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Abstract

Reduction algorithms are optimized only under the assumption that all processes com-
mence the reduction simultaneously. Research on process arrival times has shown that
this is rarely the case. Thus, all benchmarking methodologies that take into account
only balanced arrival times might not portray a true picture of real-world algorithm
performance. In this paper, we select a subset of four reduction algorithms frequently
used by library implementations and evaluate their performance for both balanced and
imbalanced process arrival times. The main contribution of this paper is a novel im-
balance robust algorithm that uses pre-knowledge of process arrival times to construct
reduction schedules. The performance of selected algorithms was empirically evalu-
ated on a 128 node subset of the PRACE CURIE supercomputer. The reported results
show that the new imbalance robust algorithm universally outperforms all the selected
algorithms, whenever the reduction schedule is precomputed. We find that when the
cost of schedule construction is included in the total runtime, the new algorithm out-
performs the selected algorithms for problem sizes greater than 1MiB.

Keywords: Reduction, MPI, load imbalance, collective operations, system noise,
process arrival time

1. Introduction

Reduction is a common collective operation in distributed memory applications
whose performance often plays a critical role in parallel applications. Of the total
communication volume of LeanMD (a molecular dynamics benchmark), 51.18% can
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be attributed to reduction [1]. Similar findings have been reported by [2] for several
prominent HPC applications like CTH, SAGE and POP.

Therefore, a great deal of research effort has been conducted in the design of opti-
mized reduction operation implementations. However, state-of-the-art reduction algo-
rithms remain largely optimized only for the case where processes call (arrive at) the
collective operation simultaneously. Such Process Arrival Times (PATs) are said to be
balanced. Yet, balanced PATs are extremely rare and generally only occur immediately
after synchronization routines [3]. That process arrival times can have an impact on the
performance of collective operations has been largely overlooked by the research com-
munity. The reason for this is the perception that imbalanced PATs and optimization of
collective operations are disjunct problems that can be addressed independently.

While there have been efforts to seamlessly integrate load balancing into Mes-
sage Passing Interface (MPI), such as the Adaptive Message Passing Interface (AMPI)
virtualization based approach [4], there has been some, but hardly comprehensive
effort in designing collective operations that would be more robust to imbalanced
PATs [5, 3, 6, 7]. It is reasonable to expect that the move towards exascale computing
will only exacerbate the problem further.

In this paper, we present a PAT aware algorithm, that we thus term Clairvoyant,
which constructs reduction schedules of minimum possible length for both atomic and
non-atomic input data. Unlike other approaches that require different algorithms de-
pending on problem size and process count, our algorithm is equally applicable to small
and large problem sizes, with or without segmentation.

By reordering the reduction schedule, the algorithm mitigates the impact of PAT
imbalance by performing as much of the reduction operation with those processes that
are available. We compare its performance against a selection of four reduction algo-
rithms frequently found in MPI library implementations. We ensure that all algorithm
implementations adhere to the function interface and semantics defined by the MPI
standard [8] for MPI Reduce. We perform the experiments on a 128 node subset of
the PRACE CURIE supercomputer, a Bull x86 system built on top of a fat-tree Infini-
band network interconnect. In addition to the new algorithm, this paper introduces a
new collective operation benchmarking methodology, designed to evaluate the opera-
tions’ performance both for balanced and imbalanced PATs.

The paper is structured as follows. The next section surveys known reduction al-
gorithms and reviews existing work on the problem of system noise and imbalanced
process arrival times. Section 3 defines the network model, together with notions of
algorithm runtime and process arrival time patterns. The subsequent section discusses
imbalanced PATs and presents arguments in favour of clairvoyant collective operations.
Section 5 introduces a model for expressing the computational complexity of reduction
algorithms, followed by a detailed presentation and analysis of the new Clairvoyant
reduction algorithm. The section concludes with a discussion on the four selected ad-
versarial reduction algorithms, commonly found in MPI library implementations. The
following section elaborates the experimental methodology. Section 7 summarizes the
main findings and discusses the implications pertaining to implementations of reduc-
tion algorithms. Finally, Section 8 concludes the paper.

2



2. Related Work

One of the driving constraints in implementations of reduction operations is the
atomicity of input data. An optimal reduction algorithm for atomic (non-segmentable)
data was first presented by Karp in [9]. The authors assumed a fully connected ho-
mogeneous network and balanced process arrival times. The paper showed that the
optimal algorithm for both operations is one that sends no redundant messages and
has no unforced delays in sending or receiving messages. Such an algorithm thus
sends messages as soon as it can and as often as it can. The authors in [10] present
a greedy algorithm that preconstructs reduction schedules for homogeneous networks
with communication-computation overlapping. Their algorithm constructs binomial
tree reduction schedules if either the cost of communication or the cost of computa-
tion is zero. When the two costs are equal, the algorithm constructs a Fibonacci tree
reduction schedule.

When data are non-atomic, implementations are based either on pipelined tree
reductions or composite algorithms based on reduce-scatter and gather operations.
A prominent example of a composite algorithm is the butterfly algorithm elaborated
in [11]. Further improvements on this idea can be found in [12] with the additional
focus on the non-power-of-two number of processes. Another composite algorithm
well suited for large input data is the bucket or Parallel Ring algorithm [13, 14, 15].
In the domain of parallel volume rendering, where input data is typically in the order
of 4 MiB-128 MiB an algorithm called Radix-k [16, 17] has been shown to outperform
the commonly used butterfly algorithm. Radix-k is essentially a hybrid butterfly (a.k.a.
binary-swap) and direct send algorithm that is configurable and adaptable to differ-
ent topologies and network interconnects, able to take advantage of higher degrees of
network concurrency if available.

Pipeline tree algorithms are simple to implement and typically come in the form
of linear tree pipelines or binary trees. Linear pipeline algorithms are known to per-
form well for large input data and small to moderate number of processes, but do not
scale well with large number of processes [18]. An improvement to the binary tree
pipeline algorithm that exploits the full-duplex potential of modern networks was pro-
posed in [19]. The authors report a near twofold speedup for their implementation
compared with the pipelined binary tree reduction.

A rather comprehensive treatise on the general problem addressing the performance
of MPI collectives and their implementations can be found in [15]. Here, the authors
distinguish several different network topologies (linear, mesh, hypercubes, fully con-
nected) and suggest an optimal solution for each collective operation over every con-
sidered topology. Another comprehensive work on the implementation of collectives
in the MPICH library is that of Thakur et al. [20].
Pjesivac et al. [18] present an in-depth analysis of collective operations performance
using several frequently used models of parallel communication such as Hockney,
LogP/LogGP and PLog. Hoefler and Moor [21] survey a large body of collective oper-
ations implementations and present models of their performance, energy and memory
costs.
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2.1. System noise
System noise, a result of operating system level interrupts and various other archi-

tectural overheads, is a common source of performance degradations on large systems.
Petrini et al. [22] succeeded in putting this issue into the spotlight by showing how
interrupts from the system kernel and various daemons can lead to very big slowdowns
of bulk synchronous (iterative compute-communicate phases) applications when run on
a large number of processors. Their results have spurred much research on the topic:
Agarwal et al. [23] performed a theoretical analysis of the potential impact of three dis-
tributions of system noise (exponential, heavy-tailed and Bernoulli) might have on the
performance of MPI collectives. Their results show that most systems are expected to
scale well under exponentially distributed noise, while the heavy-tailed and Bernoulli
distributed noise are expected to incur significant performance penalties. Hoefler et al.
[24] introduced an OS noise measurement and simulation framework and analyzed the
impact such noise might have on large-scale applications. The authors performed simu-
lated runs with up to 1 million processes and have shown that the scale at which system
noise becomes a bottleneck is system specific and primarily dependent on its distribu-
tion. However, there is a clear trend of increased noise amplification with increasing
system size. This research also showed the effect system noise can have on various
collective operations and identified that allreduce is a particularly sensitive one, due to
its tendency to amplify system noise. That allreduce is a sensitive collective operation
was reported earlier by [2] where the authors have implemented a kernel injection noise
generation system. They have shown a slowdown of 2000% for a loaded schedule noise
signature (high duration, low frequency) for the Parallel Ocean Program (POP) due to
noise amplification. This particular application spends the majority of its runtime in
the allreduce MPI collective. The authors have also conjectured and confirmed that the
more hardware imbalanced a given system is (higher computation to communication
ratio), the less susceptible it might be to OS noise.

