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The predominant learning algorithm for Hidden Markov Models (HMMs) is local search heuristics, of which the Baum-Welch
(BW) algorithm is mostly used. It is an iterative learning procedure starting with a predefined size of state spaces and randomly
chosen initial parameters. However, wrongly chosen initial parameters may cause the risk of falling into a local optimum and a low
convergence speed. To overcome these drawbacks, we propose to use amore suitablemodel initialization approach, a Segmentation-
Clustering and Transient analysis (SCT) framework, to estimate the number of states andmodel parameters directly from the input
data. Based on an analysis of the information flow throughHMMs, we demystify the structure ofmodels and show that high-impact
states are directly identifiable from the properties of observation sequences. States having a high impact on the log-likelihoodmake
HMMshighly specific. Experimental results show that even though the identification accuracy drops to 87.9%when randommodels
are considered, the SCTmethod is around 50 to 260 times faster than the BW algorithm with 100% correct identification for highly
specific models whose specificity is greater than 0.06.

1. Introduction

Hidden Markov Models (HMMs) [1] are one of the statistical
modelling tools showing great success and have been widely
used in diverse application fields such as speech processing
[2], machine maintenance [3], acoustics [4], biosciences [5],
handwriting and text recognition [6], and image processing
[7]. Despite the merit of simplicity and learning capabilities,
HMMs are still facing open problems such as learning
effectiveness and efficiency.

There are two major problems in HMM learning: (1)
choosingmodel size (number of hidden states); (2) estimating
model parameters. Regarding the first problem, state-of-the-
art approaches normally train multiple HMMs with different
numbers of states and the best one is selected using specific
criteria (e.g., the Akaike information criterion (AIC) [8], the
Bayesian Information Criterion (BIC) [9]). In order to tackle
the second problem, traditional learning algorithms such as
the Baum-Welch (BW) algorithm are used to iteratively opti-
mizemodel parameters starting from 𝑎, most often randomly
chosen, initial set of parameters. Such iterative optimization

heuristic approaches are prone to local optima. Therefore,
multiple runs (typically, 10 [10, 11] or 20 [12, 13]) with
several different initializations are performed and the optimal
one of these is chosen. However, such iterative approaches
with multiple trainings have significant drawbacks of time
inefficiency and a high computational cost. Hsu et al. [14]
introduced a noniterative method employing spectral-based
algorithm for learning HMMs. It is simple and employs only
a singular value decomposition and matrix multiplications.
Nonetheless, it is evaluated in [15] and shown to be only
applicable to identify systems when relatively few observa-
tions are available but fail completely for systems when the
available observations are large. Fox et al. [8] proposed a
sticky HDP-HMM which is a nonparametric, infinite-state
model that automatically learns the size of state spaces and the
smoothly varying dynamics robustly. However, this approach
is computationally prohibitive when datasets are very large
[9]. Therefore, in spite of the limitations, classical iterative
approaches are still widely used to estimate model size and
model parameters, for lack of alternatives.
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The aim of this paper is to improve the effectiveness and
efficiency in model learning compared to the conventional
BW algorithm, in the sense of accurately and quickly finding
the correct model. One of the HMM assumptions is that the
observed data is only dependent on the hidden states given
the model. Therefore, the observed data often reflects the
structure and statistical properties of the model, which moti-
vates us to introduce a data-driven preestimation procedure
to estimate the number of states and choose proper initial
model parameters.

We firstly provide insight into the essential features of an
HMMmodel that help to improve the model’s expressiveness
as a stochastic process [16]. This is conducted by inspecting
the role of each hidden state in generating observation
distributions as well as providing information on the model
structure. Hidden states with a large influence on observation
sequences increase the value of a model more than those
without or with low influence. By analysing how the infor-
mation flows through the HMMs, we determine which cases
make a state have a high impact. As discussed in Section 3,
persistent and/or transient-cyclic states appear to be high-
impact states. Moreover, a model with high-impact states is
highly specific and will be easy to identify. We introduce the
term specificity as the minimum model distance between a
model and the best of HMMs with one state less. On the
contrary, some HMMs are in principle unidentifiable which
has been proved in [17] by linking the learning of HMMs to
the nonlearnability results of finite automata. Furthermore,
there aremodels in between the learnable and the unlearnable
HMMs, which are hard to learn from observation sequences.
Such HMMs contain complex parameter configurations with
low specificity and low-impact states. Overall, experimental
results show that a better number of states and proper initial-
ization learned by the proposedmethod increase the learning
speed and accuracy of highly specificHMMs compared to the
traditional Baum-Welch algorithm.

The remainder of the paper is organized as follows: in
Section 2, the preliminaries about HMMs and the Baum-
Welch learning problems are briefly reviewed, followed by
the concepts and definitions of model characteristics such as
model identifiability, model equivalence, and the minimality
of models. In Section 3, the impact of states on model speci-
ficity is studied through the information analysis. Followed
by the approximate identification framework in Section 4,
experiments and results are discussed in Section 5. Finally,
conclusions are given in Section 6.

2. Preliminaries

An HMM [1] is a doubly stochastic process where the
underlying process is characterized by a Markov chain
and unobservable (hidden) but can be observed through
another stochastic process which emits the sequence of
observations. Let 𝑄 denote the number of states and𝑀 the
number of observation symbols. Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑄} and𝑉 = {V1, V2, . . . , V𝑀} denote the set of states and the set
of observations, respectively. Using 𝑞𝑡 and 𝑜𝑡 to represent
the state and the emitted observation at time 𝑡, respectively,
the state and observation sequences are denoted by vectors

q1:𝑡 = 𝑞1, 𝑞2, . . . , 𝑞𝑡 and o1:𝑡 = 𝑜1, 𝑜2, . . . , 𝑜𝑡, where 1 ≤ 𝑡 ≤ 𝑇,
and𝑇 is the number of states or observations in the sequence.
A discrete time HMM model can be characterized by the
quintuple 𝜆 = (𝜋, 𝑄,𝑀,A,B) [1]: the initial state probability
distribution is a column vector 𝜋 = {𝜋𝑖}, where the 𝑖th
element is 𝜋𝑖 = 𝑃 (𝑞1 = 𝑠𝑖) 1 ≤ 𝑖 ≤ 𝑄 (1)

the state transition probability distribution matrix is A ={𝑎𝑖𝑗} ∈ R𝑄×𝑄
+ , where the 𝑖, 𝑗th element is

𝑎𝑖𝑗 = 𝑃 (𝑞𝑡+1 = 𝑠𝑗 | 𝑞𝑡 = 𝑠𝑖) , 1 ≤ 𝑖, 𝑗 ≤ 𝑄, (2)

and the observation probability distribution matrix is B ={𝑏𝑖𝑘} ∈ R𝑄×𝑀
+ , where the 𝑖, 𝑘th element is𝑏𝑖𝑘 = 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) , 1 ≤ 𝑖 ≤ 𝑄, 1 ≤ 𝑘 ≤ 𝑀. (3)

To note that the state transition probabilities of state 𝑠𝑟
include both incoming and outgoing probabilities, the incom-
ing state transition probabilities of 𝑠𝑟 are the 𝑟th column
vector of A, denoted as

a:𝑟 = {𝑎1𝑟, 𝑎2𝑟, . . . , 𝑎𝑄𝑟} = {𝑎𝑖𝑟}𝑄𝑖=1 ∈ R𝑄×1
+

(4)

and the outgoing state transition probabilities of 𝑠𝑟 is the 𝑟th
row vector of A, denoted as

a𝑟: = {𝑎𝑟1, 𝑎𝑟2, . . . , 𝑎𝑟𝑄} = {𝑎𝑟𝑖}𝑄𝑖=1 ∈ R1×𝑄
+ , (5)

where 1 ≤ 𝑟 ≤ 𝑄 and R+ represents the set of nonnegative
real numbers.

2.1. The Baum-Welch Learning Algorithm. One of the three
basic problems for HMMs is the learning problem [1],
which is often solved by an Expectation-Maximization (EM)
algorithm [18], named the Baum-Welch algorithm [19, 20].
Starting with an initial guess of the model 𝜆0 at random,
the model parameters are iteratively reestimated as long
as the new model has an increased likelihood compared
to the previous one; that is, 𝑃�̃�(o1:𝑇) ≥ 𝑃𝜆(o1:𝑇), where𝑃𝜆(o1:𝑇) and 𝑃�̃�(o1:𝑇) represent the likelihood values of an
observation sequence o1:𝑇 generated by the previous model 𝜆
and the newly updated model �̃�, respectively. This procedure
continues until the likelihood converges to a stationary
point. However, the BW algorithm suffers from the problem
of getting stuck at a local optimum if the initial model
parameters are not well chosen, which inspires this study to
search for a better estimation of the initial parameters.

For the analysis, we need to calculate the likelihood of
observations given the model, that is, 𝑃𝜆(o1:𝑡). It can be
written by the use of the projection operations; see, for
instance, [16, p. 18]. Let 𝛼𝑡 = {𝛼𝑡(𝑖)}𝑄𝑖=1 ∈ R𝑄×1

+ and 𝜏𝑡 ={𝜏𝑡(𝑖)}𝑄𝑖=1 ∈ R𝑄×1
+ , where

𝜏𝑡 (𝑖) = {{{
𝑃𝜆 (𝑞𝑡 = 𝑠𝑖) 𝑡 = 1𝑃𝜆 (𝑞𝑡 = 𝑠𝑖, o1:𝑡−1) 1 < 𝑡 ≤ 𝑇,

𝛼𝑡 (𝑖) = 𝑃𝜆 (𝑞𝑡 = 𝑠𝑖, o1:𝑡) 1 ≤ 𝑡 ≤ 𝑇;
(6)
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thus

𝛼𝑡 = B𝑜𝑡
𝜏𝑡,

𝜏𝑡+1 = A𝛼𝑡, (7)

where 𝑜𝑡 = V𝑘 ∈ 𝑉, 1 ≤ 𝑡 ≤ 𝑇 and B𝑜𝑡
= diag{𝑏1𝑘, 𝑏2𝑘, . . . ,𝑏𝑄𝑘} ∈ R𝑄×𝑄

+ which denotes the diagonal matrix of which the
diagonal elements are the 𝑘th column of B.

Therefore, the likelihood of the observations given the
model can be expressed as

𝑃𝜆 (o1:𝑡) = 𝑃𝜆 (𝑜1) 𝑇∏
𝑡=2

𝑃𝜆 (𝑜𝑡 | o1:𝑡−1) = 𝜏T𝑡 B𝑜𝑡
e, (8)

where e is a column vector of length 𝑄 with all entries
equal to 1; that is, e = [1 1 ⋅ ⋅ ⋅ 1]T = 1𝑄×1. For the
convenience of calculations, the logarithm of likelihood log-
likelihood (LL) is often used rather than the likelihood.
Moreover, in this dissertation, we use unit log-likelihood, an
averaged LL, to present the LL per single observation, that
is, (1/𝑇) log𝑃𝜆(o1:𝑇), where 𝑇 is the number of observations.
Within this paper, the term log-likelihood is used to represent
unit log-likelihood for simplicity.

2.2. Definitions of Model Characteristics. In this paper, we
determine the learnability of HMMs through model iden-
tifiability. If two models are equivalent, the true model
cannot be uniquely identified. Hence we firstly introduce
the definition for model equivalence. Note that the HMM
learning can be considered as a probability distribution
specific problem,where everyHMMhas to be identified from
the observations generated according to its own likelihood
distribution. Therefore, the equivalence of HMMs can be
defined based on their observation likelihood distributions
as follows.

Definition 1 (HMM equivalence). Two HMM models 𝜆 and�̃� are equivalent if and only if both models have the same
observation emission probabilities (i.e., likelihood distribu-
tion over time series) for every observation sequence o1:𝑡𝑃𝜆 (o1:𝑡) = 𝑃�̃� (o1:𝑡) ; (9)

alternatively,

𝑃𝜆 (𝑜1) = 𝑃�̃� (𝑜1)𝑃𝜆 (𝑜𝑡 | o1:𝑡−1) = 𝑃�̃� (𝑜𝑡 | o1:𝑡−1) ∀𝑡, 2 < 𝑡 ≤ 𝑇. (10)

Note that the observation probabilities 𝑃𝜆(o1:𝑡) can
remain the same by permuting the states of 𝜆 since the states
can be arbitrarily labeled. The model �̃� with permuted states
is called a trivial equivalent model of the original model 𝜆
as defined in [21]. We consider trivial equivalent models as
the same model. In order to compare the models in later
sections, we need to label states in a unique way such that
corresponding states receive the same label. Therefore we
define a process to normalize HMMs as follows.

Definition 2 (HMM normalization). For each state 𝑠𝑖, a score
is calculated by𝜛 = ∑𝑀

𝑘=1 𝑏𝑖𝑘𝑘. Based on the score, we sort the
states in ascending order.

