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ABSTRACT 
 
Performance is a key issue in parallel simulation. This paper 
proposes a standard approach for detailed performance 
analysis of parallel discrete event simulation. We developed 
it for our conservative simulation algorithm, but it can serve 
for parallelisation in general as well. The parallel overhead 
terms are introduced and model-dependency of the parallel 
speedup is expressed by the performance factors. 
Experimental results show that this analysis can serve for 
speedup bottleneck detection. We propose this approach as a 
workplan for in-depth investigation of the performance 
(performance prediction, scalability analysis and algorithm 
comparison). 
 
INTRODUCTION 
 
This paper deals with distributed - in our lab a cluster of 
PC's - discrete event simulation (DES) (Ferscha 1995; 
Fujimoto 1990) of logical process (lp) based models. 
Simulating a model in parallel is a tricky business. First of 
all, a parallel simulation algorithm is non-trivial. 
Furthermore, the speedup is model-dependent and therefore 
not guaranteed, but it is critical for the parallelisation field 
(Fujimoto 1993). 
This paper proposes a standard approach for detailed  
performance analysis and develops it for our conservative 
algorithm (Brissinck 1999; see also parallel.vub.ac.be for 
more information), which is based on the traditional 
Chandy/Misra/Bryant (CMB) algorithms (Bryant 1977; 
Chandy and Misra 1979; Ferscha 1995). 
The proposed approach is based on elaborating the 
performance analysis in steps:  
(1) Speedup of any parallelised sequential program can be 
expressed by (Kumar et al. 1994): 
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The partitioning, the communication, the synchronisation 
and the processor idle time (due to load imbalances) are the 
main causes of parallel overhead.  
(2) We express the sequential and the parallel simulation 
time for the domain of DES and more specific for our 
algorithm.  
(3) The model-dependency of the performance is studied by 
the performance factors. 
(4) Finally, we propose a channel-based approach for 
prediction of the performance factors. 
In the formulas we use the following naming conventions: C 
for model-dependent constants, A for algorithm constants 
and H for hardware constants. For the indexes we use i for 
the processor, j for the overhead term, k for the cycle and l 
for the channel. 
The illustrating experiment is the simulation of a detailed IP-
switch (Geudens 2000) on our system, which is a cluster of 6 
333MHz CPU’s connected by a 100Mb non-blocking 
switch. The measurement of the different constants of the 
equations is performed by Wei Zhu (2001). 
 
SEQUENTIAL SIMULATION 
 
Sequential simulation is the processing of events in 
chronological order. The simulation algorithm consists 
therefore mainly of a sorting of the eventlist (a skewheap 
sort) and a processing of the events by the processes of the 
model. 
The performance is given by the time to simulate 1 second 
realtime: 
 

)2(.log.).( 2
sp

sort
s

procev evevHevCASeqSimT ++=  

 
• sev : number of events simulated in 1s realtime (event 

density) 
• pev : average number of events in the eventlist, 

pev2log gives a good approximation for the average 
number of sort iterations (Nicol 1998) 

• procC : average time for processing 1 event by a logical 

process 
• evA : algorithm time to prepare 1 event to be processed 

by the process (1,52 µs/event) 



• sortH : time for 1 sort iteration (0,19µs/event) 
 
Equation (2) can be rewritten as 
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where simC  groups all the work to be done for the 
simulation of one event. 
 
Experimental results of the simulation of the detailed IP-
switch (on a 333MHz CPU) are shown in table 1. Our 
sequential simulator achieves thus a performance of 
simulating 100.000 events per second. 
 

Table 1: Sequential Simulation 
 
SeqSimT 6839s 100% sev = 661.259.000 
Event processing 5030s 74% 

procC = 6,08µs/ev 

Event sorting 1809s 26% pev2log =  14,4 

 
PARALLEL SIMULATION 
 
Parallel simulation divides the simulation work among p 
processors, but adds extra overhead. Parallel simulation time 
for 1 second realtime is given by: 
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where: 
• i: the index of the processor 
• s

iev : number of events simulated in 1s realtime on 
processor i 

• ioverhead : parallel overhead on processor i. 
• p: number of processors 
 
The simulation time for all processors is equal (they have to 
wait for each other) and that ∑ =

i

ss
i evev . Equation (4) can 

than be rewritten as: 
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The parallel overhead can be written as a sum of the several 
overhead causes (indicated with index j), which we call the 
parallel overhead terms jOT : ∑=

j

i
j

i OToverhead and 
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i
jj OTOT (the sum of the overhead over all 

processors). Parallel performance, measured by the speedup 
S, can than be written as (using (3) and (5)): 
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=  as the slowdown terms, they give 

the ratio of the overhead versus the simulation work. They 
are expressed in percentages, giving the impact of the 
overhead on the parallel performance. This results in:  
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Parallel discrete event simulation starts with partitioning 
the model, this is the initial overhead term ( partOT ).  