2.2. Non-blocking collective operations
Recently, The MPI Forum has released the MPI-3 standard, whose major novelties

are non-blocking collectives. These present an alternative way of dealing with system
noise and potentially also imbalanced PATs. The authors in [25] present a modification
of the GMRES algorithm where they overlap the dot-product global reduction commu-
nication with SpMV. They reported significant speedups compared to standard GMRES
for strong scaling experiments and were mentioned in the ”Report on the Workshop on
Extreme-Scale Solvers: Transition to Future Architectures” by the U.S. Department of
Energy as a ”...new class of algorithms presenting significant opportunities for funda-
mental research”. The algorithm is now included with the widely used PETSc library.
The ability of non-blocking collectives to combat system noise was confirmed by re-
search in [26], where the authors implemented a non-blocking MPI Allreduce and
showed that with sufficient overlap between application-computation and collective
communication, the effects of system noise can be almost entirely dampened. How-
ever, non-blocking collectives are not without limitations: computation needs to be
independent of communication for this to work, or the core algorithms need to be
rewritten accordingly. Consequently, most legacy code needs to be rewritten to take
advantage of what non-blocking collectives have to offer.
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2.3. Related work on imbalanced PATs
That imbalanced process arrival times can have adverse performance impacts on

collective operations has been long known. While imbalance resilient algorithms for
collective operations have been long proposed for shared memory architectures [27],
perhaps the first to propose imbalance resilient algorithms in the domain of distributed
memory machines were Mamidala et al. [5]. The authors implement imbalance re-
silient barrier and allreduce algorithms that use hardware multicasts to dynamically
re-arrange the tree topologies inherent to the algorithms. A more comprehensive study
of imbalanced PATs on application performance was reported by Faraj et al [3]. The
authors have examined a set of NAS parallel benchmarks and identified large imbal-
ances in PATs at collective operation call sites. A startling result of their study is that
even with explicit load balancing, it is difficult to fully eliminate imbalanced PATs in
cluster environments. A common observation in both of the papers is that algorithms
that perform better in absence of imbalance tend to perform worse in the presence of
imbalance. The study by Faraj et al. conclusively showed that the performance of col-
lective operations is sensitive to process arrival time. Another interesting result of this
study is that in most of the examined applications, the patterns of PAT imbalance at
collective call sites remain highly correlated for sustained durations. The same authors
in [6] present two algorithms for the collective broadcast operation with focus on large
messages, where the overhead of control messages in their implementation is reduced.
A more efficient RDMA-based solution for alltoall and allgather is proposed in [7] that
can handle both small and large messages without overhead.

Compared to non-blocking collectives, imbalance resilient collectives have the ad-
vantage of offering immediate benefit to legacy code without any code changes. The
work in this paper builds upon our prior work on imbalance robust reduction algo-
rithms [28]. The principal idea behind that algorithm and the one presented in this
paper is similar: re-arangement of the reduction schedule in such a way that would
allow the early arriving processes to start exchanging data and solving the reduction
problem as soon as possible. This principle is illustrated in Fig. 1.

However, the Local Redirect algorithm presented in [28] is designed for atomic
input data, while the new imbalance robust algorithm presented in this paper can be
equally well applied for both atomic and non-atomic input data that can be arbitrar-
ily segmented. Another important difference is that the new algorithm (henceforward
called Clairvoyant) requires pre-knowledge of PATs to produce an optimized reduction
schedule, while the Local Redirect algorithm does not.

3. Problem definition and runtime of collective operations

We start this section by defining the network model for message passing. Following
that, we define the research question. Finally, we detail our understanding of collective
operation runtime and process arrival times.

Definition 3.1. Assume a fully connected, single-port homogeneous network of com-
pute nodes (processes) with full duplex communication links. In such a network, any
process can at the same time send and receive one message, possibly from/to different
peers. The homogeneity of the network ensures that the communication cost between
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Figure 1: Impact of a single delayed process on the runtime of the binomial tree reduction
algorithm. The imbalance robust algorithm uses a greedy strategy to re-order the reduction
schedule. In this strategy, no process waits if there is another ready process. As a result, it
manages to absorb nearly one third of the imbalance time τ

any two pairs of processes is identical. It is further assumed that while a process is
combining messages, it cannot send or receive other messages. We call this the homo-
geneous simultaneous send/receive no-overlap model.

Because of the homogeneity, we assume that the system does not buffer small
messages, and that a single communication protocol is used in message transmis-
sion. This network model is often adopted in the literature and considered appropriate
for fully connected networks or modern fat-tree networks [29, 15, 30, 19]. The no-
overlap assumption in Definition 3.1 was introduced due to the absence of computation-
communication overlap capability on the PRACE CURIE machine (Section 6).

Definition 3.2. Consider a set of P processes numbered 0 . . .P−1 distributed across a
set of compute nodes, so that one and only one process is mapped onto each compute
node. The compute nodes are spatially separated and communicate with one another
by exchanging messages. Let each process i have a message mi, where mi is either
a single value or an isotype vector of size m. We will refer to m as problem size.
Consider now an associative commutative binary operator ?. We define the P-way
reduction problem as the computation of the value M = m0 ?m1 ? · · · ?mP−1 that is
made available at the root process 0 in the shortest time.
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Figure 2: An illustration of process arrival time (represented with vector a), average arrival time
ā, collective operation runtime tA and absolute imbalance I(a)

To clarify what is meant by shortest time in Definition 3.2, we first have to define
the starting conditions for the P-way reduction problem.

Definition 3.3. Let ai denote the time when process i arrives at the collective call site,
or in other words starts the collective operation. We define process arrival times (PAT)
as the vector a = (a0,a1, . . . ,aP−1).

The average arrival time is defined as ā =
a0+a1+...aP−1

P . When all processes arrive
at the same time, we say that the PATs are balanced. Otherwise, PATs are imbalanced
(skewed).

Let ei denote the time when process i exits the collective operation. We define the
process exit time (PET) as the vector e = (e0, ...eP−1). Fig. 2 provides an illustration
of these concepts.

There is no single definition of what constitutes collective operation runtime, nor
how to measure it. Not all research papers define explicitly their understanding of col-
lective operation runtime and often leave it implicit in their adopted runtime measure
(estimation). This leads to measures and reported results that are sometimes incom-
parable. In all cases, estimation of collective operation runtime is performed by mea-
suring the elapsed time between two distinguished events: the start and the end of the
collective operation. These events either reside on the same process or on different
processes. The former leads to local, while the latter to global measures. Definition 3.4
presents the understanding of collective operation runtime adopted in this paper.

Definition 3.4. Let A be an algorithm for P-way reduction. Let a be a PAT vector of
size P. Without loss of generality, let min(a) = 0. Then the runtime of process i is
denoted by its exit time ei. We define the runtime of algorithm A for the PAT a and
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communicator of size P to be:

tA(a) = max(e)−min(a) = max(e)

In other words, we define the runtime of a collective operation as the time difference
between the last process to exit and the first process to arrive at the collective operation.
This is the same definition as adopted by the authors of MPIBlib [31].

Definition 3.5. Let a be a PAT vector (a0,a1, . . . ,aP−1). We define I(a), the absolute
imbalance of a to be max(a)−min(a), i.e. the time difference between the latest
process to arrive and the earliest process to arrive.

The assumption of commutative and associative operator in Definition 3.2 is based
on the fact that all 12 MPI combination operators, including sum, product, minimum,
maximum, etc., are associative and commutative. However, The MPI standard encour-
ages implementations to optimize for non-commutative operators as well. Problems
can arise from using operators that are not ”strictly” associative, such as most floating-
point operations. The MPI standard [8] (Section 5.9.1., page 175) strongly encourages
implementors to design algorithms such that the same result be obtained whenever the
function is applied on the same arguments, appearing in the same order.

3.1. Absorption time
An algorithm that is not robust to an imbalance in the PAT will have its runtime

prolonged by the magnitude of the absolute imbalance. On the other hand, an imbal-
ance robust algorithm will mitigate, or absorb a part of the absolute imbalance, and thus
suffer a smaller performance impact compared to an imbalance non-robust algorithm.
We formalize this idea as Definition 3.6.

Definition 3.6. Let A be an algorithm for P-way reduction with problem size m. Let ψ

be some PAT vector of size P. Let π be the balanced PAT (0,0, . . . ,0). Then absorption
time of algorithm A with respect to PAT ψ is defined as:

A(ψ,A) = tA(π)− tA(ψ)+ I(ψ)

If absorption time is equal to the absolute imbalance, then the algorithm will not
exhibit any slowdown due to imbalance in process arrival times. Absorption time may
also be negative, if a particular PAT has an adverse effect on the algorithm performance
beyond that of the absolute imbalance. A particular case of this was observed in our
performance experiment, as discussed in Section 7. It is interesting to observe that
there is an upper bound on absorption time for any given algorithm.

Proposition 3.7.
A(ψ,A)≤ tA(π)− tO(π,2),

where tO(π,2) is the optimal time to solve the 2-way reduction problem.