Additionally, we can always construct an equivalent
HMM with additional state numbers [22]; hence, in this
paper, we consider HMM identifiability only when it is
minimal, as defined below.

Definition 3 (HMMminimality). An HMM 𝜆 = (𝜋, 𝑄,𝑀,A,
B) is minimal if and only if it has equal number of states to
or fewer number of states than any other equivalent model�̃� = (�̃�, 𝑄, �̃�, Ã, B̃); that is,𝑄 ≤ 𝑄. Model 𝜆 is called a simpler
model of �̃� if they are equivalent and 𝑄 < 𝑄.
Definition 4 (HMM identifiability). An HMM 𝜆 is identi-
fiable if and only if it is minimal and there does not exist
any nontrivially equivalent model �̃� with an equal number of
states; that is, 𝑄 ̸= 𝑄.

Moreover, in this study we only address the identification
of stationary (or homogeneous) HMMs where the prior
probabilities can be eliminated in calculations. The initial
state prior probability distribution 𝜋 has an influence on
learning only at the beginning of an observation sequence
and its impact on large sequences vanishes over time and thus
can be excluded for learning HMMs in practice. A stationary
HMM is defined as follows.

Definition 5 (stationary HMM). An HMM is stationary if its
state distribution remains the same at every time instant; that
is, 𝜋(1) = 𝜋(2) = ⋅ ⋅ ⋅ = 𝜋(𝑡) = 𝜋, where 𝜋 equals the
equilibrium state distribution; that is, AB𝑜𝑡

𝜋 = 𝜋 [23, p.
4902].

The element 𝜋(𝑡) is a column vector with 𝜋(𝑡) = {𝑃(𝑞𝑡 =𝑠𝑖)}𝑄𝑖=1 ∈ R𝑄×1
+ , 1 ≤ 𝑡 ≤ 𝑇, and eT𝜋(𝑡) = 1. The element AB𝑜𝑡

represents the probability of going from state 𝑠𝑖 to state 𝑠𝑗
while emitting the observation V𝑘 by state 𝑠𝑖, that is, 𝑃(𝑞𝑡+1 =𝑠𝑗, 𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖).

Our proposed learning approach is based on the proper-
ties of observation sequences that make a state have a large
impact on the model. To describe the degree of influence that
a state can make on a model, we define a new term called
specificity S(𝜆) as the distance between model 𝜆 and the best
model with one state less. By best, we mean that it matches
the most on observations generated by the original model 𝜆
among all the one-state-fewer models, which also means that
it has the minimum model distance to the original model 𝜆.
A general definition ofmodel distance is as follows.

Definition 6 (HMM model distance). A model distance
between two HMMs 𝜆1 and 𝜆2 is the difference of the unit
log-likelihood of an observation sequence o𝜆21:𝑇 [1, p. 271]:

D (𝜆1, 𝜆2) = E [ 1𝑇 (log𝑃𝜆2 (o𝜆21:𝑇) − log𝑃𝜆1 (o𝜆21:𝑇))] , (11)
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where E[⋅] refers to the expectation operator, o𝜆21:𝑇 is an
observation sequence generated bymodel𝜆2, and𝑇 is the size
of the sequence. Equation (11) is basically a measure of how
well model 𝜆1 matches observations generated by model 𝜆2,
in comparison with how well model 𝜆2 matches observations
generated by itself [1]. The specificity of a model can be then
defined as follows.

Definition 7 (HMM specificity). The specificity of an HMM 𝜆
with 𝑄 states is
S (𝜆)
= min

�̃�∈Λ(𝑄−1)
(E [ 1𝑇 (log𝑃𝜆 (o𝜆1:𝑇) − log𝑃�̃� (o𝜆1:𝑇))]) , (12)

whereΛ(𝑄−1) represents the set of allHMMswith𝑄−1 states
and 𝑇 is the length of an observation sequence o𝜆1:𝑇 generated
by 𝜆. We denote the optimal model �̃� with the minimum
distance to model 𝜆 in (12) as 𝜆𝑄−1(𝜆𝑄).

We have to note that, to use Definitions 6 and 7 in prac-
tice, we will calculate the expectation with a single generated
observation sequence. We assume that this sequence is long
enough such that it is a typical sequence and gives a stable
value which comes close to the expected value and as such is
independent of the exact sequence, as is done by Rabiner [1].

To use the above definitions on a limited set of observa-
tion sequences, we have to rely on an approximate equiva-
lence approach. In order to compare the HMMs according to
the likelihood probability 𝑃𝜆(o1:𝑇) given a set of observation
sequences o1:𝑇, we have to define a threshold on the model
distance to decide whether two HMMmodels are equivalent
or not.

Definition 8 (distance threshold of equivalent HMMs). The
distance threshold is defined as(−3𝜎, +3𝜎) , (13)

where N(𝜇, 𝜎2) is the asympototic distribution of log-
likelihood (1/𝑇) log𝑃𝜆(o(𝜆,𝑖)1:𝑇 ) with (𝑇 → ∞), the ele-
ment o(𝜆,𝑖)1:𝑇 , (𝑖 = 1, 2, . . . , 𝑛) represents randomly generated
sequences by model 𝜆, 𝑇 is the length of an observation
sequence, and 𝑛 is the total number of observation sequences
[24]. Duan et al. [24] prove that the distribution of the
log-likelihood (1/𝑇) log𝑃𝜆(o(𝜆,𝑖)1:𝑇 ) can be approximated by
a normal distribution N(𝜇, 𝜎2). According to the “three-
sigma” rule, the interval (𝜇 − 3𝜎, 𝜇 + 3𝜎) contains 99% of
the whole distribution. Thus a sequence o(𝜆,𝑖)1:𝑇 has a 99%
certainty of being generated by the model �̃� if its log-
likelihood (1/𝑇) log𝑃�̃�(o(𝜆,𝑖)1:𝑇 ) ∈ (𝜇 − 3𝜎, 𝜇 + 3𝜎), ∀𝑖. As
defined in Definition 1, two models are equivalent if and
only if both models have the same likelihood distribution
on observations. Hence for any sequence o(𝜆,𝑖)1:𝑇 generated
by model 𝜆, if �̃� has a log-likelihood within the interval,
that is, (1/𝑇) log𝑃�̃�(o(𝜆,𝑖)1:𝑇 ) ∈ (𝜇 − 3𝜎, 𝜇 + 3𝜎), ∀𝑖, we can
say the two models are approximately equal. Therefore, the
model distance threshold of equivalence is approximated as(−3𝜎, +3𝜎) of the reference model for practical use.

As defined in Definition 3, a model isminimal if and only
if it has equal number of states to or fewer number of states
than any other equivalent models. In order to check model
minimality in practice, we verify if there exists no one-state
simplermodel �̃�which is equivalent tomodel 𝜆, in particular,
to verify if the minimum distance between �̃� and 𝜆 (i.e., the
specificity of �̃�; see Definition 7) is outside the threshold
of equivalent models defined in Definition 8. Therefore, the
practical condition to check model minimality is defined as
follows: a model 𝜆 can be approximately taken as minimal
if the absolute value of its specificity is outside the distance
threshold of 3-sigma; that is, |S(𝜆)| > 3𝜎.
3. Impact of States on Observation Likelihood

We start the study through an information flow analysis as to
see the impact of different types of states onmodel specificity.

3.1. Information Flow Analysis. Our aim is to understand
which parameters make an HMM have a higher specificity.
However, an analytical equation for the specificity function
S(𝜆) requires us to know the optimal one-state-simpler
model 𝜆𝑄−1(𝜆𝑄), which is still an open problem. This leads
us to an alternative approach by analysing state properties
of models. In the following analysis, we will study which
properties make up a high-impact state and which do not. A
high-impact state makes itself more specific with a significant
influence on 𝑃𝜆(o1:𝑡); thus it emits relatively unique patterns
of observation sequences which can be distinguished from
other states. Using this analysis, we will in this paper propose
a framework to identify the high-impact states.

To study what influences the specificity of an HMM, we
analyse the impact of a state on the likelihood 𝑃𝜆(o1:𝑡) and
how it contributes toS(𝜆) as follows. Consider 𝑃𝜆(𝑜𝑡+1 | o1:𝑡)
in (10). It can be seen as a probability used in predicting
the future from the past and it represents the information
flow from the past to the future. Hence we will analyse the
contribution of a specific state to this probability. There are
three cases whereby the probability of the state 𝑞𝑡 plays a role
in the information flow, as shown in Figure 1:

(a) The present state probability depends on the previous
state probability and partly determines the observa-
tion probability 𝑃𝜆(𝑜𝑡 | o1:𝑡−1).

(b) The present state probability depends on the observa-
tions and determines the succeeding state probability.
The observation probability𝑃𝜆(𝑜𝑡+1 | o1:𝑡) depends on𝑃𝜆(𝑞𝑡 | o1:𝑡) which is updated with the knowledge of𝑜𝑡.

(c) The present state probability is determined by the
past state probability and affects the future state
probability.

3.2. High-Impact States. We now investigate the high-impact
states on likelihood 𝑃𝜆(o1:𝑡), more specifically on the speci-
ficity S(𝜆). Such states should have a high and unique impact
on the likelihood where high means a high information flow
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Figure 1: Role of a state in the likelihood.

passing from the past to the future states and unique ensures
that no other states can fill in the same role, such that it cannot
be mimicked by other states either with combined similar
probabilities or emitting similar observation probabilities.
For instance, a state with a probability of 0.5 can bemimicked
by a combination of two states with probabilities of 0.1
and 0.9, respectively; or a state with observation emission
probabilities of 0.5 is also not unique. Note that a relatively
high or low probability is more difficult to be mimicked
than 0.5 in the previous examples. Hence for the three cases
outlined in Figure 1, the state plays an intermediate role in
predicting the future based on the past; we can define the
following conditions for high-impact state, respectively:

(a) (1) The incoming transition probabilities a:𝑟 (see (4))
of state 𝑠𝑟 at time 𝑡 are maximal or minimal; that is,𝑎𝑖𝑟 ≫ 𝑎𝑖𝑞 ‖ 𝑎𝑖𝑟 ≪ 𝑎𝑖𝑞, ∀𝑞 ̸= 𝑟, 1 ≤ 𝑖 ≤ 𝑄; (2) state 𝑠𝑟
has a dominant observation V𝑘 at time 𝑡, meaning the
observation probability 𝑏𝑟𝑘 (see (3)) is maximal; that
is, 𝑏𝑟𝑘 ≫ 𝑏𝑞𝑘, ∀𝑞 ̸= 𝑟.

(b) (1) The outgoing transition probabilities a𝑟: (see (5))
of state 𝑠𝑟 at time 𝑡 are maximal or minimal; that is,𝑎𝑟𝑖 ≫ 𝑎𝑞𝑖 ‖ 𝑎𝑟𝑖 ≪ 𝑎𝑞𝑖, ∀𝑞 ̸= 𝑟, 1 ≤ 𝑖 ≤ 𝑄; (2) state𝑠𝑟 has a dominant observation V𝑘 at time 𝑡; refer to
condition a(2).

(c) Refer to conditions a(1) and b(1).

For high specificity, the above conditions should be
met for all states of a model. Note that these conditions
are based on state transition and observation probabilities.
Regarding transition probabilities, a highly specific HMM
should contain persistent and/or transient-cyclic states, as
defined below:

(i) A persistent state is a state with a higher self-transition
probability than the probabilities to transit to other
states. When all states of an HMM are persistent, the
HMM remains for a certain period in one state before
changing into another state. Such HMM is called a
persistent HMM.

(ii) A transient state, on the other hand, has a lower
self-transition probability. A transient-cyclic state has
one specific incoming transition probability which
is high and dominant and one outgoing transition
probability which is high.When all states of an HMM
are transient-cyclic, the HMM flips from one state
to another, mostly following a certain pattern (e.g.,𝑠1 → 𝑠2 ⋅ ⋅ ⋅ → 𝑠𝑄 → 𝑠1 → 𝑠2 ⋅ ⋅ ⋅ ). Such HMM is

called a transient-cyclic HMM. Otherwise, it is called
a transient-acyclicHMM.

(iii) When an HMM contains both persistent and
transient-cyclic states, we call it a hybrid HMM.

Secondly, regarding observation probabilities, a highly spe-
cific HMM should contain privileged states, which is defined
as follows:

A privileged state is a state with at least one dominant
observation probability.

HMMs containing only privileged states are called privileged
HMMs. This is possible when the number of observations is
larger than the number of states; that is,𝑀 ≥ 𝑄.

Considering both transition and observation probabili-
ties, we define a highly specificHMM as an HMM containing
only persistent states and/or transient-cyclic states, which
will be shown as identifiable from observation sequences.
Note that it is impossible to identify all minimal HMMs,
especially when the influence of some states on a model is
low, in the sense that such states can be neglected and the
resultant simpler model is comparable to a complex one. In
order to learn a minimal identifiable HMM, we propose in a
later section an effective and efficient model approximation
method which identifies persistent states with segmentation
and clustering methods and transient-cyclic states with a
transient analysis based on the following theorem.

