBWevs
l =

loaddelayBWev p
l ..=

In a traffic model (Aerts 2000), a street is identified by the
velocity v of the cars, its length and a load. The delay is the
length divided by the velocity. The bandwidth of the street is
then (assume a street width of 1):

)8(1.
delaylength

lengthvBW
event

street==

By combining equations (7) and (8), the channel event
densities can be expressed in general as:

load
lenght

length
delay

ev
event

channels
l ..1
=

where the delay is the time scale,
event

channel
length

length is

the space scale and the load is the scale of the experiment.
These densities must be summed over all channels (the
number of channels can be called the scale of parallelism).
In the proposed approach, one must first identify all channel
types, elaborate the density equations, calculate them with
the channel parameters and sum them (eg. in a spreadsheet).

FUTURE WORK

(1) Elaborate and test above prediction approach.

(2) For scalability analysis, the overhead terms should be
expressed in function of p and model scale W. For example,
for a full interconnect model (all partitions have to
communicate) this results in (Jian Nan 2001):

)10(~~~

)9(.~
~

22
2

1

pPCOT

pWOT
WSeqSimT

plink

This results in:

)12(~

)11(~
2

2

1

W
pST

pST

In this model the communication grows with the scale (9)
and the number of links grow exponentially (10). When the
communication doesn’t grow with the scale (the model
‘scales in depth’) and the number of links is proportional to
p, (11) and (12) become

W
pST

W
pST

~

~

2

1

and this model is better scalable.
This analysis has to be further developed for the other
overhead terms.

 (3) For algorithm comparison, one must elaborate the
equations for the overhead terms and determine the
performance factors. The choice of the optimal algorithm is
model-dependent, this must be done by measuring or
estimating the PF’s. At our lab we developed an alternative
sort algorithm for sequential simulation (see equation (2)),
which performs better for dense eventlists (high pev). A
decision function determines which type of sorting is used.

(4) Integrate other research in this proposed framework.

CONCLUSION

To study the performance of parallel simulation we should
understand the parallel overhead in detail. In this paper we
propose a standard approach that separates the domain (here
DES), the algorithm and the model aspects. Therefore the
Overhead Terms and the corresponding model-dependent
Performance Factors are defined. The analysis is developed
for our CMB-based conservative algorithm, but the same
approach can be used for any algorithm or parallelisation in
general.

Other performance studies (Jha and Bagrodia 1996; Ferscha
et al. 1996; Nicol 98; Liu et al. 1999; Lim et al. 1999)
contain the same elements, but indicate less clear boundaries
between algorithm, model, hardware and other aspects. Also
the lack of standards makes synchronisation of researches
difficult at the moment. For, as we know, a general solution
for parallel DES does not exist, due to the model-
dependency of parallel performance. Therefore, structuring
and combination of the different researches is indispensable
for mastering parallel performance, the sole justification of
the existence of parallelisation.

REFERENCES

Aerts J. 2000. “Dynamische Simulatie van Verkeersstromen”.

Thesis, Free University of Brussels.
Bousis L. 2000. “Study and Implementation of a Scalable

Simulator for Complex Digital Systems.” Thesis, Free
University of Brussels.

Brissinck W. 1999. “Tuneable Granularity Parallel Discrete
Simulation.” PhD thesis, Free University of Brussels (May).

Bryant, R.E. 1977. “Simulation of Packet Communications
Architecture Computer Systems.” MIT-LCS-TR-188,
Massachusetts Institute of Technology.

Chandy, K.M., and Misra, J. 1979. “Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs.”
IEEE Trans. on Softw. Eng. SE-5, 5 , 440-452, (Sep).

Choi E., Chung M. J. 1995. “An important factor for optimistic
protocol on distributed systems: granularity.” In 1995 Winter
Simulation Conferences Proceedings, pp 642-649.

Ferscha A. 1995. “Parallel and Distributed Simulation of Discrete
Event Systems.” Handbook of Parallel and Distributed
Computing, McGraw-Hill.

Ferscha A., Johnson J. 1996. “A testbed for parallel simulation
performance prediction.” Proceedings of the 1996 Winter
Simulation Conference, pp 637-644.

Fujimoto R.M. 1990. “Parallel Discrete Event Simulation.”
Communications of the ACM, 33, pp 29-53 (Oct).

Fujimoto, R. M. 1993. “Parallel Discrete Event Simulation: Will
the Field Survive?” ORSA Journal of Computing, 5(3):218:230.

Geudens S. 2000. “Quantitative Study of a Highly Formant
Network Switch with Distributed Simulation.” Thesis, Free
University of Brussels.

Jha V., Bagrodia R. 1996. “A performance evaluation methodology
for parallel simulation protocols.” Proceedings of the 10th
Workshop on Parallel and Distributed Simulation (PADS).

Jian Nan G. 2001. “Scalability and Performance Study of Parallel
Discrete Event Simulation.” Thesis, Free University of Brussels.

Kumar V., Grama A., Gupta A. and Karypsis G. 1994. Introduction
to Parallel Computing. Design and Analysis of Algorithms.
Benjamin Cummings, California, chapter 4.

Lim C-C., Low Y-H., Gan B-P. and Jain S. 1999. “Performance
Prediction Tools for Parallel Discrete-Event Simulation”.
Proceedings of the 13th Workshop on Parallel and Distributed
Simulation (PADS).

Liu J., Nicol D.M., Premore B. and Poplawski A. 1999.
“Performance Prediction of a Parallel Simulator”. Proceedings
of the 13th Workshop on Parallel and Distributed Simulation
(PADS).

Nicol D.M. 1998. “Scalability, Locality, Partitioning and
Synchronization in PDES”. Proceedings of the 12th Workshop
on Parallel and Distributed Simulation (PADS).

Peterson G.D., Chamberlain R.D. 1993. “Exploiting lookahead in
synchronous parallel simulation”. In 1993 Winter Simulation
Conferences Proceedings, pp 706-712.

Zhu W. 2001. “Experimental Study of Influence of Model
Characteristics on the Performance of Parallel Discrete Event
Simulation”. Thesis, Free University of Brussels.