Proof. The largest absorption time will be attained when by the time the last process
(let that be process i) has become ready, only the input data mi remain to be combined
to derive the final result. Let us select the minimum absolute imbalance I(ψ) for which

8



that can be the case, i.e. I(ψ) = tA(π,P− 1). Then, tA(ψ) = I(ψ)+ tO(π,2). From
this, it follows that

A(ψ,A) = tA(π)− tA(ψ)+ I(ψ)

= tA(π)− I(ψ)− tO(π,2)+ I(ψ)

= tA(π)− tO(π,2).

Finally, it will be useful to normalize both the absolute imbalance and absorption
time with respect to algorithm runtime for balanced PATs.

Definition 3.8. We define the normalized absolute imbalance to be

IN(ψ) =
I(ψ)

tA(π)

Definition 3.9. We define the normalized absorption time to be

AN(ψ,A) =
A(ψ,A)

tA(π)

4. A case for a Clairvoyant Algorithm

In this section, we argue the feasibility of clairvoyant collective operations. Much
of the argument will center on the assumption that it is feasible to provide information
on PATs to collective operations at runtime. We discuss the difficulties present therein
and the costs involved.

Faraj et al. [3] conducted a study of PATs at collective operation call sites for vari-
ous MPI routines in a set of MPI benchmarks consisting of High Performance Comput-
ing (HPC) application kernels. They found that PATs for different invocations of the
same collective operation exhibit a phased behaviour: PATs are strongly autocorrelated
for a period of time before they change (Fig. 3). For some collective operation call
sites, they found that PATs are autocorrelated for the entire program duration. These
findings indicate that it might be feasible to construct a model in the form of a stochas-
tic difference equation (such as ARMA) to predict PAT patterns from one invocation to
the other.

Motivated by their findings, we performed a trace of the per process image render-
ing time across 100 iterations of the in-situ visualized Helsim2 particle-in-cell space

2Helsim is an Electromagnetic Explicit 3D In-Situ-Visualized Resilient Particle-in-cell simulator, devel-
oped in the Leuven Intel ExaScale Lab, Belgium. It is a combined multidisciplinary effort integrating as-
trophysics, linear solvers, runtime environment, in-situ visualization and architectural optimization focused
simulations. It was developed to be a proto-app, showing a realistic example of trade-offs between com-
putation and communication on a small, manageable code-base with modern implementation techniques. It
was implemented in C++11 utilizing the inlab Shark PGAS library for all distributed data structures and the
Cobra library for load balancing and resiliency.
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Figure 3: Imbalance factors for MPI Allgather in NBODY on Lemieux cluster (P=128).
Reprinted from ”A study of Process Arrival Patterns for MPI Collective Operations”, by Faraj
A. Et al., 2008., International Journal of Parallel Programming. Volume 36, Issue 6, pp 543-570.
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weather simulation on P = 128 processes with 8 processes per node, on the Lynx clus-
ter machine. In sort-last distributed rendering, each process produces one full-sized
image of the data that is subsequently composited into the final image with a global
reduction operation. The variance in local image rendering time then manifests as
an imbalance in PATs at the collective image compositing operation that immediately
follows image rendering. A depiction of the variance evolution across simulation iter-
ations is presented in Fig. 4.

The PATs of the first 24 processes, exhibited a recurring pattern (Fig. 5) with a
period of 4 process ranks. The non-randomness and strong trends in the per-process
PATs indicate that it might be feasible to construct a stochastic difference equation
based model to predict PAT patterns in this setting. A simple moving average model
(SMA) with a window size of 5 was shown to fit the data very well (Fig. 5). This
conjecture is further reinforced by the autocorrelation plots of the data (Appendix B).

The clairvoyant schedule generation algorithm introduced in this paper requires
that the entire PAT pattern be known at the time of schedule construction. This could
ideally be accomplished in an iterative setting, by communicating the PAT pattern every
k iterations to all the processes in the communicator with an all gather operation, and
relying on the model to predict the PAT patterns in-between the communications.

However, for this to be an efficient approach, the number of iterations k has to be
sufficiently large so that the speedup brought about by the clairvoyant algorithm amor-
tizes the PAT pattern dissemination cost. Because each process only communicates a
single floating point value, the dissemination cost will become negligible for moder-
ate to large problem sizes m > 128KiB, that are considered in this paper. Moreover,
the clairvoyant schedule generation algorithm should be robust to the small inaccura-
cies produced by the model predictions. We provide preliminary results on the PAT
misprediction sensitivity in Table 5.
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From a design standpoint, it would be best to incorporate the schedule construc-
tion within the reduction operation. In this way, the whole process would be entirely
transparent to the user and delegated to the library runtime system. An environment
variable could be used to toggle the usage of the PAT imbalance features in the library
implementation.

5. Reduction algorithms

In this section, we discuss the time complexity of reduction algorithms for bal-
anced PATs and use a simple linear model to produce predictions of runtimes for the
five surveyed algorithms. We then define the Clairvoyant algorithm that is the main
contribution of the paper, followed by four other reduction algorithms that we selected
for performance comparison. In the following text, we use n as shorthand for log2 P,
where P is the number of processes participating in a collective operation.

5.1. Complexity model

To model the time complexity of reduction algorithms, we will use a simple linear
communication cost model consisting of three parameters: α the latency in message
transmission, β the per byte cost of message transmission, and γ the per-byte cost of
message combination [32]. The time to send and combine a message of size m, from
one process to the other, can be expressed in this model as: α +mβ +mγ . The three
parameters in this model are assumed to be message size and process count indepen-
dent.
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Table 1: Lower bounds for collective operations

Collective Latency Bandwidth Computation
Reduce nα βm P−1

P γm
Reduce-Scatter nα

P−1
P βm P−1

P γm
Gather nα

P−1
P βm N/A

5.2. Lower bounds on time complexity

It is illustrative to establish the lower bounds on the cost of the reduction operation
and the two collective operations used as building blocks for composite algorithms:
reduce-scatter and gather.
Latency: In reduction, every process must contribute its data by sending at least one
message. These messages have to be successively combined until a fully combined
data vector resides at the root process. In a single port network model, at most two
messages originating from different processes can be combined at the same time. This
leads to a minimum of n steps, each of which costs time α . Similar reasoning can be
applied for the reduce-scatter and gather operations.
Bandwidth: The lower bound for bandwidth is derived by observing that the root node
must at the very least receive a quantity of data amounting to problem size m, wherein
all the information from the other P−1 processes has been combined. For the reduce-
scatter and gather operations, the root node must receive or send P−1 segments of size
1
P m.
Computation: the lower bound on the computation can be derived by the observa-
tion that if all the computations were to be performed on a single node, they would
take time (P− 1)mγ . Assuming perfect load balancing, the computation time can be
brought down by distribution to P−1

P mγ . The lower bounds are summarized in Table 1.

It is important to observe that it is not possible for any single algorithm to meet all
three lower bounds. For example, to meet the lower bound on the computation requires
that the computation be perfectly load balanced. This can be achieved through a reduce-
scatter operation in the first phase where each process is responsible for 1/P of the data.
In the second phase, the results of the reduce-scatter operation can be collected at the
root process through a gather operation. In the linear cost model, the first phase would
have the time complexity of nα + P−1

P mβ + P−1
P mγ . The second phase would have

the time complexity of nα + P−1
P mβ . All together, this would roughly constitute a

2-approximation in latency and bandwidth to the established lower bounds in Table 1.
If we view the execution of an algorithm in terms of rounds, where in each round

it can send, receive and combine one segment of size B = m
N , where N is the number

of segments a message has been divided into, then the minimum number of rounds
to complete the reduction (for balanced PATs) is n+N− 1. In a single port network
(Definition 3.1), n rounds are necessary for the first fully reduced segment to reside at
the root, followed by additional N−1 rounds for the remaining segments.
Using the linear cost model, we can derive the time complexity of this algorithm as
follows. Assume that the per-process input data of size m is split into N segments of
size B = m

N .