Theorem 9. The presence of transient-cyclic states with dom-
inant observations can be identified as follows: for values of𝑘, 𝑙, 𝑚 ∈ [1,𝑀], 𝑘 ̸= 𝑙 ̸= 𝑚, if 𝑃(𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙) > 𝜉
and 𝑃(𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) > 𝜉, where 0 ≤ 𝜉 ≤ 1, 𝑃(∗)
represents the relative frequency (i.e., the ratio of the number of
times) of event ∗ occurring in the observed sequence, which is
also the predicted probability of the occurrence of event ∗; then
forℏ (𝑘, 𝑙, 𝑚)

= 𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙) 𝑃 (𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚)𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) , (14)

(a) if ℏ ≈ 1, that is, ℏ ∈ [1−𝜖, 1+𝜖], 𝜖 ≈ 0, the triple𝑃(𝑜𝑡 =
V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) does not reveal hidden
transient-cyclic states and thus it can be modelled by
a 1-order Markov model,

(b) if ℏ ̸≈ 1, the triple 𝑃(𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚)
reveals that hidden transient-cyclic states are present:
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(i) If ℏ < 1−𝜖, the triple reveals states with dominant
observations.

(ii) If ℏ > 1+𝜖, the triple reveals states with dominant
observations and an extra mixing state.

The proof is in Appendix A.
Thedefinitions of aMarkovmodel and amixing state used

in the theorem are given as follows:

(i) A Markov model is a stochastic process that is char-
acterized by a Markov chain. It models the observed
states with a random variable which satisfies the
Markov property; that is, the distribution of the
current state depends only on that of the previous
state instead of the whole historical states. The state
transition probability distribution and the initial state
probability distribution are denoted by the same
expressions as the HMM defined previously. The
model can be written as 𝜆 = (𝜋,A).

(ii) A mixing state is a state which outputs the same
observation probabilities as a mixture of other states.
HMMmodels containing mixing states are problem-
atic, since one state has the same output distribution
as a convex mixture of some other states’ output
distribution; therefore it is difficult to distinguish
the ground truth state between a single state and a
mixture of several states [14].

3.3. Equivalent States. Nowwe try to understandwhen a state
has zero impact on the specificity such that in the extreme
case a simpler HMM exists with the same distributions.
Considering the information flow past → state → future,
for the first arrow, the influence of a state is negligible when
(1a) 𝑃(state = 𝑠𝑟 | past) is close to zero; (1b) the state
has an equal influence as another state if the probability
equals that of another state; or (1c) the influence of the state
can be mimicked by the other state if the probability is
constant. Note that if it is neither constant nor the same as
another state, the state probability will fluctuate which makes
that its influence cannot be incorporated into that of other
states. For the second arrow, the influence of the state can be
incorporated into that of other states if (2a) 𝑃(future | state =𝑠𝑟) is the same as the probabilities of another state or (2b) the
probability distribution is not dominant.

In case (1a) the state plays no role and can be removed,
in cases (1b) and (2a) the state can be merged with a similar
state, and in cases (1c) and (2b) the influence of the state can
be “taken over” by some of the remaining states. This leads
to the conditions for eliminating redundant (i.e., equivalent)
states as shown in Table 1. Note that the difference between
“removal” and “taken over” is that, by removing a state, its
information is removed together with the state, while “taking
over” a state means that even though the state is deleted, its
information stays and is passed to other states instead.

Based on the conditions of equivalent states defined in
Table 1, we now can formalize the results of our analysis in
sufficient conditions for nonminimality HMMs as follows.

Table 1: Conditions on a state 𝑟 (1 ≤ 𝑟 ≤ 𝑄) to achieve minimality
through the removal of the state, the merging with another state, or
the adjustment of the probabilities by some other states such that the
influence is “taken over.”

State reduction State conditions
Removal (1a) 𝑎𝑖𝑟 = 0, ∀𝑖 ∈ [1, 𝑄]
Merge (1b) 𝑎𝑖𝑟 = 𝑎𝑖𝑞, ∀𝑞 ̸= 𝑟, ∀𝑖 ∈ [1, 𝑄]

(2a) 𝑎𝑟𝑖 = 𝑎𝑞𝑖, ∀𝑞 ̸= 𝑟, ∀𝑖 ∈ [1, 𝑄]
Taken over (1c) 𝑎𝑖𝑟 = 𝐶, ∀𝑖 ∈ [1, 𝑄], 𝐶 is constant

(2b) non dominant 𝑏𝑟𝑘, ∀𝑘 ∈ [1,𝑀]
Theorem 10. A stationary HMM is not minimal if one of the
following conditions holds:

(i) The HMM contains a state 𝑟 that has zero incoming
state transition probabilities; that is, 𝑎𝑖𝑟 = 0, ∀𝑖 ∈[1, 𝑄].

(ii) The HMM contains two states 𝑞 and 𝑟 that have the
same state transition probabilities; that is, 𝑎𝑖𝑞 = 𝑎𝑖𝑟 and𝑎𝑞𝑖 = 𝑎𝑟𝑖, ∀𝑖 ∈ [1, 𝑄].

(iii) The HMM contains two states 𝑞 and 𝑟 that have the
same observation probabilities 𝑏𝑞𝑘 = 𝑏𝑟𝑘, ∀𝑘 ∈ [1,𝑀]
and meets one of the following conditions: (1) they have
the same incoming state transition probabilities; that is,𝑎𝑖𝑞 = 𝑎𝑖𝑟, ∀𝑖 ∈ [1, 𝑄]; (2) they have the same outgoing
state transition probabilities; that is, 𝑎𝑞𝑖 = 𝑎𝑟𝑖, ∀𝑖 ∈[1, 𝑄]; or (3) 𝑎𝑖𝑞 = 𝑎𝑖𝑟 and 𝑎𝑞𝑖 = 𝑎𝑟𝑖, ∀𝑖 ∈ [1, 𝑄]\{𝑞, 𝑟}.

(iv) The HMM has two observation values (𝑀 = 2) and
contains a state 𝑟 that has constant incoming state
transition probabilities; that is, 𝑎𝑖𝑟 = 𝐶 and for all 𝑘,𝑟 has nondominant observation probabilities; that is,𝑏𝑟𝑘 < 𝑏𝑖𝑘, ∀𝑖 ∈ [1, 𝑄] \ 𝑟, ∀𝑘 ∈ [1,𝑀].

The proof is in Appendix B.

3.4. Low-Impact States. Unlike high-impact or equivalent
(zero-impact) states, some states have larger-than-zero but
very low impact, whichmakes them hard to learn. Such states
are called low-impact states. HMMs containing these states
are called hard to learnHMMs, as will be shown later.

Since low-impact states are in between high-impact and
equivalent states, they meet a combination of partial condi-
tions defined for both cases. As introduced in Section 3.2
for high-impact states, a learnable HMMs should contain
only persistent and/or transient-cyclic states with privileged
observations, while an unlearnable HMMs contains states
which contains one or two states under conditions defined in
Theorem 10. Therefore, combined partial conditions of both
can be defined for hard to learnHMMs.

An HMM is hard to learn if it contains mostly persistent
or transient-cyclic states with privileged states with dominant
observations and is also under one of the following condi-
tions:

(i) There exists a mixing state 𝑟 whose observation dis-
tribution is a mixture of the observation distributions
of two other states 𝑞 and 𝑘; that is, 𝑏𝑟𝑗 = (𝑏𝑞𝑗 + 𝑏𝑘𝑗)/2,
where 𝑞, 𝑟, 𝑘 ∈ [1, 𝑄], ∀𝑗 ∈ [1,𝑀].
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Figure 2: Learnability versus specificity of HMMs.

(ii) There exists a state 𝑟 with constant incoming tran-
sitions, self-included; that is, 𝑎𝑖𝑟 = 1/𝑄, where 𝑟 ∈[1, 𝑄], ∀𝑖 ∈ [1, 𝑄].

(iii) There exists a state 𝑟 with constant incoming transi-
tions, self-excluded; that is, 𝑎𝑖𝑟 = (1 − 𝑎𝑟𝑟)/(𝑄 − 1),
where 𝑟 ∈ [1, 𝑄], ∀𝑖 ∈ [1, 𝑄] \ 𝑟.

(iv) There exists a state 𝑟 with constant outgoing transi-
tions, self-included; that is, 𝑎𝑟𝑖 = 1/𝑄, where 𝑟 ∈[1, 𝑄], ∀𝑖 ∈ [1, 𝑄].

(v) There exists a state 𝑟 with constant outgoing transi-
tions, self-excluded; that is, 𝑎𝑟𝑖 = (1 − 𝑎𝑟𝑟)/(𝑄 − 1),
where 𝑟 ∈ [1, 𝑄], ∀𝑖 ∈ [1, 𝑄] \ 𝑟.

(vi) There exist two states 𝑞 and 𝑟 with the same observa-
tion probabilities 𝑏𝑞𝑗 = 𝑏𝑟𝑗, where 𝑞, 𝑟 ∈ [1, 𝑄], ∀𝑗 ∈[1,𝑀].

(vii) There exists a state 𝑟 with constant (nondominant)
observation emissions; that is, 𝑏𝑟𝑗 ≅ 1/𝑀, where 𝑟 ∈[1, 𝑄], ∀𝑗 ∈ [1,𝑀].

4. Approximate Identification Algorithm

An HMM is either identifiable or unidentifiable. In order
to describe how hard it is to identify a model, we use the
term learnability: for an identifiable HMM, it can be easy,
moderate, or hard to learn. Thus, before presenting the
approximate identification algorithm, we firstly explain our
hypothesis on the correlations between model learnability
and specificity as shown in Figure 2, which will be validated
experimentally in Section 5. HMMs containing states with
higher specificity have higher distances with less complex
models and as shown later are easier to learn, and vice
versa. Therefore, we classify HMMs into three identification
categories based on their specificity: (1) learnable HMMs
with relatively high specificity; (2) hard to learn HMMs
with low specificity; and (3) unlearnable HMMs with almost
zero specificity. Our focus is to identify learnable and highly
specific models with high-impact states.

4.1. Algorithm Structure. Based on the previous analysis
of the hidden states, we can construct an algorithm that
identifies high-impact states directly from the observation
sequences. Inspired by signal processing method such as
Empirical Mode Decomposition- (EMD-) and wavelet-based
denoising methods [25], which decompose the noisy signal
into a number of components, filter each component, and
finally reconstruct the denoised signal using the filtered

components, here we reassemble the above procedures as
follows: an unknown HMM is composed out of a num-
ber of hidden states. These states can be identified from
observations and combined to form a reconstructed HMM∗,
as shown in Figure 3. In such manner, we decompose the
model identification procedure into a combination of state
identifications.The approximate state identification approach
firstly recognizes persistent and transient states separately
from observation sequences, then combines them into a set
of identified states, and finally reduces or merges similar
states into a new set of reconstructed states.The details of the
identification framework will be explained as follows.

Models with high-impact states generate specific sam-
ples which are unique. Therefore, the states are identifiable
through data analysis. The output of a persistent state is likely
to stay in a period within which the behavior at each time
step is “similar,” which we call a regime. Thus a segmentation
approach is advised splitting a signal sequence into regimes
by identifying the specific behaviors within certain periods.
In order to identify transient-cyclic states, our approach is to
capture the changing of behaviors with a transient analysis
based onTheorem 9.

Therefore, we propose a framework to identify most
high-impact and minimal states: (1) persistent privileged
states; (2) transient-cyclic privileged states; and (3) hybrid:
persistent and transient-cyclic privileged states. A schema of
the proposed algorithm is shown in Figure 4. We assume
that both persistent and transient states exist in the model;
therefore, both segmentation and clustering and transient
analysis methods are applied on the data, followed by a
reparameterization procedure to combine the parameters
learned from both the previous methods. Finally, a model
reduction step is conducted in the end to form a simplified
minimal HMM model. We name our proposed method
as Segmentation-Clustering and Transient analysis (SCT)
framework.

4.2. Segmentation-Based Approach. The segmentation-based
approach is defined using the following steps: Step 1: signals
are split by segmentation techniques into different regimes
with different signal behaviors; Step 2: the “similar” regimes
of signals are grouped together by clustering techniques
according to their similarities (the clusters are labeled and
each cluster is a hidden state); Step 3: a clustering validation
index is employed to determine the proper number of states;
finally, Step 4: HMM parameters are estimated by calculating
statistical occurrences of the observations and the estimated
hidden states.

Step 1 (identification of persistent states by segmentation).
Data sequences emitted by persistent states can be segmented
into subsequences with constant behavior (observations are
drawn from a stationary distribution). The transition from
one state to another can be identified by detecting a difference
in signal behavior. This is called a change point. In this
paper, we propose a sliding window-based Bayesian segmen-
tation based on the test of [26]. The Bayesian probability is
calculated to determine whether two sequences have been
generated by the same or by a different multinomial model.
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Figure 4: Scheme of the proposed approach.