Conservative simulation happens in cycles of length CycleT 
consisting of 4 phases: 
1. Computation: simulation of the events advances the 

realtime with CycleT. 
2. Communication: send outgoing events to the other 

processors. 
3. Blocking: wait until all processors have finished with 

the last cycle. 
4. Synchronisation: determine next safe simulation cycle 

(CycleT). 
Phases 2, 3 and 4 cause the parallel overhead, respectively 

commOT , blockOT  and syncOT . 

 
OVERHEAD TERMS 
 
The next step is calculating the overhead terms for specific 
algorithms. Here we neglect the partitioning overhead 
because our research focusses on symmetric models, which 
are straightforward to partition. 
For our algorithm, each phase of the cycle results in 2 
overhead terms. 
The communication overhead ( commOT ) is the per event 
overhead ( 1OT ), which is proportional to the number of 
communicated events between the processors, and second 
the constant communication overhead (for setting up a 
communication link) ( 2OT ), proportional to the number of 
links and the cycle frequency. 
The synchronisation overhead ( syncOT ) is the processing in 

each cycle of the synchronisation information ( 3OT ). For 
our conservative algorithm this is the null event processing. 
Moreover, our algorithm induces extra overhead by the 
conditional queue ( 4OT ). 
The blocking overhead ( blockOT ) is the processor idle time, 
the waiting of all processors for the slowest processor (with 
the largest computation phase), summed over all cycles. We 
identified 2 types of load imbalances: the global load 
imbalance ( 5OT ), caused by inequal total work (number of 
events to be simulated) of the processors and the temporal 
load imbalance ( 6OT ), caused by the fluctuations of the 



processor load during simulation. This splitting up of the 
load imbalance is important, but couldn’t be found in any 
literature. 5OT  is caused by bad partitioning, but 6OT  
happens on any model for any partitioning. Moreover 6OT  
increases with more processors and is difficult to counter. In 
our experiments 5OT  stays relatively small, but 6OT  goes 
up to 25% on 8 processors and causes the main slowdown. 
 
The overhead terms can thus be written as: 
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where: 
• commev : density of communicated events 

• nullev : density of null events 

• condev : density of conditional events 

• linkC : number of links between the processors 
• CycleT: average cycle time 
• syncC : average time to process a null event 

• s
isimi evCCompT .= : time to process the events on 

processor i. Max and avg denote respectively the 
maximum and the average over all processors. Index k 
denotes the cycle. 

• condA : time to process a conditional event (0,48µs/ev) 

• commH : time for communicating 1 event (10,3µs/ev) 

• setupH : time to setup a communication link between 

two processors (285µs/link) 
 
PERFORMANCE FACTORS  
 
The impact of the model on the slowdown terms 

jST translates in the parallel performance factors (Table 2). 

 
• The first overhead term ( 1OT ), the per event 

communication overhead, leads to 1PF : the ratio 

communication versus simulation or commev / sev . 

• 2OT  leads to evSim/cycle ( 2PF ), the number of 
simulated events per cycle. This ratio is called 
granularity or grain size (Choi 1995) (or event 
simultaneity in Peterson 1993). 

• 3OT  is the synchronisation overhead per cycle. It is 

proportional to nullev / sev  ( 3PF ). 

• 4OT  leads to condev / sev  ( 4PF ). 

• 5OT  leads to 5PF : the relative deviation of the 
workload of the processors. 

• Finally, 6OT  is the sum of the per cycle sev  
fluctuation ( 6PF ). 

Note that 2PF  must be as big as possible for better speedup, 
whereas the other 5 PF's as small as possible. 
 