13



Then the reduction time of an equi segmenting algorithm A for balanced PAT,
that completes in R rounds is TA(π) = R · (α +B(β + γ). Expanding R, gives us the
following equation:

TO(π) = (n−1)α +(n−1)B(β + γ)+Nα +m(β + γ) (1)

Differentiating by d
dN and selecting the positive real root, we can determine the optimal

number of segments:

Nopt =

√
(n−1)m(β + γ)

α

and the optimal segment size:

Bopt =
m

Nopt
=

√
αm

(n−1)(β + γ)

By substituting Bopt for B and Nopt for N in Eq. 1, we derive the runtime complexity of
the optimal equi segmenting reduction algorithm O for balanced PATs:

TO(π) = (n−1)α +2
√
(n−1)α

√
m(β + γ)+m(β + γ) (2)

5.3. Absorption potential of a clairvoyant reduction algorithm
As previously discussed, no reduction algorithm can meet all three lower bounds:

latency, bandwidth and computation. Thus the algorithm O that solves the two-way
reduction problem in optimal time will employ one of the following two strategies:
either the workload is evenly divided between the two processes by first performing a
reduce-scatter operation followed by a gather operation for the total time complexity
t1 = 2α +mβ +1/2mγ or the latency is minimized by having one process send all its
data to the root in a single message, with the root performing all the computation, for
time t2 = α +mβ +mγ . The first strategy will be better whenever α < 1/2mγ . Com-
puting the maximum absorption according to Proposition 3.7 we can observe a switch
from the second to first strategy near the point m= 10KiB (Fig. 6). The exact point will
depend on linear model parameters of each particular machine. This result, combined
with the fact that we evaluated algorithm performance for m≥ 128KiB has motivated
our decision to opt for the first strategy of distributing the computational workload in
the design of algorithm Clairvoyant.
In fact, there is another strategy for implementing algorithm O: utilize the remaining
P−2 processes to decrease the per-process workload. To do that, a scatter from each of
the 2 processes to other P−1 processes would be required, followed by local compu-
tation on data of size m

P concluded by a collective gather of computed P−1 segments
of size m

P to the root. The total time of this operation is:

2α log2 P+2
P−1

P
mβ +

1
P

mγ

This strategy is hampered by extra latency of roughly log2 P and extra data trans-
mission time of mβ . For very large messages and moderately large systems, we can
ignore the latency term leading to the conclusion that network bandwidth would have
to be double that of computation speed. This is, however, contrary to current trends in
high performance systems where computation speed is upwards of three times that of
effective bandwidth.
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Figure 6: Theoretical prediction of maximum normalized absorption of algorithm Clairvoyant
as function of problem size (multiples of 4 bytes) and number of segments (N). Normalized
absorption is computed according to the equation: AN =

tC(π,128)−tC(π,2)
tC(π,128) , where tC(π,P) is the

runtime of algorithm Clairvoyant for balanced PATs as defined in Table 3. The black curve
was computed according to Proposition 3.7. Parameters α = 2.66µs, β = 4.8179×10−10 sB−1,
γ = 1.6654×10−10 sB−1; experimentally determined on the PRACE CURIE supercomputer
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5.4. Clairvoyant schedule generation

We define the Clairvoyant schedule generation algorithm as Algorithm 1. The algo-
rithm generates a reduction schedule which is personalized for each of the P processes.
The algorithm operates in rounds, within which a process can at most send one seg-
ment, receive one segment and combine one segment (Definition 3.1). As its input
parameters, it receives the number of segments N into which the input data is to be
split, the time d = α +B(β + γ) to complete one round of reduction (the time to re-
ceive and combine one segment) and the PAT vector a that represents the predicted
PATs at the current reduction operation invocation point.

The algorithm proceeds in rounds, where in each round processes send/receive and
combine at most one segment of the input data. At the beginning of each round, the
algorithm establishes which processes are ready to participate in the reduction. This
is done by first selecting the process Q0 with the minimum arrival time, i.e. the top
element of the priority queue Q, where priority is assigned to process ranks i with
smaller (earlier) arrival time ai (Line 3).

Initially, the set Q is comprised of all P processes. Then a group G of ready process
is constructed from the queue Q, so that for ∀i ∈ G,ai ≤ aQ0 + d (Line 5). Thus, all
members of G are formed by those processes whose arrival time is less than or equal
to the arrival times of process Q0 plus the time to complete one round of reduction (d).
A state matrix M of size P ·N is used to keep track of states for each segment on every
process (Line 1). The possible states are A, for available, E for empty (a segment that
has been sent) or P for partially combined segment (a segment that contains information
from at least one other segment). The algorithm then proceeds by adhering to a greedy
principle: each process attempts to receive and combine a segment that still resides in
its local buffer (state A or P) by giving priority to segments with lower indices (Line 21
and 25). Care is taken to ensure that a process sends a segment only once within each
round. This is done by keeping record in the vector S (Line 2). In each round, a sink
process (r∗) is established: if process r, the root selected in the collective operation
call, is not part of G, then process Q0 with minimum arrival time is selected as the sink.
Otherwise, process r is selected (Lines 14-18). Implicit to the algorithm is the principle,
that once a process sends a segment of data, it will no longer receive segments of that
index - unless that process is the sink process. This ensures that all segments eventually
trickle down to the sink process. The sink process follows a slightly different greedy
principle: it attempts to receive a segment regardless of whether a segment of matching
index resides in its local buffer, with priority assigned to segments with lower indices
(Line 23 and 25). This ensures that even if the root process r is the last to arrive, the
reduction can proceed uninterrupted as long as there are segments to be received and
reduced.

At the end of a round, if a process has sent all of its segments, then its schedule is
complete and it is not put back into the set Q (Line 36). The algorithm repeats until all
processes except the root process r have been removed from set Q.

The schedule constructed by the algorithm for P = 4∧N = 4, when the PAT is
balanced, is shown in Table 2. The execution of this schedule is illustrated in Fig. 7.
We will briefly trace the schedule generation algorithm for the first two processes in
Round 1. Because the PAT is balanced, G=P and Q0 = r. Beginning with process rank
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i = r = 0 (the for loop on Line 12), the algorithm sets the index of interest j = 0 (Line
13). The linear search on Line 21 determines that the index j = 0 is indeed eligible
((M(i, j) ∈ {A,P,E}) - at algorithm start, all elements of the matrix are set to the value
A (Line 1). Then, the algorithm searches for the first process z (Line 19) among the
processes in group G whose segment of that index has not yet been sent (Line 25). If
such a segment has been found on process z, the algorithm checks that process z has
not already sent a segment in the current round (Line 25). In this case, z = 1 and the
algorithm proceeds to Line 30. The inbound queue of process 0 (I[0]) is enqueued
with the pair (z, j) = (1,0). At line 31 the outgoing queue of process 1 (O[1]) is
enqueued with the pair (i, j) = (0,0) (Compare with Table 2). Finally, the state matrix
M is updated accordingly (Lines 32-33).

The algorithm loops back, and the next process i = 1 in the group G is selected.
The search on Line 21 determines that the first eligible segment is of index j = 1. The
linear search on Line 25 determines that the first process that can send the segment of
index j = 1 is process rank z = 0. The algorithm proceeds to line 30, and enqueues
the pair (0,1) to the inbound queue of process rank 1 (I[1]) (Line 30) and the pair
(1,1) to the outbound queue of process rank 0 (I[0]) (Table 2). This concludes the
first round trace for the first 2 processes.

The execution of the generated schedule for the imbalanced PAT ψ =(0,0,0,δ ),P=
4∧N = 4 is illustrated in Fig 8. Here, we can observe that the algorithm has generated
such a schedule that allows for the entire 3-way reduction problem to be solved among
processes {0,1,2} by the time process rank 3 arrives at the collective call site.

For N = 1, the schedule generated by this algorithm degenerates into a binomial
tree. We experimentally evaluated the schedule generation algorithm for balanced PATs
and all permutations of P= {4,8,16,32,64,128,256,512} and N = {4,8,16,32,64,128,256,512}.
All the generated schedule lengths were of length R = n+N−1, thus matching the op-
timal equi segmentation schedule length. At this time, we do not have a proof that the
schedule generation algorithm produces a schedule of length R for all input parameters.
Due to out-of-order combination of data segments, this algorithm can only be used with
commutative operations. This is however unavoidable for any algorithm that endeav-
ours to take best advantage of available slack caused by imbalanced PATs.

5.4.1. Implementation details
We implemented the algorithm in C++ 11. In the implementation of the algo-

rithm, the linear search in lines 21 and 23 is optimized by placing indices to non-empty
segments in a flat set, built over std::vector. This was made in favour of asymp-
totically better ordered list where the cost of item removal is O(1) vs O(N) for flat
set. Since the number of segments N is comparatively small, and each element is an
integer, a contiguous data structure such as flat set is more cache friendly. Further-
more, the linear search on line 25 is optimized by keeping a priority queue for each
segment. The queue is implemented with a pairing heap data structure [33]. The
two operations, heap.push() and heap.erase(), performed by the algorithm
both have amortized complexity of O(22

√
log logN) [34]. Profiling the algorithm exe-

cution indicates that 41% of the runtime is spent in heap.erase(). We suspect
that much of this cost is due to expensive memory deallocation performed by the im-
plementation of boost::heap::pairing heap. Modifying the algorithm to use
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Algorithm 1 Clairvoyant non-atomic schedule generation algorithm
Input:

P:integer, the communicator size
N:integer, the number of segments
a:vector of double, the PAT vector of size P
d:double, the time to complete one round of reduction
r:integer, the root rank

Output:
I:queue of pair (rank,index) //Inbound schedule queue
O:queue of pair (rank,index) //Outbound schedule queue