A multinomial model is a stochastic process where the
observations follow amultinomial distribution. It is sufficient
tomodel observations instead of states, since the observations
in a multinomial model can represent states correspondingly
with absolute state knowledge. Each observed symbol 𝑜𝑡 at
time 𝑡 is independent and falls into one of 𝑁 categories
with a fixed probability, denoted by P = {𝑝1, 𝑝2, . . . , 𝑝𝑁},
where ∑𝑁

𝑖=1 𝑝𝑖 = 1. The observation probability distribution

is denoted by 𝜋 = 𝑃(𝑜𝑡 = 𝑠𝑖) ∈ P, where 𝑠𝑖 ∈ 𝑆, 𝑆 ={𝑠1, 𝑠2, . . . , 𝑠𝑁}, 1 ≤ 𝑡 ≤ 𝑇. The model can be represented
with a compact notation 𝜆 = (𝜋).

The first sequence always starts from the last change
point (the first point if at the beginning) and ends at the
current time point; the second sequence is a fixed-length
sliding window starting from the next time point. If the two
successive sequences are very likely from different models,
the point in between is marked as a change point. The
procedure repeats until the end of the signal.

Step 2 (combination of states by clustering). With HMMs,
segments corresponding to the same state will recur over
time. Assuming that there is a finite number of states,
segments with the same states are detected and clustered
together. In this study, the classical 𝑘-means clustering
approach [27, 28] is chosen to group and label segments.
In our case, the 𝑘-means clustering algorithm tries to group
the segments into 𝑘 unique states based on the mean value
of data features within each cluster, given by 𝑘. Because
of the fact that 𝑘-means clustering encounters the problem
of randomness in selecting initial parameters, we perform
a preliminary step for selecting centroid starting locations.
The selected properties in the segmentation step are a one-
dimension sequence, which contains 𝑘 subsequences with
equal length.Themedian values of the subsequences are then
used as initial centroid locations.

Step 3 (cluster validity). In order to select the optimal number
of clusters, we propose a constraint-based clustering analysis
considering both the cluster separation capabilities of hidden
states and the simplicity of HMMmodels. Constraint 1: lower
Davies-Bouldin index (DBI) [29] suggests that the clustering
exhibited a better intracluster grouping and intercluster
separation of each state. Constraint 2: instead of selecting the
minimumDBI, an allowance with a threshold of 0.05 is given
so that a smaller number of states will be selected if its DBI is
within the range of min(DBI) + 0.05.
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Suppose dataset 𝑋 is partitioned into 𝐾 disjoint
nonempty clusters 𝐶𝑖 and let {𝐶1, 𝐶2, . . . , 𝐶𝐾} denote the
obtained partitions, such that 𝐶𝑖 ∩ 𝐶𝑗 = 0 (empty set),𝑖 ̸= 𝑗, 𝐶𝑖 ̸= 0, and 𝑋 = ⋃𝐾

𝑖=1 𝐶𝑖. The Davies-Bouldin index
[29] is defined as

DBI = 1𝐾 𝐾∑
𝑖=1

max
𝑖 ̸=𝑗
{diam (𝐶𝑖) + diam (𝐶𝑗)

dist (𝐶𝑖, 𝐶𝑗) } , (15)

where

diam (𝐶𝑖) = max
x𝑚 ,x𝑛∈𝐶𝑖

{𝑑 (x𝑚, x𝑛)} ,

dist (𝐶𝑖, 𝐶𝑗) = min
x𝑚∈𝐶𝑖 ,x𝑛∈𝐶𝑗,𝑖 ̸=𝑗

{𝑑 (x𝑚, x𝑛)}
(16)

indicate the intracluster diameter and the intercluster dis-
tance, respectively. The partition with the minimum Davies-
Bouldin index is considered as the optimal choice.

Step 4 (parameter estimations). Parameters of an HMM (i.e.,
probability matrices 𝜆pers = (𝜋pers,Apers,Bpers)) can be
calculated by simply counting the occurrence of the observed
signal and the hidden states (i.e., labels retrieved from
clustering), which is the same calculation as the reestimation
step of the Baum-Welch algorithm [1]:

𝜋𝑖 = expected frequency (number of times) in state 𝑠𝑖 at time t = 1,
𝑎𝑖𝑗 = expected number of transitions from 𝑠𝑖 to 𝑠𝑗

expected number of transitions from 𝑠𝑖 ,
𝑏𝑗 (𝑘) = expected number of times in 𝑠𝑗 observing V𝑘

expected number of times in 𝑠𝑗 .
(17)

4.3. Transition-Based Approach. In this section we present
a transition-based approach in order to identify transient-
cyclic states. In order to estimate the observation matrix, we
apply Theorem 9 which is dedicated to identifying transient-
cyclic privileged with or without mixing states. Firstly, the
first-order transition probabilities can be identified by a
Markovmodel assumption via counting the occurrence of the
observation sequences:

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙)
= expected number of transitions from V𝑘 to V𝑙

expected total number of 1-order transitions
. (18)

Similarly, a second-order transition probability can be mod-
elled by an HMM assumption and calculated by counting:

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚)
= expected number of transitions from V𝑘 to V𝑙 to V𝑚

expected total number of 2-order transitions
, (19)

where 𝑘, 𝑙, 𝑚 ∈ [1,𝑀], 𝑘 ̸= 𝑙 ̸= 𝑚. A threshold for dominant
probabilities is calculated as

𝜉 = 1
expected total number of 1-order transitions

. (20)

If the two continuous first-order probabilities are dominant,
that is, 𝑃(𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙) > 𝜉 and 𝑃(𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 =
V𝑚) > 𝜉, where 0 ≤ 𝜉 ≤ 1, then the division of the second-

order transition probabilities calculated from aMarkov chain
and from an HMM assumption is

ℏ = 𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙) 𝑃 (𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚)𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) . (21)

If ℏ = 1, there is no transient-cyclic states. Otherwise, the
first-order transition probabilities are taken as the dominant
observation probabilities and used to build the observation
matrix. If ℏ > 1, a mixing state is present and one extra state is
added to the observationmatrix with a uniformly distributed
probability of 1/𝑀. In the end, we map each observation
value V𝑘, V𝑙, and V𝑚on a different state because we look for
states with at least one dominant observation value. If a state
has multiple observation values, they will be merged into one
state. See Table 1 for conditions of model state reduction.

Take a simple 2-observation case as an example;
we generate a 10-series sequence with length of 1000.
The first-order observation transition probabilities
are [ 𝑃(𝑜𝑡=V1 , 𝑜𝑡+1=V1) 𝑃(𝑜𝑡=V1 , 𝑜𝑡+1=V2)𝑃(𝑜𝑡=V2 , 𝑜𝑡+1=V1) 𝑃(𝑜𝑡=V2 , 𝑜𝑡+1=V2)

]. If the calculated
occurrence probabilities are [ 0.4603 0.0420

0.0422 0.4555 ], the dominant
transitions larger than 1/4 are 𝑃(𝑜𝑡 = V1, 𝑜𝑡+1 = V1) and𝑃(𝑜𝑡 = V2, 𝑜𝑡+1 = V2). Thus, the dominant second-order
probabilities are [ 𝑃(𝑜𝑡=V1 , 𝑜𝑡+1=V1 , 𝑜𝑡+2=V1)𝑃(𝑜𝑡=V2 , 𝑜𝑡+1=V2 , 𝑜𝑡+2=V2)

], equal to [ 0.42170.4170 ]
calculated by a Markov model, while being equal to [ 0.43360.4269 ]
calculated by an HMM. Thus, the division of the two isℏ = [ 0.97250.9768 ]. Since both probabilities are smaller than 1, they
are dominant states and there is no mixing state. Therefore,
we map the two dominant probabilities to the observation
probabilities of two states and the final observation matrix is
Btran = [ 0.9725 0.0275

0.0232 0.9768 ].
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Furthermore, for calculating the prior and transition
probabilities, we stick to the assumption that privileged
state behaviors can be reflected by observation properties;
therefore, we assume the number of states is the same as the

number of observations and use aMarkovmodel for learning
state probabilities.

The prior and transition matrices can be calculated by
counting the observation occurrences:

𝜋𝑖 = expected frequency (number of times) in observation V𝑖 at time 𝑡 = 1,
𝑎𝑖𝑗 = expected number of transitions from V𝑖 to V𝑗

expected number of transitions from V𝑖
. (22)

Therefore, a model 𝜆tran = (𝜋tran,Atran,Btran) is learned
containing only transient-cyclic states.

4.4. Reparameterization. Parameters learned for both persis-
tent and transient-cyclic states are combined together by a
procedure called reparameterization. Let 𝜆pers = (𝜋pers,Apers,
Bpers) be the parameters for persistent states and 𝜆tran =(𝜋tran,Atran,Btran) be the parameters for the transient-cyclic
states. Let 𝑄pers and 𝑄tran be the number of persistent
and transient-cyclic states, respectively. Thus the combined
number of states is 𝑄 = 𝑄pers + 𝑄tran. The parameters of the
combined model 𝜆(𝜋,A,B) can be calculated as

𝜋
 = Normalize([𝜋pers

𝜋tran
]
𝑁×1

) ,
A = Stochastic( 1𝑄

∗ 1𝑄×𝑄
+ [ Apers 0𝑄pers×𝑄tran

0𝑄tran×𝑄pers
Atran

]
𝑄×𝑄

) ,
B = Stochastic([Bpers

Btran
]
𝑄×𝑀

) ,

(23)

where the function Normalize ensures that the sum of the
given vectors equals 1 and the Stochastic function ensures that
the sum of each row of the given matrix equals 1.

4.5. Model Reduction. After combining the persistent and
transient-cyclic states, redundant states may occur. We intro-
duce amodel reduction procedure which removes redundant
states to obtain minimal HMMs according to the conditions
defined inTheorem 10.We relax the strict conditions given in
the theorem via adding thresholds.

(i) AnHMMcontains a state 𝑟 that has zero incoming state
transition probabilities; that is, 𝑎𝑖𝑟 = 0, ∀𝑖 ∈ [1, 𝑄].
Instead of using a zero vector as a strict rule, a
threshold is defined to allow near-zero cases such
that if the sum of the incoming transition state

probabilities of state 𝑟 is lower than threshold 𝜃𝑎, that
is,

𝑄∑
𝑖=1

(𝑎𝑖𝑟) < 𝜃𝑎, (24)

the state 𝑟 can be removed.
(ii) An HMM contains two states 𝑞 and 𝑟 that have the

same state transition probabilities; that is, 𝑎𝑖𝑞 = 𝑎𝑖𝑟 and𝑎𝑞𝑖 = 𝑎𝑟𝑖, ∀𝑖 ∈ [1, 𝑄].
We replace the equivalence condition by a subtraction
calculation. If the maximum of the incoming and
outgoing state transition probabilities of the two states𝑞 and 𝑟 is below a threshold 𝜃𝑏, that is,

max(max
1≤𝑖≤𝑄

(𝑎𝑖𝑞 − 𝑎𝑖𝑟) , max
1≤𝑖≤𝑄

(𝑎𝑞𝑖 − 𝑎𝑟𝑖)) < 𝜃𝑏, (25)

the two states can be merged into one.
(iii) An HMM contains two states 𝑞 and 𝑟 that have the

same observation probabilities 𝑏𝑞𝑘 = 𝑏𝑟𝑘, ∀𝑘 ∈ [1,𝑀],
and meet one of the following conditions: (1) they have
the same incoming state transition probabilities; that is,𝑎𝑖𝑞 = 𝑎𝑖𝑟, ∀𝑖 ∈ [1, 𝑄]; (2) they have the same outgoing
state transition probabilities; that is, 𝑎𝑞𝑖 = 𝑎𝑟𝑖, ∀𝑖 ∈[1, 𝑄]; or (3) 𝑎𝑖𝑞 = 𝑎𝑖𝑟 and 𝑎𝑞𝑖 = 𝑎𝑟𝑖, ∀𝑖 ∈ [1, 𝑄]\{𝑞, 𝑟}.
Similar to (ii), we use subtraction instead of strict
equivalence with added threshold 𝜃𝑐. Moreover, the
AND condition and the OR conditions can be rep-
resented by selecting the maximum and minimum
values, respectively. Therefore, if

max( max
1≤𝑘≤𝑀

(𝑏𝑞𝑘 − 𝑏𝑟𝑘) ,min(max
1≤𝑖≤𝑄

(𝑎𝑖𝑞 − 𝑎𝑖𝑟) ,
max
1≤𝑖≤𝑄

(𝑎𝑞𝑖 − 𝑎𝑟𝑖) ,
max(max

1≤𝑖≤𝑄
𝑖 ̸=𝑟 ̸=𝑞

(𝑎𝑖𝑞 − 𝑎𝑖𝑟) , max
1≤𝑖≤𝑄
𝑖 ̸=𝑟 ̸=𝑞

(𝑎𝑞𝑖 − 𝑎𝑟𝑖))))
< 𝜃𝑐, ∀𝑖 ∈ [1, 𝑄] ,

(26)

the two states 𝑞 and 𝑟 can be merged.
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(iv) An HMM has two observation values (𝑀 = 2) and
contains a state 𝑟 that has constant incoming state
transition probabilities, 𝑎𝑖𝑟 = 𝐶 and ∀𝑘, and 𝑟 has
nondominant observation probabilities, 𝑏𝑟𝑘 < 𝑏𝑖𝑘, ∀𝑖 ∈[1, 𝑄] \ 𝑟, ∀𝑘 ∈ [1,𝑀].
max
1≤𝑖≤𝑄

(𝑎𝑖𝑟 − 𝑎𝑖𝑟) < 𝜃𝑑,
𝑏𝑟𝑘 = min

1≤𝑘≤𝑀
(𝑏𝑖𝑘) , ∀𝑖 ∈ [1, 𝑄] , (27)

where 𝑎𝑖𝑟 is the average of 𝑎𝑖𝑟 and the state 𝑟 can be
“taken over.”