Table 2: Parallel Performance Factors 
 
Causes    Performance Factors 

Communication 
1OT 1ST  1PF  commev / sev  

 
2OT 2ST  2PF  sev  / cycle 

Synchronisation 
3OT 3ST  3PF  nullev / sev  

 
4OT 4ST  4PF  condev  / sev  

Computation 
5OT 5ST  5PF  ( sevmax - s

avgev ) / sev  

 
6OT 6ST  6PF  (temporal ∆ sev ) / sev  

 
 
EXPERIMENTAL RESULTS 
 
The parallel simulation time (with 6 processors) of 1s 
realtime was 1683s, resulting in a speedup of 4,06. The total 
slowdown of 45,6% (equation (6)) was caused by: 
 

Table 3: Experimental Performance Results 
 

commST  syncST  blockST  

14,4 % 4,3 % 26,9 % 
1ST  2ST  3ST  4ST  

5ST  6ST  
3,8 % 10,6 % 4,3 % 0 % 7,0 % 19,9 % 

1PF  2PF  3PF  
4PF  5PF  6PF  

4,1% 7601 1,4% 0 5,5% 15,9% 
 
Our parallel simulator achieves thus a performance of 
simulating 400.000 events per second with ‘good’ 
parallelisable models . 
 
Another experiment done at the lab, the simulation of Field 
Programmable Gate Arrays (FPGAs) (Bousis 2000) revealed 
a low speedup of 0,7. This is due to a low 2PF  (70 events 
per cycle), leading to an commOT  up to 25%, and a high 3PF  
(470%), giving a very high syncOT . The very low granularity 

( 2PF ) causes the communication and synchronisation 
overhead to overwhelm the parallelisation. This indicates the 
need for a more specific algorithm with less synchronisation 
overhead. 



This performance analysis is integrated in our simulation 
environment. It measures and calculates automatically the 
OT’s, ST’s and PF’s. 
 
PERFORMANCE PREDICTION 
 
For performance prediction, we should estimate the 
performance factors. We propose a novel channel-based 
approach. The model-characteristics are calculated by 
summation over the channels: 
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• ch: the total number of channels. (= degree of 

parallelism) 
• cch : the communication channels 
 
Then, the event densities ( s

lev  and s
pev ) of each channel 

must be estimated. They are determined by the type of the 
channel and the channel parameters. 
For example, for a ‘bandwidth channel’, characterised by a 
rate of events (the bandwidth BW), a certain delay and a 
load, the channel characteristics are: 
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In a traffic model (Aerts 2000), a street is identified by the 
velocity v of the cars, its length and a load. The delay is the 
length divided by the velocity. The bandwidth of the street is 
then (assume a street width of 1): 
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By combining equations (7) and (8), the channel event 
densities can be expressed in general as: 
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where the delay is the time scale, 
event

channel
length

length is 

the space scale and the load is the scale of the experiment. 
These densities must be summed over all channels (the 
number of channels can be called the scale of parallelism). 
In the proposed approach, one must first identify all channel 
types, elaborate the density equations, calculate them with 
the channel parameters and sum them (eg. in a spreadsheet). 
 

FUTURE WORK 
 
(1) Elaborate and test above prediction approach. 
 
(2) For scalability analysis, the overhead terms should be 
expressed in function of p and model scale W. For example, 
for a full interconnect model (all partitions have to 
communicate) this results in (Jian Nan 2001): 
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This results in: 
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In this model the communication grows with the scale (9) 
and the number of links grow exponentially (10). When the 
communication doesn’t grow with the scale (the model 
‘scales in depth’) and the number of links is proportional to 
p, (11) and (12) become 
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and this model is better scalable. 
This analysis has to be further developed for the other 
overhead terms. 
 
 (3) For algorithm comparison, one must elaborate the 
equations for the overhead terms and determine the 
performance factors. The choice of the optimal algorithm is 
model-dependent, this must be done by measuring or 
estimating the PF’s. At our lab we developed an alternative 
sort algorithm for sequential simulation (see equation (2)), 
which performs better for dense eventlists (high pev ). A 
decision function determines which type of sorting is used. 
 
(4) Integrate other research in this proposed framework. 
 
CONCLUSION 
 
To study the performance of parallel simulation we should 
understand the parallel overhead in detail. In this paper we 
propose a standard approach that separates the domain (here 
DES), the algorithm and the model aspects. Therefore the 
Overhead Terms and the corresponding model-dependent 
Performance Factors are defined. The analysis is developed 
for our CMB-based conservative algorithm, but the same 
approach can be used for any algorithm or parallelisation in 
general. 



Other performance studies (Jha and Bagrodia 1996; Ferscha 
et al. 1996; Nicol 98; Liu et al. 1999; Lim et al. 1999) 
contain the same elements, but indicate less clear boundaries 
between algorithm, model, hardware and other aspects. Also 
the lack of standards makes synchronisation of researches 
difficult at the moment. For, as we know, a general solution 
for parallel DES does not exist, due to the model-
dependency of parallel performance. Therefore, structuring 
and combination of the different researches is indispensable 
for mastering parallel performance, the sole justification of 
the existence of parallelisation. 
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