1: Let M be a state matrix of size P ·N. Set M(:) = A, i.e. mark all segments as available.
2: Let S:bool be an array of size P
3: For ∀i ∈ {0...P−1} insert process rank i into a priority queue Q, where priority is given to

process ranks i with smaller arrival time ai
4: while size(Q)> 1 do
5: Pop processes Q0...Qk from Q to form a sorted vector G, so that ∀i ∈ G,ai ≤ aQ0 +d.
6: for ∀i ∈ G do
7: let S(i) =⊥ // No ready process in G has yet sent a segment
8: end for
9: if r ∈ G then

10: insert r at first position in G
11: end if
12: for ∀i ∈ G do
13: let j = 0, let z = /0
14: if r ∈ G then
15: let r∗ = r // sink is the root
16: else
17: let r∗ = Q0 // sink is the earliest to arrive process
18: end if
19: while z ∈ /0 do
20: if i 6= r∗ then
21: starting from j, find first segment x, such that M(i,x) ∈ {A,P}. Let j = x.
22: else
23: starting from j, find first segment x, such that M(i,x) ∈ {A,P,E}. Let j = x.
24: end if
25: perform linear search through group G to find the first process z 6= i such that

M(z, j) ∈ {A,P}∧S(z) =⊥
26: if z ∈ /0 then
27: let j = j+1
28: end if
29: end while
30: enqueue to I(i) the pair (z, j)
31: enqueue to O(z) the pair (i, j) and let S(z) =>
32: M(z, j) = E
33: M( j,z) = P
34: end for
35: for ∀i ∈ G do
36: if ∃ j ∈ {0...N−1} : M(i, j) 6= E then
37: ai = ai +d
38: push process i into Q
39: end if
40: end for
41: end while 18
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Figure 7: Execution of the schedule generated by Algorithm 1 for the balanced PAT a =
(0,0,0,0), communicator size P = 4 and the number of segments N = 4. The complete schedule
is presented in Table 2
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Figure 8: Execution of the schedule generated by Algorithm 1 for an imbalanced PAT. In
this example, P = N = 4 and the PAT a = (0,0,0,δ ), where the delay δ = tC(π,3), i.e. the
time required for algorithm Clairvoyant to solve the 3-way reduction problem. The generated
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length algorithm Clairvoyant generates for the P-way reduction problem with balanced PATs
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Table 2: Schedule generated by algorithm Clairvoyant (Algorithm 1) for the balanced PAT
a = (0,0,0,0), communicator size P = 4 and number of segments N = 4. The schedules con-
sists of two queues I and O (inbound&outbound), where the queue elements are integer pairs
(rank,index), where rank denotes the communication peer rank and the index denotes
the ordinal number of the segment to be communicated. For these input parameters, the gener-
ated schedule length is R = n+N−1 = 5 rounds.

Rank Queue R1 R2 R3 R4 R5

0 I (1,0) (2,0) (1,1) (2,2) (1,3)
O (1,1) (2,2) (3,3) ⊥ ⊥

1 I (0,1) (3,1) (2,3) (3,3) ⊥
O (0,0) (2,2) (0,1) ⊥ (0,3)

2 I (3,0) (0,2) (3,2) ⊥ ⊥
O (3,1) (0,0) (1,3) (0,2) ⊥

3 I (2,1) (1,2) (0,3) ⊥ ⊥
O (2,0) (1,1) (2,2) (1,3) ⊥

heap.decrease() followed by heap.increase(), instead of heap.erase()
might lead to further performance improvement.

5.4.2. Time and space complexity
To give a rough estimate of schedule generation time complexity, we will examine

the case of balanced PATs. Then the algorithm will take R rounds where R = n+N−1.
In each round, a loop of at most P iterations (Line 12) is executed. In each iteration, we
can assume that on average a single lookup of the first element of both the flat set and
pairing heap will be required (O(1) time), followed by 2 pop (or one pop and one erase)
and push operations on the heap, each of which is roughly O(logP) in complexity, plus
a potentially O(N) operation to remove an element from the flat set. This leads to a
total of:

O(P(n+N−1)(N +3n))≈ O(P ·N2 +P log2 P)

However, for small N such that the flat set resides within cache memory, we can expect
the element removal operation for flat set to be of near constant cost, as all the data can
be rotated with a single contiguous memory operation. In that case, we can expect the
algorithm to scale with the complexity:

O(P ·N +P log2 P)

Empirical data suggests (Fig. 9) that the runtime of the schedule generation al-
gorithms grows roughly linear in both P and N. As we will see later, this has strong
implications on the usage scenarios of this algorithm.

In the space domain, the algorithm requires a matrix of P ·N integers denoting the
status {A (available), P (partially combined) , E (empty)} of individual segments. In
addition to this, for each segment, a priority queue of maximum size P is maintained,
wherein each element consists of a single integer denoting process ranks. Greater prior-
ity is handed to smaller ranks. Moreover, a matrix of handles to priority queue elements
of size P ·N is maintained to perform heap.erase() if a match has been found in

21



0.000

0.025

0.050

0.075

0.100

0.125

0 100 200 300 400 500
P

tim
e

Number of segments

4
8
16
32
64
128
256
512

Figure 9: Schedule generation runtime as function of number of processes (P) and number
of segments (N). Reported runtimes are the mean of 1000 observations per each pair of input
parameters (P,N), denoted in seconds

the search on Line 25. As its return value, the algorithm generates two queues per
process: queue I and queue O, the incoming and outgoing queue, respectively. The
maximum length of the queues is determined by the total number of rounds R to com-
plete the reduction, where R = n+N− 1. Each element of the queue is a pair of two
integers: the rank of the communication peer and the ordinal number of the segment to
communicate.

5.4.3. Clairvoyant schedule execution
Algorithm 1 generates a per process personalized schedule consisting of two queues:

the inbound and outbound communication queue. Each element i of the queue defines
the inbound and outbound communication peer in round i, as a pair of two integers
(rank,index). The former represents the rank of the peer process and the latter the in-
dex of the segment that is to be communicated. The schedule execution algorithm then
linearly iterates through the schedule, issuing up to one MPI IRecv and MPI ISend
call per-process in each round and combining at most one segment of size m/N ele-
ments. Before a process proceeds to the next round, all its outstanding MPI calls are
completed by a call to MPI Wait. This means that there is no explicit synchronization
within the subgroup G of ready process in round i. This decision was influenced by the
dynamic nature of the subgroup and the non-trivial creation and maintenance cost.
For simplicity, we will hitherto refer to this algorithm as Clairvoyant.
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5.5. Selected algorithms

We now proceed to define and discuss the four selected adversary algorithms. It
is assumed throughout this section that the root resides at process rank 0, and that
the communicator size is a power-of-two. In the presented pseudo code, BLOCK is
a procedure of two parameters (iterator pointing to the beginning of a segment and
segment size) that produces segments of input data.

5.5.1. Binomial Tree
This is the optimal reduction algorithm for atomic input data with balanced PATs

and is used in implementations of many MPI libraries. The definition of the algorithm
is provided in Appendix A.

5.5.2. Parallel Ring
This is an algorithm best suited for large messages as discussed in [15] where the

authors name it the bucket or cyclic algorithm. Our implementation is based on the
algorithm explicated in that paper. The definition of the algorithm is provided in Ap-
pendix A. The same algorithm forms the basis of the bandwidth optimal all-reduce
algorithm discussed by [13]. The authors show, under the assumption that MPI pro-
cesses with consecutive ranks are assigned to processors (cores) in each SMP node,
the logical ring communication pattern of this algorithm is contention free (assuming
full-duplex links on single ported nodes). This property makes the algorithm suitable
for execution on fully subscribed SMP clusters.

5.5.3. Butterfly
Many MPI implementations employ some version of the butterfly algorithm for

reduction of large messages. The version of MVAPICH2 used for our experiments
implemented the Rabenseifner’s version of the butterfly algorithm [11, 20]. In the
domain of computer graphics, this algorithm is also known as binary swap used for sort-
last image compositing [35, 36]. For the purposes of this paper, we have implemented
the algorithm explicated in [15] as bidirectional exchange reduce-scatter followed by a
call to library implemented MPI Gather. Our implementation is written in iterative
form, while that of [15] was written in recursive. The definition of the algorithm is
provided in Appendix A. This implementation necessitates that P be a power-of-two.
There exist optimizations of this algorithm for non-power-of-two process counts using
a binary blocks [12, 20] scheme to reduce some of the load imbalance.