The selection of thresholds is conducted empirically since the
correlation between the likelihood value and each condition
is complex and is not our focus in this paper.

5. Experiments

Simulated data has been used to evaluate the effectiveness
and efficiency of the proposed SCT inference framework.
The simulated data were sampled from different classes of
HMM models: nonminimal equivalent HMMs, identifiable
(selected and random) minimal HMMs, and hard to learn
HMMs.

5.1. Nonminimal Equivalent HMMs. Equivalent HMMs con-
tains two cases: (1) two HMMs with the same number of
states, where permutations of states apply to both models; (2)
twoHMMswith different numbers of states.This experiment
focuses on case (2) and aims to test the model reduction
conditions defined in Table 1, where a nonminimalHMMcan
remove, merge, or take over its redundant states to become
an equivalent minimal HMM. One model 𝜆 is selected
under each of the three reduction conditions and is used to
construct an equivalent model �̃� by removing the redundant
state (set as the last state here). The model parameters are
listed hereafter, respectively:

With a removable state:

HMM 𝜆1:
𝜋1 = [[[

0.330.330.33
]]] ,

A1 = [[[
0.9 0.1 00.1 0.9 00.5 0.5 0

]]] ,

B1 = [[[
0.9 0.05 0.050.05 0.9 0.050.05 0.05 0.9

]]]

(28)

HMM �̃�1:
�̃�1 = [0.50.5] ,
Ã1 = [0.9 0.10.1 0.9] ,
B̃1 = [ 0.9 0.05 0.050.05 0.9 0.05]

(29)

With amergeable state:

HMM 𝜆2:
𝜋2 = [[[

0.330.330.33
]]] ,

A2 = [[[
0.45 0.45 0.10.45 0.45 0.10.05 0.05 0.9

]]] ,

B2 = [[[
0.9 0.05 0.050.05 0.9 0.050.05 0.05 0.9

]]]

(30)

HMM �̃�2:
�̃�2 = [0.670.33] ,
Ã2 = [0.9 0.10.1 0.9] ,
B̃2 = [0.475 0.475 0.050.05 0.05 0.9 ]

(31)

With a taken-over state:

HMM 𝜆3:
𝜋3 = [[[

0.330.330.33
]]] ,

A3 = [[[
0.6 0.2 0.20.2 0.6 0.20.4 0.4 0.2

]]] ,

B3 = [[[
0.9 0.10.1 0.90.5 0.5

]]]

(32)
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Table 2: Distance threshold test results for nonminimal equivalent models.

Cases Remove Merge Take over
Models 𝜆1 �̃�1 𝜆2 �̃�2 𝜆3 �̃�3𝜇 −0.92 −0.92 −1.24 −1.24 −0.97 −0.97𝜎 0.012 0.012 0.014 0.014 0.003 0.003[𝜇 − 3𝜎, 𝜇 + 3𝜎] [−0.955, −0.881] [−0.955, −0.881] [−1.279, −1.191] [−1.279, −1.191] [−0.978, −0.959] [−0.977, −0.960]
Confidence of equivalence (%) 99.9 99.8 99.8

HMM �̃�3:

�̃�3 = [0.50.5] ,

Ã3 = [0.708 0.2920.292 0.708] ,

B̃3 = [0.833 0.1670.167 0.833]

(33)

Each of the reference nonminimalmodels 𝜆𝑖, 𝑖 = [1, 2, 3]
is used to generate 1000 datasets of random observations
containing 𝑁 = 20 sequences of 𝑇 = 5000 observation
points. The datasets are used to determine log-likelihood
distributions of the models and the distance threshold of
equivalent models defined in Definition 8. By calculating
the percentage of the log-likelihood values of the minimal
model �̃�𝑖 which fall inside the threshold of equivalence
for the nonminimal model 𝜆𝑖, we can obtain a confidence
level. The results in Table 2 show that the two models
are approximate equivalent models for all the three cases
with high confidence levels. Moreover, the log-likelihood
histograms are plotted in Figure 5. The highly overlapping
histograms further demonstrate the model equivalence for
the three examples.

5.2. Highly Specific HMMs. As discussed previously, persis-
tent and transient-cyclic HMMswith privileged observations
are identifiable HMMs that have a high specificity. In this
section, we compare the learning of such identifiable HMMs
with the Baum-Welch (BW) algorithm and the proposed SCT
method.

Firstly, we constructed 9 persistent and 9 transient-cyclic
models as ground truth models with a fixed equal number of
states and observations (𝑄 = 𝑀) ranging from 2 to 10. These
models can be expressed as follows:

−0.98 −0.96 −0.94 −0.92 −0.9 −0.88
0

50
100
150 Case 1: with a removable state

−1.28 −1.26 −1.24 −1.22 −1.2 −1.18
0

50
100
150 Case 2: with a mergeable state

−0.98 −0.975 −0.97 −0.965 −0.96 −0.955
0

50
100
150 Case 3: with a taken-over state

Histogram 1
Histogram 2

Thresholds 1
Thresholds 2

Figure 5: The histogram of log-likelihoods.

Persistent 𝜆pers:

𝜋pers =
[[[[[[[[[[[[

1𝑄1𝑄...1𝑄

]]]]]]]]]]]]𝑄×1
,

Apers = [[[[[[

𝑝1 𝛼1 𝛼1𝛼1 𝑝1 𝛼
d𝛼1 𝛼1 𝑝1

]]]]]]𝑄×𝑄
,

Bpers = [[[[[[

𝑝1 𝛼1 𝛼1𝛼1 𝑝1 𝛼1
d𝛼1 𝛼1 𝑝1

]]]]]]𝑄×𝑄

(34)
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Transient-cyclic 𝜆tran:

𝜋tran =
[[[[[[[[[[[[

1𝑄1𝑄...1𝑄

]]]]]]]]]]]]𝑄×1
,

Atran = [[[[[[

𝛼2 𝑝2 𝛼2
d𝛼2 𝛼2 𝑝2𝑝2 𝛼2 𝛼2

]]]]]]𝑄×𝑄
,

Btran = [[[[[[

𝑝2 𝛼2 𝛼2𝛼2 𝑝2 𝛼2
d𝛼2 𝛼2 𝑝2

]]]]]]𝑄×𝑄

(35)

The state self-transition probabilities for persistent mod-
els and the transition probabilities to the next neighboring
state for transient-cyclic models were both set to a value
close to 1, noted as 𝑝1 and 𝑝2, respectively, where 𝑝1, 𝑝2 ∈[0.8, 0.99]. The remaining transitions have equal probabili-
ties; that is, 𝛼𝑖 = (1 − 𝑝𝑖)/(𝑄 − 1), 𝑖 = 1, 2. For all the
18 models, the observation matrices are set the same as the
transition matrices of persistent models in order to obtain
privileged observations.The initial parameters are uniformly
distributed.

We also generated 20 hybrid models as ground truth
models containing both persistent and transient-cyclic states.
The number of states 𝑞1 and 𝑞2 for both cases was randomly
chosen from 2 to 3, amounting to a total number of states𝑄 = 𝑞1+𝑞2 within a range of [4, 6].The rest of the parameters
were generated in the same manner as before. For simplicity,
we use [𝛼𝑖] to represent a matrix containing only element 𝛼𝑖.
Thus, a hybrid model can be represented as follows:

Hybrid 𝜆hybr:

𝜋hybr =
[[[[[[[[[[[[

1𝑄1𝑄...1𝑄

]]]]]]]]]]]]𝑄×1
,

Ahybr = [[Apers]𝑞1×𝑞1 [𝛼1]𝑞1×𝑞2[𝛼2]𝑞2×𝑞1 [Atran]𝑞2×𝑞2]𝑄×𝑄 ,

Bhybr = [[Bpers]𝑞1×𝑞1 [𝛼1]𝑞1×𝑞2[𝛼2]𝑞2×𝑞1 [Btran]𝑞2×𝑞2]𝑄×𝑄
(36)

The experiments were carried out by using each of the
constructedmodels as a referencemodel to generate a dataset
of 10 series of 1000 observations. The first seven series were
used as a training set and the last three series as a test set.The
true number of states𝑄was assumed to be unknown and the
learning methods have to select the number of states from a
state pool of [2, 𝑄 + 2]. For the BW learning algorithm,𝑄+ 1
models were generated with a number of states ranging from
2 to𝑄+2 and themodel with the best𝑄 is selected by the AIC
criterion [30].The learning of the BWalgorithmwas repeated
20 times to eliminate local optima and the one with the
minimum AIC value is selected. In total, 20 ∗ (𝑄 + 1)models
were generated to determine an optimalmodel.Moreover, for
comparison purpose, we also train BW with a given number
of states𝑄; therefore, a total of 20 models were generated and
a best model is selected by the AIC criterion. On the other
hand, for the proposed SCT method, the number of states is
selected by the clustering validation method in Step 3 (See
Section 4.2). Only one SCT model is trained and used for
comparison the two best models selected by the BWmethod
(with and without a given 𝑄).

In order to use the 3-sigma rule to indicate if a true
model is learned, 100 datasets of 10 series of 1000 observations
were generated from each of the true models and used
for calculating the log-likelihood distribution N(𝜇, 𝜎) (see
Definition 8). If the log-likelihood difference between the
ground truth model and the learned model is outside the
distance threshold of [−3𝜎, 3𝜎], we consider that the true
model has not been found (i.e., a local optimum is learned).
Moreover, for better understanding the log-likelihood results,
we additionally calculated the log-likelihoods for the follow-
ing models: (1) 𝜆𝑄−1(𝜆𝑄): the best model with 𝑄 − 1 states
selected from 100 randomly generated models and trained
with BW; (2) 𝜆𝑄−2(𝜆𝑄): the best model with 𝑄 − 2 states
selected from 100 randomly generated models and trained
with BW; (3) a multinomial model: the model assuming that
there are no hidden states and the observations are the actual
visible states. If an HMMmodel has similar log-likelihood as
amultinomialmodel, the states have no impact on themodel.

In addition to log-likelihoods, we define other perfor-
mance indicators of accuracy as follows: (1) the percentage
of convergence is the percentage of 20 BW learned models
which did not fall into a local optimum; (2) the percentage
of identification is the percentage of the best BW or the SCT
learned models which did not fall into a local optimum; (3)
the parameter distance is defined as the mean difference of
the triples (𝜋,A,B) between two HMM models. If the two
models have different state space, values of 0s are filled into
the probability matrices of the simpler model in order to have
an equal number of states to the complex one. Moreover,
all the permutations of the models are considered and the
minimum distance is chosen as the parameter distance.
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Table 3: Average characteristics of ground truth HMMs.

Type Specificity Minimal (%) 𝜇(LLtrue) 𝜎(LLtrue)
Persistent 0.25 100 −1.00 0.018
Transient-cyclic 0.32 100 −1.25 0.017
Hybrid 0.17 100 −0.93 0.019
Note: 𝜇(LLtrue): mean of the log-likelihood distribution of the true model;
𝜎(LLtrue): standard deviation of the log-likelihood distribution of the true
model.

An average information of the ground truth models can
be found in Table 3. The hybrid models are less specific than
the persistent or transient-cyclic states only models, which
make them harder to identify. Detailed learning results can
be found in Table 4. The results show that the proposed
SCT method learns much faster than the traditional BW
algorithm, with a speedup around 180 to 260 times. The BW
algorithm tends to overfit themodel by using a larger number
of states, resulting in a higher parameter distance. Even when
the true number of states 𝑄 is given, for persistent cases,
the BW still cannot learn correctly, which has a larger test-
set log-likelihood difference and a lower convergence and
identification rate.

Learning results for a 10-state persistent model, a 10-
state transient-cyclic model, and a 6-state hybrid model are
used as examples for visualization. For the persistent model,
the iterative learning process is shown in Figures 6(a) and
6(b). In Figure 6(a), the BW training was conducted with
an unknown number of states 𝑄, while in Figure 6(b), 𝑄
was given. Similarly, results for the transient-cyclic model are
shown in Figures 7(a) and 7(b). and the hybrid models are
in Figures 8(a) and 8(b). The figures show that the proposed
SCTmethod starts from a good initialmodel at the beginning
and converges much faster than most of the 20 randomly
initialized BWmodels which start from an almost equivalent
level of the multinomial model for which hidden states play
no roles. Moreover, although some of the best BW model
converges in the end, the log-likelihood values are still not
as good as the SCTmethod.We see that some of the repeated
20 models with 𝑄 states have been stuck in a local optimum
with similar log-likelihood to model 𝜆𝑄−1(𝜆𝑄) or 𝜆𝑄−2(𝜆𝑄).

In order to compare the model parameters, heat maps
of the original and inferred state transition and observation
matrices are plotted in Figures 6(c), 7(c), and 8(c). A lighter
color indicates a higher probability value close to one, while
a darker color indicates a lower probability value close to
zero. We notice that the BW method with an unknown 𝑄
learns a complex model with two more states than the true
model for all the three cases, which is overfitting, while
the SCT approach learns the state size correctly. Moreover,
the SCT method has a one-to-one correspondence of the
high probabilities (in white/light-yellow) between the transi-
tion and observation parameter matrices, meaning the SCT
trained model is almost equivalent to the reference true
model. However, for the BW method, especially when 𝑄 is
unknown, there are no one-to-one relations in both transition
and observation matrices, noticeable by some of the varied

colors of heat maps from the true model. It means that some
of the probabilities are wrongly learned.

5.3. Hard to Learn HMMs. For each of the seven hard to
learn conditions defined in Section 3.4, we construct five
ground truth models, resulting in a total of 35 models. For
each model, persistent and transient-cyclic state numbers are
randomly generated from a range of [3, 5]. The privileged
state probability is set randomly within a range of [0.85, 0.99].
The remaining probabilities are uniformly distributed. For
conditions (ii), (iii), (iv), and (v), one extra state is generated
accordingly to the specified conditions. For condition (i),
state 3 is defined as a mixing state of states 1 and 2. For
condition (vi), the first two states are set to have the same
observations. For condition (vii), state 2 is set to have a
constant observation emission probabilities. The rest of the
experiment is set the same as previous experiments designed
for identifiable models. Results show that only 31% of the 35
ground truth models are specific with an average specificity
of 0.04. A detailed comparison of the learning results is
presented in Table 5.

From the results in Table 5 we can see that the BW
algorithm is slower than the proposed SCT method with
almost double learning convergence iterations. The SCT
method is around 230 times faster than the BW algorithm.
A positive average delta 𝑄 indicates that the BW method
mostly overfits the true models with an average of 1.71 extra
states, while the SCT has a negative delta 𝑄 indicating a
slightly underfittingwith an average of 0.66 fewer states. Even
though the test-set log-likelihood difference of the SCT is
higher than the BW method, the average parameter distance
further proves that the BW algorithm tends to overfit the
models in order to have a lower log-likelihood. Moreover,
the percentage of convergence reveals that the number of
repetitions (e.g., 20 times in this experiment) is still necessary
for the BW method to learn effectively, even with the trade-
off of longer learning time. Lastly, the SCT has a slightly
lower but compatible identification percentage which has a
significant learning speedup in return.

To visualize the results, we select two models under
condition (i), a state being a mixing state, and condition (v),
a state with constant self-excluded outgoing transaction, as
examples shown in Figures 9 and 10, respectively.

Figures 9 and 10 show that the BW algorithm with an
unknown 𝑄 overfits the truth models with two extra states
while the SCT method underfits the model with one state
fewer where both the mixing state and the state with the
same outgoing transactions in the two examples are merged
into other states because they are not specific enough to be
identified.

5.4. RandomHMMs. In this experiment, we generated 10000
random HMM models configured with a combination of
random𝑄 (𝑄 ∈ [3, 5]) and random𝑀 (𝑀 ∈ [3, 5]). In order
to guarantee that each HMM is minimal, we select models
according to two criteria: (1) the model should have a higher
test-set log-likelihood than the one of a multinomial model;
(2) the model compared to the best 𝑄 − 1 state model should
not satisfy the three-sigma rule formodel equivalence criteria
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Table 4: Identification results on identifiable HMMs.

Type Method # Iters. Time (s) 𝑄 select Δ𝑄 ΔLLtest Para. Dist. Conv. (%) Identi. (%)

Pers.
BW 15 1054 Min. AIC 1.67 0.028 0.15 45.56 88.89

Correct 𝑄 0.00 0.058 0.02 16.11 66.67
SCT 4 4 DBI 0.00 0.012 0.00 — 100

Tran.
BW 22 1276 Min. AIC 1.00 0.014 0.08 100 100

Correct 𝑄 0.00 0.012 0.01 75.56 100
SCT 8 5 DBI 0.00 0.011 0.01 — 100

Hybr.
BW 19 891 Min. AIC 1.75 0.008 0.19 88 100

Correct 𝑄 0.00 0.007 0.00 36.50 100
SCT 10 5 DBI 0.00 0.007 0.00 — 100

# Iters.: average number of iterations; Conv. (%): rate of convergence; Identi. (%): percentage of identification; ΔLLtest: unit log-likelihood difference between
the true models and the learned model on test-sets; Para. Dist.: parameter distance; Pers.: Persistent; Tran.: Transient-cyclic; Hybr.: Hybrid. Note that, for the
BW, when calculating Δ𝑄, ΔLLtest, and Para. Dist., the learned model is the best one selected from the 20(𝑄+ 1) repeated random models.

Table 5: Identification results on hard to learn HMMs.

Method # Iters. Time (s) 𝑄 select Δ𝑄 ΔLLtest Para. Dist. Conv. (%) Identi. (%)

BW 26 1835 Min. AIC 1.71 0.014 0.14 87.14 100
Correct 𝑄 0.00 0.013 0.03 52.00 100

SCT 15 8 DBI −0.66 0.030 0.11 — 97.14
See abbreviations and notes in Table 4 for more details.

defined in Definition 8. A random HMM is discarded if it
is not minimal. In the end, we obtain 149 specific minimal
HMMs.The training procedure is conducted in the same way
as in Section 5.2.

Experiment shows that the average specificity of the true
models is 0.03, which is around 10 times less specific than
the identifiable models used in the previous experiments
in Section 5.2. Moreover, the mean of the log-likelihood
distribution of the true model is 1.58, which is also much
higher than the identifiablemodels.The above results indicate
that random models are less specific and therefore less iden-
tifiable. A detailed comparison of the identification results is
shown in Table 6.

The results show that the SCT method needs in average
one more iteration than the BW algorithm and the iden-
tification results are less adequate because the models are
not specific enough to be estimated correctly. However, the
speedup of the SCT method shows an improvement vis-a-
vis the Baum-Welch method, around 50 times. Both of the
approaches overfit the models with an average of more than
one state.

Figure 11(a) provides the dependence between truemodel
specificity and test-set log-likelihood difference with the true
models. When the specificity is too low, the SCT method
identifies less correctly the models. Thus, the less specific
the model is, the harder it becomes for the SCT method to
learn. For the purpose of comparison, we plot the same figure
in Figure 11(b) but for highly specific models which were
generated in Section 5.2. The results further confirm that,
for highly specific models, when the specificity is relatively
low, the SCT method outperforms the BW method. The log-
likelihood differences of the models learned by Baum-Welch
have significantly increased indicating that completely wrong
models are learned.

The results are expected because the SCT method is
designed for highly specific models but not for random
ones with less specificity. In order to see the influence of
specificity for the SCT method to learn correctly, we plot
the identification accuracy versus the specificity thresholds
ranging from −0.01 to 0.2 with a step of 0.01 as shown in
Figure 12.Themodels are selectedwhen they have a specificity
higher than a specificity threshold; then the percentage of
correctly identifiedmodels within the selectedmodels is used
as the identification accuracy.

The identification accuracy of the SCTmethod starts with
a low value of 87.9% and generally increases with an increase
specificity threshold.When the specificity threshold is at 0.06,
the identification percentage of the SCT drops to 93.8%. It
is caused by a single case which is observable in Figure 11(a)
with the highest log-likelihood difference. Such case cannot
represent the dependency trend between specificity threshold
and identification accuracy and thus can be ignored. When
the threshold is higher than 0.06, the proposed SCT method
converges to an identification of 100%.

6. Conclusions

This paper studied the possibility of identifying HMMs
from properties of the observation sequences directly. We
conducted an analysis of the information flow throughout an
HMM. Based on this analysis we were able to show that there
are two types of states, namely, persistent and transient, that
have a high impact on the observation likelihood. An HMM
consisting of high-impact states is highly specific, in the sense
that it differs substantially in observation likelihood from the
best HMM with one state less.



16 Mathematical Problems in Engineering

Table 6: Identification results on random minimal HMMs.

Method # Iters. Time (s) 𝑄 select Δ𝑄 ΔLLtest Para. Dist. Conv. (%) Identi. (%)

BW 17 348 Min. AIC 1.16 0.0019 0.21 93.83 100
Correct 𝑄 0.00 0.0018 0.05 46.64 100

SCT 18 7 DBI 1.70 0.0051 0.22 — 87.92
See abbreviations and notes in Table 4 for more details.
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Figure 6: Identification performance for a 10-state discrete persistentHMM. (a) and (b) show a comparison of log-likelihoods during iterative
trainings with different models: the 20 repetitive BW models with an unknown or known number of states 𝑄, the SCT models, the selected
best BWmodels without or with a given𝑄, the ground truth HMM, the multinomial model, the best one-state simpler model 𝜆𝑄−1(𝜆𝑄), and
the best two-state simpler model 𝜆𝑄−2(𝜆𝑄). (c) shows a comparison of the model parameter heat maps for the ground truth HMM, the best
BWmodels with an unknown or a given 𝑄, and the SCT model.

A learning algorithm, called SCT, was constructed based
on this analysis which correctly identifies highly specific
models. But even for low-specific models, the identification
accuracy is still around 88%. The algorithm is about two
orders of magnitude faster than the traditional Baum-Welch
algorithm.

Appendix

A. Proof of Theorem 9

We prove that the presence of transient-cyclic states with
dominant observations can be identified through the division



Mathematical Problems in Engineering 17

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

20 40 60 800

Iterated BW
SCT
Best BW min. AIC
True HMM

Multinomial
Best HMM Q− 1

Best HMM Q− 2

(a) Log-likelihoods during iterative training, BW with
unknown𝑄

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

20 40 60 800

Iterated BW
SCT
Best BW correct Q
True HMM

Multinomial
Best HMM Q− 1

Best HMM Q− 2

(b) Log-likelihoods during iterative training, BW given cor-
rect𝑄

State transition matrix Observation matrix

BW
 Q

un
kn

ow
n

BW
 Q

gi
ve

n
SC

T

2 6 10

2 6 10

2 6 10

0.2
0.4
0.6
0.8

10
6
2

10
6
2

10
6
2

2 6 10
0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

10
6
2

2 6 10

2 6 10

2 6 10

0.2
0.4
0.6
0.8

10
6
2

10
6
2

10
6
2

2 6 10
0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

10
6
2

Tr
ue

(c) Heatmap of HMMmodel parameters

Figure 7: Identification performance for a 10-state discrete transient-cyclic HMM. See caption of Figure 6 for more details.

ℏ defined in (14) under the conditions as follows. Note that
we consider that the relative frequency 𝑃 is close to the true
probability 𝑃 such that the following derivations apply:

(i) If ℏ < 1 − 𝜖, 𝜖 ≈ 0, there are only states with dominant
observations.