5.5.4. Radix-k
In the domain of image compositing, a new algorithm has recently emerged, by

the name of Radix-k, first described in [16] and later improved in [17]. Reduction
operations in this domain are characterized by very large problem sizes (> 4MiB)
and non-commutative combination operators, disqualifying algorithms such as Paral-
lel Ring that operate only on commutative operators. The definition of the algorithm
is provided in Appendix A. This algorithm operates by grouping P processes into r
groups. These r groups form the radix vector k = [k1, . . . ,kr] with the property that
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P = ∏
r
i=1 ki. The algorithm then proceeds in r rounds, where in each round i it per-

forms ki exchanges and reductions among P
ki

groups. In each round, the current slice
is subdivided in ki pieces, so that the size of the slice in round i is l

∏
i
j=1

1
ki

. Groups

are formed in the following way: in round 1, the k1 members of a group are near-
est neighbours in rank order; in the next round, each member is now k1 apart, in the
third round k1 · k2, etc. An illustration of the algorithm execution is given in Appendix
C. Radix-k has the potential to fine-tune the amount of communication concurrency
(multi-portness) to almost any given architecture by the appropriate selection of the
k-values. When radix vector k = [2,2, ...,2], then this algorithm becomes equivalent to
Butterfly.

In the experimental evaluation of the algorithm’s comparative performance, we
have determined the radix vectors empirically, by selecting for each problem size m,
the radix vector that resulted in best performance. The empirically determined vector
was identical for all problem sizes and equalled k = {4,4,8}.

5.6. Time complexity of selected algorithms

Table 3 presents the computed time complexity of some well-known reduction al-
gorithms, including those implemented in this study. The equations in Table 3 were
derived using the linear cost model. It is illustrative to point out that among the listed
algorithms, Butterfly will outperform Clairvoyant for some problem sizes m. In fact, for
the data set presented in Fig. 10, Butterfly achieves a minimum of 0.96 relative runtime
compared to Clairvoyant. However, the range of problem sizes m for which Butterfly
is better or equal to Clairvoyant (Fig. 10) is [1.7460×104 4B,8.8820×104 4B]. This
represents only 0.697% of the set of problem sizes in Fig. 10. In general, the size of
the range RB where Butterfly outperforms Clairvoyant will depend on the ratio r = β

γ

and process counts P. The size of the range RB is inversely proportional to both r and
P.

5.7. Rationale of algorithm selection

This work does not attempt to provide a comprehensive survey of reduction algo-
rithms known in the literature. In particular, two high-performance tree pipeline algo-
rithms, Linear Pipeline and 2-Tree, were not included. While the experimental results
of these two algorithms might be interesting, they are both equi-segmenting algorithms
like Clairvoyant and in the absence of imbalance their expected performance is strictly
worse than that of Clairvoyant (Table 3). On the other hand, algorithms Butterfly and
Radix-k operate with heterogeneous segment sizes and can in theory outperform algo-
rithm Clairvoyant. For that reason, both of the algorithms are included in this study.

We chose not to report the runtime of the native MPI Reduce implementation, for
two reasons. First, it was not known to us what algorithm was used to implement the
operation. Second, the observed performance of the native implementation fell short of
all non-atomic reduction algorithms. This would imply that either the implementation
algorithm is far from optimal, or that the native implementation was poorly tuned for
this particular problem size. Table 4 shows the results of our initial performance as-
sessment study conducted in December 2014 upon which we have based our algorithm
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Table 3: Time complexity of some reduction algorithms for homogeneous, fully connected full-
duplex networks.

Algorithm Communication cost (upper bound)
non-comm

ops
Source

Binomial Tree n[α +βm+ γm] yes [10, 9]

Butterfly 2αn+2 (P−1)
P mβ + P−1

P mγ yes [15]

Parallel Ring (P−1+n)α +
(P−1)

P m(2β + γ) no [13]

Radix-k (∑r
i=1[(ki−1)]+n)α +

(P−1)
P m(2β + γ) yes [17]

Linear pipeline (P−2)α +2
√

(P−2)α
√

m(β + γ)+βm+ γm yes [18]

Two-tree 4(n−1)α +4
√

(n−1)α
√

βm/2+mβ +2mγ yes [19]

Clairvoyant (n−1)α +2
√

(n−1)α
√

m(β + γ)+mβ +mγ no This paper

Communication cost is calculated as the time required for the last process to complete execution
in the worst case, for balanced PATs. Problem size is denoted by m, the number of process by P
and n = dlog2 Pe. The formula for the Butterfly algorithm is valid when the communicator size
P is a power-of-two.
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Figure 10: Performance prediction based on the time complexity equations presented in Ta-
ble 3. The x-axis denotes the problem size in multiples of four bytes, while the y-axis de-
notes the algorithm runtime relative to algorithm Clairvoyant. Parameters α = 2.66µs, β =
4.8179×10−10 sB−1, γ = 1.6654×10−10 sB−1; experimentally determined on PRACE CURIE
supercomputer. For Radix-k, the same radix vector {4,4,8} was used for the entirety of the
problem size range
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Table 4: Results of the initial performance assessment study conducted in December 2014 on
the PRACE CURIE supercomputer. Problem size m = 4MiB and communicator size P = 128.

Algorithm 4 MiB
Binomial 0.034 s
Butterfly 0.0089 s
Native 0.011 s
Local Redirect 0.041 s
Parallel Ring 0.0083 s
Linear Pipeline 0.0061 s
Radix-k 0.0085 s

selection decision. Included among these is algorithm Local Redirect [28], the only
other imbalance robust reduction algorithm. However, Local Redirect was designed
for atomic input data only, and this is clearly reflected in its performance: almost an
order of magnitude slower than the fastest algorithm in Table 4. Due to its lack of
competitiveness, when pitted against non-atomic reduction algorithms, algorithm Lo-
cal Redirect was excluded from this study.

6. Experimental methodology

In this section, we report the experimental results obtained from executing the se-
lected algorithms on the Partnership for Advanced Computing in Europe (PRACE)
CURIE supercomputer. This is a BULL x86 system with 5040 blades each equipped
with 2 Intel Xeon E5-2680 8 core processors running at 2.7GHz and 64 GB of RAM.
Machine nodes are interconnected using Infiniband QDR technology. All algorithms
and experiments were implemented in C++11 using MPI p2p primitives. The code was
compiled with gcc 4.6.3 and linked to a proprietary BullxMPI version 1.2.8.2 based
on OpenMPI, provided with the PRACE CURIE machine. The number of nodes was
maintained at P = 128 throughout all experiments and one process was assigned per
node (ppn = 1).

The protoyping and testing of all the algorithms was performed on the Lynx cluster
at the Intel ExaScale Lab in Leuven, housed at IMEC. The data displayed in Fig. 4
was produced on this cluster. This is a 32 node system, where each node is a DL170e
G6 blade: dual socket, six core Intel Xeon X5660@2.8 GHz, 96 GB of memory and
500 GB of disk space. Each node comes with a Mellanox Technologies MT26428
Infiniband card (ConnectX VPI PCIe 2.0 5GT/s - IB QDR/10GigE). The nodes are
interconnected using a single Voltaire 36P QDR switch. This is a crossbar switch, so
this network should achieve full bisection bandwidth for all communication patterns.
All nodes ran Ubuntu 12.04.3 LTS Precise.

6.1. Experimental Method
To evaluate the runtime performance of collective operations under load imbalance,

we implemented a benchmarking methodology that is in design most similar to that of
the Intel MPI benchmarks. To ensure the reproducibility of our results, we followed
the guidelines laid out in [37] and benchmarked the collective operations for a range
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of message sizes and a large number of iterations. We measured the runtime of each
process i, i.e. tA(i) = ei − min

0≤i<P
ai. For elapsed time estimation, we used the MPI

timing routine MPI Wtime.

6.2. Microbenchmark rationale

On the PRACE CURIE supercomputer, this clock (MPI Wtime) was not global
and the reported precision was 1 µs. Each time, before timing the performance of a
collective operation, we synchronized all processes by explicit calls to two consecutive
MPI Barrier routines, as is done in Intel MPI benchmark version 4.0[38]. This en-
sures that runtimes of collectives are measured in isolation and that the arrival times are
sufficiently balanced: assuming a binomial tree broadcast algorithm (as part of barrier
implementation), for the evaluated number of processes P = 128, this approach leads
to approximately 18 µs of spread in arrival times. We compute this spread from the
measured latency of a control message L=2.66 µs, as reported by Netgauge [39]. The
minimal injected absolute imbalance was 50 µs, and the minimal imbalance increments
also 50 µs. For the smallest evaluated message size m = 128KiB, where the minimum
collective runtime was ≈ 200µs, we considered this approach to be sufficiently ac-
curate. If the broadcast operation is implemented with hardware multicast, a feature
common to Infiniband systems, then even larger communicators or smaller message
sizes could be evaluated. The entire runtime estimation procedure is described by Al-
gorithm 2.

Instead of a double barrier synchronization mechanism, the benchmark also sup-
ports a window-based approach, such as the one in [40, 39]. However, due to very long
tails in collective operation runtime distributions, when subjected to PAT imbalance,
we found it difficult to fix the window size, such that we can guarantee that all pro-
cesses will have completed the collective operation call before the new window onset.
The solution was to either make time windows very long or to re-synchronize the pro-
cesses after each iteration and re-establish the window. Both solutions were found to
be relatively slow and due to limited computational resources at our disposal, we were
forced to adopt the faster, if less precise, barrier-based benchmarking approach. Yet,
for completeness, we allow our microbenchmark to be configured to either synchronize
the processes with double barrier calls, or with the global clock window-based scheme,
by setting a compile time flag in the configuration file.