One type of HMM cases is the basic transient, cyclic
model with dominant and privileged observation
value.Without loss of generality, we assume V𝑘, V𝑙, and
V𝑚 are dominant andprivileged observation values for
states 𝑠𝑖, 𝑠𝑖+1, and 𝑠𝑖+2 and that the transition cycle is1 → 2 → 3, . . . ,→ 𝑄 → 1. So for the emission
probabilities,

𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) ≫ 𝑃 (𝑜𝑡 = V𝑙 | 𝑞𝑡 = 𝑠𝑖) , ∀𝑗 ̸= 𝑖 (A.1)

or

𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) ≫ 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑗) , ∀𝑗 ̸= 𝑖 (A.2)

and for the state transition probabilities,

𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖) ≫ 𝑃 (𝑞𝑡+1 = 𝑠𝑗 | 𝑞𝑡 = 𝑠𝑖) ,∀𝑗 ̸= 𝑖 + 1. (A.3)

Note that if 𝑖 = 𝑄, we have 𝑠𝑖+1 = 𝑠1. For cyclic
indices, operations are always followed by a modulo
operation.
We assume that the probabilities (i.e., transition
and observation probabilities) can be split into two
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Figure 8: Identification performance for a 7-state discrete hybrid HMM. See the caption of Figure 6 for more details.

groups: large and small probabilities. There is a large
deviation between both; that is, large probabilities are
much higher than small probabilities. For instance,
large and small probabilities are around 0.9 and 0.1,
respectively. Thus for the case addressed previously,𝑃(𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖) and 𝑃(𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖)
are large probabilities, which we denote as 𝑎 and 𝑐,
respectively, for simplicity. Similarly, 𝑃(𝑞𝑡+1 = 𝑠𝑗 |𝑞𝑡 = 𝑠𝑖) and 𝑃(𝑜𝑡 = V𝑙 | 𝑞𝑡 = 𝑠𝑖) are denoted as 𝑏
and 𝑑, respectively. Thus 𝑎 ≫ 𝑏 and 𝑐 ≫ 𝑑. Moreover,
we assume that 𝑃(𝑜𝑡+1 = V𝑙) = 𝑃(𝑞𝑡 = 𝑠𝑗), ∀1 ≤ 𝑖 ≤𝑄, 1 ≤ 𝑗 ≤ 𝑀 and with 𝑃(𝑞𝑡 = 𝑠𝑗, 𝑜𝑡+1 = V𝑙) =𝑃(𝑞𝑡 = 𝑠𝑗 | 𝑜𝑡+1 = V𝑙)𝑃(𝑜𝑡+1 = V𝑙) = 𝑃(𝑜𝑡+1 = V𝑙 | 𝑞𝑡 =𝑠𝑗)𝑃(𝑞𝑡 = 𝑠𝑗), we have

𝑃 (𝑞𝑡 = 𝑠𝑗 | 𝑜𝑡+1 = V𝑙) = 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡 = 𝑠𝑗) . (A.4)

With (A.1)–(A.4), the following holds:

𝑃 (𝑜𝑡+1 = V𝑙 | 𝑜𝑡 = V𝑘) = ∑
𝑖,𝑗 ̸=𝑖

𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖)
⋅ 𝑃 (𝑞𝑡+1 = 𝑠𝑗 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗)= 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)+ ∑

𝑖,𝑗 ̸=𝑖+1

𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1 = 𝑠𝑗 | 𝑞𝑡 = 𝑠𝑖)
⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗) ≈ 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)= 𝑎𝑐2,

(A.5)
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Figure 9: Identification performance for a 6-state hard to learn HMM under condition (i). See caption of Figure 6 for more details.

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙) = 𝑃 (𝑜𝑡 = V𝑘) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑜𝑡= V𝑘) = 𝑎𝑐2𝑃 (𝑜𝑡 = V𝑘) . (A.6)

The approximation in (A.5) holds because the terms
of the sum for 𝑃(𝑞𝑡+1 = 𝑠𝑗 | 𝑞𝑡 = 𝑠𝑖) and 𝑃(𝑜𝑡+1 = V𝑙 |𝑞𝑡+1 = 𝑠𝑗), ∀𝑗 ̸= 𝑖 are small probability factors. Since𝑃(𝑜𝑡+1 = V𝑙 | 𝑜𝑡 = V𝑘) is two orders lower, it follows
that 𝑃(𝑜𝑡+1 = V𝑙 | 𝑜𝑡 = V𝑘) < 𝑃(𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖).
If we assume and train the observations with a first-
order Markov model, then we have

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) = 𝑃 (𝑜𝑡 = V𝑘)⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑜𝑡 = V𝑘) 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑜𝑡+1 = V𝑙) (A.7)

which can be approximated by a first-order HMM as
shown in Figure 13(a); thus

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) ≈ 𝑃 (𝑜𝑡 = V𝑘)⋅ [𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)] ,[𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)⋅ 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1)⋅ 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)] = 𝑃 (𝑜𝑡 = V𝑘) (𝑎𝑐𝑐)⋅ (𝑎𝑐𝑐) = 𝑎2𝑐4𝑃 (𝑜𝑡 = V𝑘) .

(A.8)
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Figure 10: Identification performance for an 8-state hard to learn HMM under condition (v). See caption of Figure 6 for more details.

If we assume and train the observations with a
second-order Markov model, the following holds:

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚)= ∑
𝑖,𝑗,𝑘,𝑖 ̸=𝑗 ̸=𝑘

𝑃 (𝑞𝑡 = 𝑠𝑖, 𝑞𝑡+1 = 𝑠𝑗, 𝑞𝑡+2 = 𝑠𝑘)
⋅ 𝑃 (𝑜𝑖 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) ,𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗) 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑘)= 𝑃 (𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+2= 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) ,𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)

+ ∑
𝑖,𝑗,�̃�,𝑗 ̸=𝑖+1,�̃� ̸=𝑖+2

𝑃 (𝑞𝑡 = 𝑠𝑖, 𝑞𝑡+1 = 𝑠𝑗, 𝑞𝑡+1 = 𝑠�̃�) ,
𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗) 𝑃 (𝑜𝑡+2= V𝑚 | 𝑞𝑡+2 = 𝑠�̃�)

(A.9)

which can be approximated by a second-order HMM
as shown in Figure 13(b); thus

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) ≈ 𝑃 (𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1)
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Figure 11: Specificity versus log-likelihood difference with ground truth model. (a) Random specific models generated in Section 5.4. (b)
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⋅ 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) ,𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)= 𝑎2𝑐3𝑃 (𝑜𝑡 = V𝑘) .
(A.10)

The first-order HMM assumption counts twice of
emission probability 𝑐 = 𝑃(𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 =𝑠𝑖+1); that is, an larger probability factor of 𝑐 < 1 is
calculated in (A.8) than in (A.10). Thus the division

ℏ = 𝑐 < 1 and the calculated probability with a
second-order HMM assumption in (A.10) is higher
than that with a first-order HMM assumption in
(A.8).

(ii) If ℏ > 1 + 𝜖, 𝜖 ≈ 0, there are states with dominant
observations and an extra mixing state.
Another type of HMM cases is the basic transient,
cyclic model with mostly dominant and privileged
observation value, but also with mixing observations.
For demonstration purpose, we assume there exists
one mixing state 𝑠𝑖+1 in the model, which emits
observations V𝑘 and V𝑙 with equal probability 𝑥, where𝑥 ≤ 0.5. We call 𝑥 a medium probability because it is
close to or equal to a probability of 0.5.
Thus the first-orderMarkovmodel assumption holds:

𝑃 (𝑜𝑡+1 = V𝑙 | 𝑜𝑡 = V𝑘) = ∑
𝑖,𝑗 ̸=𝑖

𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖)
⋅ 𝑃 (𝑞𝑡+1 = 𝑠𝑗 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗)= 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1) + 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡+1= 𝑠𝑖+1) 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2= V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)+ ∑

𝑖,𝑗 ̸=𝑖+1,𝑗 ̸=𝑖+2

𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖)
⋅ 𝑃 (𝑞𝑡+1 = 𝑠𝑗 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡+1 = 𝑠𝑖+1) ,
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c xx

a

c

a

x

b b

d d d d

ot ot+1 ot+1 ot+2

qt qt+1 qt+1 qt+2

· · ·

(a) Approximation by a first-order HMM assumption

c x

a a

bb

d xd cd

ot ot+1 ot+2

qt qt+1 qt+2

· · ·

(b) Approximation by a second-order HMM
assumption

Figure 14: Probability approximation with large probabilities with a mixing state.

𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡+1 = 𝑠𝑗) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗)≈ 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1) + 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡+1= 𝑠𝑖+1) 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2= V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2) = 2𝑐𝑎𝑥.
(A.11)

Similarly,

𝑃 (𝑜𝑡+2 = V𝑚 | 𝑜𝑡+1 = V𝑙)= ∑
𝑖,𝑗 ̸=𝑖

𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)
⋅ 𝑃 (𝑞𝑡+2 = 𝑠𝑗+1 | 𝑞𝑡+1 = 𝑠𝑖+1)
⋅ 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑗+1) = 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1= 𝑠𝑖+1) 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2= V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)+ ∑

𝑖,𝑗 ̸=𝑖+2

𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)
⋅ 𝑃 (𝑞𝑡+2 = 𝑠𝑗 | 𝑞𝑡+1 = 𝑠𝑖+1)

⋅ 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑗) ≈ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1= 𝑠𝑖+1) 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2= V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2) = 𝑐𝑎𝑐.
(A.12)

If we trainwith a first-orderMarkovmodelwith (A.11)
and (A.12), it can be approximated by a first-order
HMM as shown in Figure 14(a); then we have

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚) = 𝑃 (𝑜𝑡 = V𝑘)⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑜𝑡 = V𝑘) 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑜𝑡+1 = V𝑙)≈ 𝑃 (𝑜𝑡 = V𝑘) [𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖)⋅ 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)+ 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡+1 = 𝑠𝑖+1)⋅ 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1)⋅ 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)] ,[𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1)⋅ 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1)⋅ 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)] = 𝑃 (𝑜𝑡 = V𝑘)⋅ (2𝑐𝑎𝑥) (𝑥𝑎𝑐) = 2𝑥𝑎2𝑐3𝑃 (𝑜𝑡 = V𝑘) .

(A.13)



Mathematical Problems in Engineering 23

For a second-order HMM assumption, shown in
Figure 14(b), it holds:

𝑃 (𝑜𝑡 = V𝑘, 𝑜𝑡+1 = V𝑙, 𝑜𝑡+2 = V𝑚)= ∑
𝑖,𝑗,𝑘,𝑖 ̸=𝑗 ̸=𝑘

𝑃 (𝑞𝑡 = 𝑠𝑖, 𝑞𝑡+1 = 𝑠𝑗, 𝑞𝑡+2 = 𝑠𝑘)
⋅ 𝑃 (𝑜𝑖 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗) ,𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑘) = 𝑃 (𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1= 𝑠𝑖+1 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡= V𝑘 | 𝑞𝑡 = 𝑠𝑖) ,𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)+ ∑

𝑖,𝑗,�̃�,𝑗 ̸=𝑖+1,�̃� ̸=𝑖+2

𝑃 (𝑞𝑡 = 𝑠𝑖, 𝑞𝑡+1 = 𝑠𝑗, 𝑞𝑡+1 = 𝑠�̃�) ,
𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑗) 𝑃 (𝑜𝑡+2= V𝑚 | 𝑞𝑡+2 = 𝑠�̃�) ≈ 𝑃 (𝑞𝑡 = 𝑠𝑖) 𝑃 (𝑞𝑡+1 = 𝑠𝑖+1 | 𝑞𝑡= 𝑠𝑖) 𝑃 (𝑞𝑡+2 = 𝑠𝑖+2 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡 = V𝑘 | 𝑞𝑡= 𝑠𝑖) ,𝑃 (𝑜𝑡+1 = V𝑙 | 𝑞𝑡+1 = 𝑠𝑖+1) 𝑃 (𝑜𝑡+2 = V𝑚 | 𝑞𝑡+2 = 𝑠𝑖+2)= 𝑃 (𝑜𝑡 = V𝑘) 𝑎𝑎𝑐𝑥𝑐 = 𝑥𝑎2𝑐2𝑃 (𝑜𝑡 = V𝑘) .

(A.14)

Since 𝑎 and 𝑐 are both large probabilities, the division
of (A.13) and (A.14) (i.e., the emission probability of
the mixing case) is ℏ = 2𝑐, greater than 1. Therefore,
when there is a mixing case, calculations with a first-
order HMM assumption are larger and thus can be
used to distinguish cases with mixing cases to the
cases without.

B. Proof of Theorem 10

We prove that a stationary HMM 𝜆 = (𝜋, 𝑄,𝑀,A,B) can be
reduced to an equivalent simpler HMM �̃� = (�̃�, 𝑄, �̃�, Ã, B̃);
that is, 𝑃𝜆(o1:𝑡) = 𝑃�̃�(o1:𝑡), where 𝑜𝑡 = V𝑘 ∈ 𝑉 and 𝑄 = 𝑄 − 1
if any of cases defined inTheorem 10 occurs.

(i) The state 𝑟 has zero incoming probabilities; that is,𝑎𝑖𝑟 = 0, ∀𝑖 ∈ [1, 𝑄], such that ∀𝑡 ∈ [1, 𝑇], 𝜏𝑡(𝑟) =0, 𝑟 ∈ [1, 𝑄]. The state 𝑟 has no influence on 𝑃𝜆(o1:𝑡);
thus 𝑟 can be removed.