In the execution of the microbenchmark, the PAT patterns are computed at the
root and broadcast to all processes in the communicator, prior to collective operation
runtime measurement. To produce imbalanced PATs, the microbenchmark first syn-
chronizes all processes in the communicator, either through a double barrier scheme
or a window-based approach. Then the imbalance is generated through calls to high-
resolution sleep calls, provided by the C++11 standard library, or busy looping for time
ai. In our experiment, we used busy looping to keep process i suspended for time ai.
Finally, the process proceeds to invoke the collective operation.

In this manner, the PATs vectors passed as input are a perfect prediction, and all
the reported results for algorithm Clairvoyant will represent a best case scenario. How-
ever, in Table 5 we present a preliminary comparison, of algorithm Clairvoyant’s per-
formance for PATs prediction using the SMA model (Fig. 5) against the perfectly
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Algorithm 2 Runtime estimation procedure for a problem size m, constant arrival pat-
tern ψ = (a0, ...aP−1), a list of algorithms Av = {A0, ...,An−1} and a list of operators
?v = {?0, ...? f−1}.

Input data of size m at each process in the communicator
One output file for each combining operator, with numIter− 1 recorded observations per
algorithm

L0 For each algorithm Ai ∈Av do

L1 For each combining operator ? j ∈ ?v do

S1 Perform a double barrier

S2 Busy loop for time ai

S3 Start the timer (time ts)

S3.1 Execute the collective operation

S3.2 Stop the timer (time t f )

S4 Report the elapsed time ti = t f − ts

S5 Collect the reported times at the root

S5.1 (Root) Store the time max(ai + ti)−min(a)

S6 If the number of iterations k < numIter goto L0
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Table 5: SMA model predicted PATs vs. true PATs clairvoyancy. Preliminary data collected on
the VSC muk cluster; P = 64, one process per node. Problem size m = 16MiB. Reported values
are the mean accumulated runtime for 100 consequtive reduction operations, in a sample of 5
observations.

Binomial Tree Local Redirect Clairvoyant (SMA) Clairvoyant (true)
13.88 s 13.04 s 12.94 s 12.81 s

predicted PATs. Included in the comparison, are algorithm Binomial Tree and Local
Redirect [28]. The utilized PAT data are from the 100 iteration Helsim trace file de-
picted in Fig. 4 where from the first 64 lines were sampled (due to the limited resources
we had at our disposal on the VSC muk3 cluster machine). In this experiment, the seg-
ment count was set to one (N = 1), to allow for a fair comparison against the Binomial
Tree and Local Redirect algorithms, both of which are designed for atomic input data
only.

The developed microbenchmark can be used to evaluate the performance of any
MPI collective operation. The list of collective operations to benchmark is assembled
at compile time, so adding a new operation requires recompilation. Ditto for combining
operators. The input data type can be specified as any of the predefined MPI datatypes.
All implementations of the reduction operation have to conform to the standard in-
terface, as defined by MPI and are to be written as function templates with two type
parameters: input data type and combining operator type. However, for those algo-
rithms that require side information, using the C++11 std::bind function template
to perform partial function application allows the user to expand the argument list of
reduction operations, while still conforming to the standard interface.

One of the microbenchmarks’s key features is the wide range of supported imbal-
ance patterns. These range from singular imbalance (only one process in the communi-
cator delayed), wherein any one process can be selected for suspension, an alternating
distribution where even processes are delayed for time de and odd processes for time
do, to various types of stochastically generated imbalance patterns (uniform distribu-
tion, normal distribution, gamma distribution and bernoulli distribution). Finally, the
microbenchmark can read a trace file consisting of N lines of P values, where each
line represents one PAT pattern, and subject all the selected algorithms to this PAT se-
quence. Some algorithms, like Radix-k, can be further customized through usage of
custom input files specified as command line arguments.

To use the microbenchmark, the user at a minimum has to specify the problem size,
imbalance pattern, delay magnitude and the number of repetitions as command line
arguments. The program is then passed to mpirun.

As was done in [45] we summarize in Table 6 the common MPI benchmarks found
in the literature, together with the principal statistics they report. A weak point of
the majority of these benchmark suites is the lack of rigorous statistical analysis of

3VSC muk is a tier-1 cluster machine at Flemish Supercomputing Center. It has 528 compute nodes with
two Xeon E5-2670 processors and 64 GiB of RAM memory. The nodes are interconnected with an FDR
Infiniband interconnect in a fat tree topology (1:2 oversubscription).
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Table 6: Overview of statistical methods applied in MPI benchmarks

Benchmark mean min max dispersion metric
mpptest [41] min of means 7
SKaMPI [42] 3 std. error
OSU 3 3 3 7
Intel MPI [38] 3 3 3 7
MPIBlib [31] 3 CI of the mean (95%)
MPIBench [43] 3 3 sub-sampled data
mpicroscope [44] 3 3 3 7
Phloem MPI 3 3 3 7

collected data. One important result of such analysis would be the production of con-
fidence limits for the employed statistics. A common example are interval estimates
for the mean. This can be done by applying a hypothesis test that the population mean
has a specific value µ , against the alternative that it does not have the value µ . This
is done by applying a one-sample Student’s t-test or a z-test depending on sample size
and assumptions about the population distributions. However, when the mean is not a
desirable location estimator, confidence intervals tend to be mathematically difficult to
derive. Then, bootstrap methods can be used to obtain confidence intervals [46].
Fig. 11 shows the distribution of algorithm runtime for problem size m = 128KiB and
balanced PATs. We can observe that most distributions exhibit positive skew. In light
of the fact that the sample median is less susceptible to outliers in data and is a more
efficient estimator of location than the sample mean for data with long tails, we decided
to adopt it as the location estimator in our analysis. This decision was further supported
by bootstrap uncertainty estimates for the mean and median on each of the collected
samples, where the sampling distribution of the median was shown to have a smaller
standard deviation than that of the mean.

In our report of algorithm runtime, we decided to communicate the ratio of the
medians of sampled algorithm runtimes, normalized to algorithm Clairvoyant. As there
is no simple traditional method to compute the significance test for such a statistic,
a resampling permutation test method was used instead. For each sample point of
interest (algorithm, problem size, imbalance), we performed a permutation test with
20000 iterations. Out of all the generated permutations, we counted for each sample
point of interest how many have resulted with ratios higher than those observed. This
gave us an estimated probability of the observed ratio occurring by chance. Then,
for each sample point of interest we reported the highest such probability among the
four algorithms (Clairvoyant is excluded as it is the denominator in the ratios). If the
computed probability p≥ 0.05 then we marked the result as statistically not significant.

A prerequisite to this approach is that the observations are independent and come
from a stationary random generation process. To determine stationarity of random gen-
eration processes, we used simple quantitative methods such as linear fits to quantify
trends and Levene tests to quantify the stationarity of variance. Furthermore, we con-
ducted runs test [46] on all samples to determine the presence of serial correlation in
the gathered data. Table 7 shows the results of the runs test analysis. Autocorrelo-

30



#10 -4
4 6 8 10

0

32

64

Binomial

#10 -4
4 6 8 10

0

32

64

96
Clairvoyant

#10 -4
4 6 8 10

0

32

64

Butterfly

#10 -4
4 6 8 10

0

32

64

96
ParRing

#10 -4
4 6 8 10

0

32

64

96

128

Radix-k

Figure 11: Distribution of algorithm runtime for balanced PATs and problem size m = 128KiB.
Superimposed on top of each histogram is a fitted normal probability density function. In the
plots, the x-axis denotes observed runtime in seconds, while the y-axis denotes the number of
observations per bin

grams and spectral plots can be computed to further verify the presence and nature of
the serial correlation in the data.

6.3. Experiment design

To evaluate algorithm robustness to imbalanced PATs, we selected the PAT pattern
where a single process at rank P−1 was delayed. Proposition 3.7 indicates that this is
where we should expect to observe the largest absorption time for any given absolute
imbalance, and consequently the largest relative speedup for imbalance robust algo-
rithms. In other words, for this PAT pattern, we would expect the ratio A(ψ,A)

tA
to be the

largest.

Table 7: Serial correlation in time series data for each algorithm and each problem size. A runs
test was performed on each sample with the confidence level set to 95%. Each value in the table
reports the ratio of samples that passed the runs test, i.e. where no significant serial correlation
was detected.