𝑃𝜆 (o1:𝑡) = 𝜏𝑇𝑡 B𝑜𝑡
e, ∀𝜏𝑡 (𝑖) , 𝑖 ∈ [1, 𝑄]

= �̃�𝑇𝑡 B̃𝑜𝑡
e + 𝜏𝑡 (𝑟) 𝑏𝑟𝑘,∀𝜏𝑡 (𝑗) , 𝑗 ∈ [1, 𝑄] \ {𝑟}= 𝑃�̃� (o1:𝑡) .

(B.1)

(ii) Suppose state 𝑟 and 𝑞 have equal incoming and
outgoing transition probabilities; that is, 𝑎𝑖𝑟 = 𝑎𝑖𝑞 and𝑎𝑟𝑖 = 𝑎𝑞𝑖, where 𝑖 ∈ [1, 𝑄]. With the same incoming
probabilities, we also have

𝜏𝑡 (𝑟) = 𝜏𝑡 (𝑞) , 𝑟 ∈ [1, 𝑄] , ∀𝑡 ∈ [1, 𝑇] ; (B.2)

thus 𝑟 and 𝑞 can be merged into a single state 𝑙 in�̃�. The information flow of both states should remain
equal after merging; thus for the merged state 𝑙
𝑎𝑖𝑙 = 𝑎𝑖𝑟 + 𝑎𝑖𝑞 = 2𝑎𝑖𝑟, ∀𝑖 ∈ [1, 𝑄] ∪ 𝑙 \ {𝑟, 𝑞} ,𝑎𝑙𝑖 = 𝑎𝑟𝑖 = 𝑎𝑞𝑖, ∀𝑖 ∈ [1, 𝑄] \ {𝑟, 𝑞} ,
�̃�𝑙𝑘 = 𝑏𝑟𝑘 + 𝑏𝑞𝑘2 ,

𝜏𝑡 (𝑙) = 𝜏𝑡 (𝑟) + 𝜏𝑡 (𝑞) = 2𝜏𝑡 (𝑟) .
(B.3)

For any state 𝑠𝑖 which is not involved in the merging
process, 𝜏𝑖 does not change; that is,

𝜏𝑡 (𝑖) = 𝜏𝑡 (𝑖) , ∀𝑖 ∈ [1, 𝑄] \ {𝑙, 𝑟, 𝑞} . (B.4)

After merging, we have the following:

𝜏𝑡+1 (𝑖) = 𝑎𝑟𝑖𝛼𝑡 (𝑟) + 𝑎𝑞𝑖𝛼𝑡 (𝑞) + ℘= 𝑎𝑟𝑖 (𝛼𝑡 (𝑟) + 𝛼𝑡 (𝑞)) + ℘
= 𝑎𝑟𝑖 (𝑏𝑟𝑘 + 𝑏𝑞𝑘) 𝜏𝑡 (𝑟) + ℘ = 𝑎𝑙𝑖2�̃�𝑙𝑘 𝜏𝑡 (𝑙)2 + ℘,

∀𝑖 ∈ [1, 𝑄] \ {𝑙, 𝑟, 𝑞} ,
(B.5)

where℘ represents themerging influence on the other
states. From (B.4), ℘ remains the same after merging;
that is,

℘ = ∑
𝑗

𝑎𝑖𝑗𝛼𝑡 (𝑗) = ∑
𝑗

𝑎𝑖𝑗𝑏𝑗𝑘𝜏𝑡 (𝑗) = ∑
𝑗

𝑎𝑖𝑗�̃�𝑗𝑘𝜏𝑡 (𝑗) ,
∀𝑖, 𝑗 ∈ [1, 𝑄] \ {𝑙, 𝑟, 𝑞} . (B.6)

With (B.5) and (B.6), we have

𝜏𝑡 (𝑖) = 𝜏𝑡 (𝑖) , ∀𝑖 ∈ [1, 𝑄] ∪ {𝑙} \ {𝑟, 𝑞} . (B.7)

Thus we define I as follows which also remains the
same after merging:

I = ∑
𝑖

𝑏𝑖𝑘𝜏𝑡 (𝑖) = ∑
𝑖

�̃�𝑖𝑘𝜏𝑡 (𝑖) ,
∀𝑖 ∈ [1, 𝑄] ∪ {𝑙} \ {𝑟, 𝑞} . (B.8)
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Finally,

𝑃𝜆 (o1:𝑡) = 𝑏𝑟𝑘𝜏𝑡 (𝑟) + 𝑏𝑞𝑘𝜏𝑡 (𝑞) +I
= (𝑏𝑟𝑘 + 𝑏𝑞𝑘) 𝜏𝑡 (𝑟) +I = 2�̃�𝑙𝑘 𝜏𝑡 (𝑙)2 +I
= 𝑃�̃� (o1:𝑡) .

(B.9)

(iii) We prove that, similar to the previous condition,
states 𝑟 and 𝑞 can be merged to form a simpler
HMM which is equivalent. Since the observation
probabilities are the same,

𝑏𝑟𝑘 = 𝑏𝑞𝑘, ∀𝑟, 𝑞 ∈ [1, 𝑄] , 𝑜𝑡 = V𝑘 ∈ 𝑉,𝑃𝜆 (o1:𝑡) = 𝑏𝑟𝑘𝜏𝑡 (𝑟) + 𝑏𝑞𝑘𝜏𝑡 (𝑞) +I
= 𝑏𝑟𝑘 (𝜏𝑡 (𝑟) + 𝜏𝑡 (𝑞)) +I = �̃�𝑙𝑘𝜏𝑡 (𝑙) +I.

(B.10)

Next, we have to prove that I remains the same by
proving 𝜏𝑡(𝑖) = 𝜏𝑡(𝑖), ∀𝑖 ∈ [1, 𝑄] ∪ {𝑙} \ {𝑟, 𝑞} after
merging. If condition (1) in (iii) states 𝑟 and 𝑞 have
the same incoming probabilities, we have (B.2); thus

𝛼𝑡 (𝑟) = 𝑏𝑟𝑘𝜏𝑡 (𝑟) = 𝑏𝑞𝑘𝜏𝑡 (𝑞) = 𝛼𝑡 (𝑞) (B.11)

such that

𝜏𝑡+1 (𝑖) = 𝑎𝑟𝑖𝛼𝑡 (𝑟) + 𝑎𝑞𝑖𝛼𝑡 (𝑞) + ℘ = 𝑎𝑙𝑖�̃�𝑡 (𝑙) + ℘= 𝜏𝑡+1 (𝑖) , ∀𝑖 ∈ [1, 𝑄] \ {𝑙, 𝑟, 𝑞} . (B.12)

If condition (2) in (iii) holds for states 𝑟 and 𝑞, both
states have the same outgoing probabilities and the
effect on other states is the sum of both (see case (ii)).
Finally, with condition (3) in (iii) the probability of
the third state is affected by the sum of the equivalent
states:

𝜏𝑡+1 (𝑖) = 𝑎𝑟𝑖𝑏𝑟𝑘𝜏𝑡 (𝑟) + 𝑎𝑞𝑖𝑏𝑞𝑘𝜏𝑡 (𝑞) +∑𝑎𝑗𝑖𝑏𝑗𝑘𝜏𝑡𝑗
= 𝑎𝑟𝑖𝑏𝑟𝑘 (𝜏𝑡 (𝑟) + 𝜏𝑡 (𝑞)) +∑𝑎𝑗𝑖𝑏𝑗𝑘𝜏𝑡𝑗,∀𝑖 ∈ [1, 𝑄] \ {𝑟, 𝑞} ;

(B.13)

it follows that 𝜏𝑡+1(𝑖) = 𝜏𝑡+1(𝑖) for 𝑖 different from 𝑟
and 𝑞. Thus

𝑃𝜆 (o1:𝑡) = ∑
𝑖

𝜏𝑡+1 (𝑖) = ∑
𝑖

𝜏𝑡+1 (𝑖) = 𝑃�̃� (o1:𝑡) ; (B.14)

it follows that 𝜏𝑡+1(𝑟) + 𝜏𝑡+1(𝑞) = 𝜏𝑡+1(𝑙).

(iv) We define the state probabilities as 𝑄𝑡(𝑖) = 𝑃𝜆(𝑞𝑡 =𝑠𝑖 | o1:𝑡−1). We define 𝑃𝑜𝑡−1 = 𝑃𝜆(o1:𝑡−1). It follows that𝜏𝑡(𝑖) = 𝑄𝑡(𝑖)𝑃𝑜𝑡−1 . Since the incoming state transition
probabilities for state 𝑟 are constant,𝑄𝑡(𝑟) is constant
as well. We denote this state probability as 𝑞𝑟. Now we
derive the equations that should hold for an HMM�̃� with 𝑄 − 1 states to be equivalent to the given
model. To have 𝑃𝜆(o1:𝑡) = 𝑃�̃�(o1:𝑡) and considering
that𝑄𝑡(𝑖)will fluctuate depending on the observation
sequence (for 𝑖 ̸= 𝑟), 𝑃𝜆(o1:𝑡) = 𝑓(𝑄𝑡(𝑖)) with 𝑓 a
linear function. 𝑃�̃�(o1:𝑡) should mimic this function
by 𝑃�̃�(o1:𝑡) = 𝑓(𝑄𝑡(𝑖)); hence 𝑄𝑡(𝑖) should be a linear
function of 𝑄𝑡(𝑖):

𝑄𝑡 (𝑖) = m𝑄𝑡 (𝑖) + 𝑐𝑖 (B.15)

withm, a vector, and 𝑐𝑖, a constant. It follows that
𝜏𝑡 (𝑖) = m𝜏𝑡 (𝑖) + 𝑐𝑖𝑃𝑜𝑡−1 . (B.16)

For equivalence,

𝑃𝜆 (o1:𝑡) = 𝑃�̃� (o1:𝑡) ⇐⇒ (B.17)

B𝑜𝑘
𝜏𝑡 = B̃𝑜𝑘

�̃�𝑡 ⇐⇒ (B.18)

B𝑜𝑘
𝜏𝑡 = B̃𝑜𝑘

m𝜏𝑡 + 𝑐𝑃𝑜𝑡−1 . (B.19)

These conditions should hold for all probabilities 𝜏𝑡(𝑖),
so the factors of each 𝜏𝑡(𝑖)-term should sum up to
zero, except that we have to consider that 𝜏𝑡(𝑟) =𝑞𝑟𝑃𝑜𝑡−1 and ∑𝜏𝑡(𝑖) = 𝑃𝑜𝑡−1 . For each observation
value, we get 𝑄 − 2 equations for the independent𝜏𝑡(𝑖)-terms and one equation for the constant term.
Note that all constant terms contain the factor 𝑃𝑜𝑡−1
such that the resulting equation is independent of
this term. We end up with 𝑀(𝑄 − 1) conditions on
the parameters. Next, the relation between 𝜏𝑡 and �̃�𝑡
given by (B.16) should hold in time (and therefore
independent of the actual observations). This gives
the following conditions on the parameters:

𝜏𝑡+1 (𝑖) = m𝜏𝑡+1 (𝑖) + 𝑐𝑖𝑃𝑜𝑡 ⇐⇒𝐴𝐵𝑜𝑡𝜏𝑡 (𝑖) = m (AB𝑜𝑡
𝜏𝑡 (𝑖)) + 𝑐𝑖𝑃𝑜𝑡 ⇐⇒ (B.20)

𝐴𝐵𝑜𝑡 (m𝜏𝑡 (𝑖) + 𝑐𝑖𝑃𝑜𝑡−1) = m (AB𝑜𝑡
𝜏𝑡 (𝑖)) + 𝑐𝑖𝑃𝑜𝑡 . (B.21)

This results in 𝑀(𝑄 − 1)(𝑄 − 2) equations. The
equivalent HMM exists when all conditions can be
met. �̃� has (𝑀 − 1)(𝑄 − 1) + (𝑄 − 1)(𝑄 − 2) free
parameters. The linear transformation of the state
probabilities (see (B.16)) contains (𝑄 − 2)(𝑄 − 1) free
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parameters. The conditions for equivalence given by
Eq. (B.19) and Eq. (B.21) result in𝑀(𝑄 − 1) +𝑀(𝑄 −1)(𝑄 − 2) = (𝑄 − 1)(𝑄𝑀 −𝑀) equations on the free
parameters.
For equivalence, there should be no more equations
than free parameters:

(𝑀 − 1) (𝑄 − 1) + 2 (𝑄 − 1) (𝑄 − 2) + (𝑄 − 3)≥ (𝑄 − 1) (𝑄𝑀 −𝑀) ,𝑀𝑄 −𝑀 − 𝑄 + 1 + 2𝑄𝑄 − 6𝑄 + 2 + 𝑄 − 3≥ 𝑄𝑄𝑀 −𝑀𝑄 −𝑀𝑄 +𝑀,2𝑄𝑄 + (𝑀 − 6)𝑄 + 2 ≥ 𝑀𝑄𝑄 − 2𝑀𝑄 +𝑀.
(B.22)

We get equality for 𝑀 = 2. Larger values result in
more equations than free parameters.
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