Algorithm 128KiB 512KiB 2MiB 4MiB 40MiB
Binomial 0.77 0.52 0.63 0.86 0.76
Butterfly 0.72 1.00 0.77 0.86 0.84
Parallel Ring 0.61 0.52 0.63 0.91 0.76
Radix-k 0.88 0.90 0.95 0.82 0.76
Clairvoyant 0.77 0.76 0.77 0.78 0.84
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The experiment was setup as follows: for each message size m∈ {128 KiB, 512 KiB,
2 MiB, 4 MiB, 40 MiB} a different allocation of P = 128 nodes on the PRACE CURIE
machine was obtained. For each problem size, a set of k absolute imbalances Ii, i ∈
{0 . . .k} was produced so that the magnitudes of these imbalances spanned from 0tC to
anywhere between 2tC and 5tC, where tC denotes the runtime of algorithm Clairvoyant.

Then for each problem size and each imbalance Ii, a PAT ψ was generated, where
process at rank P− 1 = 127 was delayed for time Ii. The experiment then proceeded
in r rounds, where in each round the five algorithms were executed in succession. The
number of rounds r was 256 for the first two problem sizes, and 100 for the remaining.
Input data was of type MPI INT and the utilized combining operator was MPI SUM.
The whole procedure is formalized as Algorithm 2.

Table 8: Optimal number of segments N as determined by the linear model and empirical mea-
surement.

Method 128KiB 512KiB 2MiB 4MiB 40MiB
Linear model 13.2 27.3 54.7 77.39 244.75
Empirical 16 8 16 16 40

The number of segments Nopt for each problem size was determined empirically by
measuring the runtime of algorithm Clairvoyant for all Nopt ∈ {2,4,8,16,32,64,128}
and selecting that N which produced the shortest runtime. For m = 40MiB we added
to the set of potential segment sizes the values {40,80}. The empirically determined
value was significantly different from what the linear model predicted, as can be seen
from Table 8. This is because the parameters β ,γ are not message size invariant. In
fact, the ratio β

γ
grows with decreasing message size due to larger relative weight of

message overheads. This also explains why the empirically determined optimal seg-
ment sizes were smaller than that predicted by the linear model. We conjecture that
a more detailed, functional linear model where parameters β ,γ are expressed as func-
tions of message size might produce better estimates.

7. Results and discussion

As the results show (Fig. 12), algorithm Clairvoyant dominates the surveyed algo-
rithms in performance for all problem sizes and all absolute imbalances. The computed
ratios have been shown by permutation tests to be of very high statistical significance
(for most data points, p ≤ 0.001). While this behaviour was predicted (Fig. 10), in
many cases the observed speedup exceeded the predictions. This is due to shortcom-
ings of the simple linear model where the cost parameters β ,γ are modeled as message
size independent, as discussed in Section 6.3.

Observing the transition from balanced PATs to imbalanced, we see one instance
of order inversion: for m = 4MiB algorithm Parallel Ring falls behind Radix-k for
imbalanced PATs, while it was faster for balanced PATs. In general, however, we
can state that the ordering observed for balanced PATs holds with increasing levels of
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Figure 12: Relative algorithm performance with single delayed process (rank P−1). Statistical
significance of results is reported by plotting computed p-values of permutation tests on the line
y = 1. A downward red triangle indicates that the result does not meet the 95% significance
threshold. Circles denote very high significance levels of p≤ 0.001, while upward triangles and
rhombes denote levels in between as depicted in legend
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Figure 13: Normalized algorithm absorption time with single delayed process (rank P−1).
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imbalance. This would imply that the existing collective operation benchmarks could
be used to determine the best performing algorithm even for imbalanced PATs.

Algorithm Radix-k consistently outperforms Butterfly for all tested problem sizes,
contrary to the linear model prediction. This leads us to believe that latency plays a
smaller role than that used to model the time complexity of algorithm Radix-k. For
m = 40MiB, the runtime of algorithm Parallel Ring is significantly lower than the
prediction.

To understand better how each algorithm responded to PATimbalance, we have
plotted the normalized absorption times in Fig. 13. A surprising result was that the ob-
served normalized absorption for algorithm Clairvoyant was significantly higher than
what we would expect (Fig. 6). For m = 40MiB the maximum observed normal-
ized imbalance IN was 51%, compared to 14.9% the linear model would predict. For
I(ψ) = 60ms, the generated schedule length R = 133. As one of its input parameters,
algorithm Clairvoyant receives the time d required to complete one round of reduc-
tion (i.e. send/receive and combine one segment of size m/N). For m = 40MiB, we
empirically determined that d = 6.43×10−4 s. From proposition 3.7 and the fact that
P = 2,N = 40⇒ R = 40, we can determine whether the schedule length R = 133 is
consistent by verifying that d(133−40) = I(ψ). Since d(133−40) = 0.0598s we can
conclude that the algorithm performed as expected, producing a schedule of minimum
length.

However, the expected time tC(128,ψ) = R · d = 0.0855s is greater than the ob-
served runtime of 0.0747s. From the observed runtime and the fact that I(ψ) =
60ms we can empirically estimate the time required to perform a 2-way reduction as
tC(2,ψ) = 0.0146s. This is considerably shorter than what we would expect: 40 ·d =
0.02572s. It would seem that with only two processes communicating, the network
bandwidth is 176% higher than when 128 processes are communicating concurrently.

The schedule generation time for N = 16,P = 128 was on average 0.55ms. Ex-
trapolating the empirically determined schedule computation time (Fig. 9), leads us to
conclude that in real time usage scenarios, the algorithm will be competitive whenever
m≥ 1MiB. The PAT aware execution of algorithm Clairvoyant is only possible in iter-
ative settings where the PAT patterns do not significantly change between iterations. In
such settings, the reduction schedule can be computed once and reused multiple times
and the schedule generation cost fully amortized.

7.1. Catastrophic slowdown

An interesting phenomenon was observed with algorithm Parallel Ring for m =
128KiB. For I(ψ) ≥ 0.2ms the algorithm experienced a catastrophic slowdown of
two orders of magnitude. Its time series data oscillated between high and low values,
with excursions into high value territory becoming more prominent with increasing
absolute imbalance (Fig. Appendix D). We reproduced this behaviour by re-running the
experiment for m = 128KiB on a different day with a different allocation of compute
nodes.

Autocorrelograms of the time series data (Appendix E) depict an alternating se-
quence of positive and negative spikes, slowly decaying to zero and well into statis-
tically significant territory. This makes for a strong argument that the observed phe-
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nomenon has a systematic cause, either because of some system interference or the
underlying nature of the native MPI implementation.

As of the time of writing this paper, we have no conclusive explanation for the
observed phenomenon. The fact that this behaviour was observed only for the prob-
lem size m = 128KiB, but not for larger problem sizes indicates that the reason might
lie in the smaller segment size of B = 1KiB and the possibility that the former were
communicated with the eager protocol, while the latter with the rendezvous commu-
nication protocol. In the former case, for sufficiently large absolute imbalances, up to
P−1 messages of size B = m/P would be sent from process rank 0 to rank P−1. We
conjecture that the manner in which these unexpected receives were handled by the
implementation could explain the observed phenomenon.

8. Conclusion

This paper has provided a much needed insight into the performance of MPI reduc-
tion algorithms under the presence of imbalanced process arrival times and introduced
a novel segmenting reduction algorithm designed with a high degree of imbalance re-
siliency. Experimental results show that this algorithm universally outperforms all se-
lected reduction algorithms in this study. For some problem sizes, the algorithm was
found to be nearly twice as fast as the next fastest algorithm. The algorithm is con-
tingent on full knowledge of process arrival times and constructs the communication
schedule prior to the execution of the reduction operation. If the schedule generation
is performed at the time the collective operation is invoked, then the speedup obtained
outweighs the construction costs for problem sizes larger or equal to 1 MiB. Otherwise,
the algorithm can be used in iterative settings where the schedule can be precomputed
once and reused multiple times.

Our findings indicate that, excluding the Clairvoyant algorithm, reduction algo-
rithms have little to no resiliency to skewed PATs. An important result is that the order-
ing of algorithm runtime observed for balanced PATs appears to hold with increasing
levels of imbalance. This is reassuring, as all known benchmarks used to optimize MPI
collective operation performance ensure that PATs are balanced. However, one algo-
rithm, Parallel Ring, exhibited a catastrophic slowdown of 2 orders of magnitude, for
problem size m = 128KiB and increasing magnitudes of imbalance. This result was
reproduced by re-running the experiment on a different day and a different allocation
of compute nodes.

This paper has important implications on HPC applications, as it has shown that
an imbalance resilient reduction algorithm can be produced to consistently outperform
reduction algorithms found in library implementations of the MPI programming in-
terface. It would be interesting to investigate whether a dynamic imbalance robust
algorithm for non-atomic input data could be devised, similar to that of Local Redi-
rect [28]. The re-ordering of the communication graph could be performed similar to
the principle of desynchronization algorithms used in wireless networks [47, 48].
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