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ABSTRACT  
 

This paper proposes a generalised model of parallel 
performance. Our research investigates how far a 
generalised approach can obtain the same detailed 
results as current instantiated analysis of specific 
parallel algorithms. Performance is decomposed into 
the different overhead sources, that are expressed 
analytically and we showed how to separate the 
dependency of the algorithm and the system. We 
present a new method to overcome reported 
problems on measurability of overheads and this 
detailed analysis reveals ‘hidden’ sources of 
blocking overhead, due to communication or extra 
computation. The presented approach can lead to an 
automated experimental analysis, in order to support 
performance prediction, straight forward 
development of parallel programs, and can be used in 
partitioning and load balancing algorithms. 
Therefore, it is focussed on the programmers 
viewpoint of parallel processing. 
 
Keywords: Parallel processing, performance 
analysis, speedup, performance overheads. 
 
 
1. INTRODUCTION 
To process a task in parallel, the use of specific, 
instantiated parallel algorithms is still necessary. 
However, for succes, the development of efficient 
parallel programs should be straight forward. We 
want to support this task by automating the 
performance analysis, as performance is the sole 
reason for parallel processing [Miller 2002].  
Therefore we develop a generalised - but detailed – 
analysis. This will serve as the basis of our 
investigation of the possibility to fully automate the 
parallel performance analysis that covers all aspects 
and can interprete the results to obtain full insight in 
the performance. So we want to extract the general 
rules that guides a specific analysis, which is after all 
the goal of all science. 
We intend to serve a program-oriented view [Bull 
‘96] [Pancake ‘99] on a simple, understandable and 
reasonably accurate performance evaluation. 
 
Note that we focus on message-passing architectures 
and ignore memory bottlenecks in our discussion. 
 
The next section outlines a performance metrics for 
investigating its handicaps. 

                                                        
 

 
2. PARALLEL OVERHEAD 
 
Our approach starts by looking for the reasons of 
non-ideal performance: speedup less than the 
number of processors. Figure 1 shows the timeline of 
a typical parallel program on a message passing 
architecture, with its different phases: the 
partitioning of the work, the communication of data, 
the useful work of the processors job, the 
synchronisation and the induced blocking. 
 

 
Figure 1: Parallel Processing 

 
By writing the parallel execution time Tp as the 
perfectly parallelised sequential work plus the 
parallel overhead, speedup can be expressed by 
[Kumar ‘94, Lemeire 2001]:  
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with p the number of processors and Ts the runtime of 
the sequential algorithm. The total parallel overhead 
is the sum of all sources of overhead, the overhead 
terms OTj: 
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Each overhead term is summed over all processors 
(index i) to get an average value and an overall view 
of the overhead. The relative impact of the overhead 
on the speedup is then expressed by the slowdown 
terms STj: 
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Sequential Runtime 
By ignoring memory bottlenecks, the sequential 
runtime can be written as: 

 
instrT instrs .#δ=  (5) 

 
Where δinstr represents the system dependency and 
#instr the work of the program. From the 
programmers viewpoint, the number of instructions 
is the major abstract interpretation of the work, so we 
use this as a useful first order approximation of the 
sequential runtime. 
 
Different Processing Powers 
In systems with heterogenous processors, eq (1) 
doesn’t hold, we therefore have to introduce pi, 
representing the relative processing power with 
respect to a reference processor [Zaki ‘96]: 
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We redefine p as the sum of the processing powers: 
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If the sequential runtime is measured on the 
reference processor, equation (1) can be rewritten: 
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This results in the (expected) conclusion that we 
have to scale all time measurement on a processor 
with pi. This corresponds to the cycle counting of 
[Crovella ‘94]. 
 
 
For using the above performance equations, the next 

section investigates the overhead terms in detail. 
 
3. OVERHEAD TERMS 
 
In our quest for a generalised model, we also plead 
for a complete, orthogonal and meaningful overhead 
inventarisation, as [Crovella ’94 and Bull ‘96]. 
However, our classification differs because we want 
to reflect our experience and we doesn’t use 
measurability [Bull ‘96] as a criterion. We use 
deducibility as a basic requirement and will show in 
the discussion that all our overhead terms are 
deducible from the measured ones. 
We first identify 3 major overhead classes: 
1. Control of parallelism [Bull ‘96]: the extra 

functionality necessary for parallelisation. This 
can be subdivided into the different logical parts 
of the parallel algorithm, like the partitioning, 
the recombination and the synchronisation. The 
synchronisation overhead is defined as the extra 
calculations needed to ensure the correct course 
of the parallel processing, like the calculation of 
the cycle time for the barrier synchronisation in  
parallel discrete event simulation [Lemeire 
2000]. In a similar way, each phase of the 
algorithm is added and the code of these parts 
can easily be instrumated. 

2. Communication: computational overhead (in 
the sense of the loss of cycles [Crovella ‘94]) 
due to the exchange of data between processors. 

3. Blocking: the processors idle time. 
 
Table 1 subdivides these overhead classes, where the 
thick border represent the measurable overheads. 
  

Computation  Blocking 
Control of Parallelism   

OT1 partitioning => OT7 
OT2 recombination => OT8 
OT3 synchronisation => OT9 

Communicatio  
  

OT4 bandwidth => OT10 
OT5 link => OT11 

Tdelay   => OT12 network delay 
Tcongestion => OT13 network blocking 

Work Ts,j 
   

useful parallel work => OT14 Amdahl 
OT6 parallel work anomaly  OT15 global imbalance 

  OT16 temporal imbalance
Table 1: Overhead Inventarisation  

 
The following discussion investigates the influences 
of the algorithm and system on each overhead term. 
 
Computational Overhead 
The computational overhead is the extra computation 
of the parallel algorithm (first column of table 1). 
The partitioning overhead leads to a 
system-independent ratio partitioning versus 
sequential work: 
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Identically, recombination and synchronisation 
results in parallel performance factors: 
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The communication time is adopted as a simple 
linear function of the transmitted data size and a 
constant additive factor representing “link startup” 
overheads. This is a conventional approach in 
analyzing communications for most 
message-passing, distributed systems [Bomans ’89, 
Steed ‘96]. The communication overhead can thus be 
split into the computation proportional to the 
communicated data size (OT4) and the part 
proportional to the setting up of the communication 
links (OT5): 
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We get 2 system performance characteristics (δcomm 
and δlink) and 2 algorithm performance characteristics, 
that again represent the programmers view on the 
impact of communication. Both terms can easily be 
deduced from the measured communication 
overhead by linear curve fitting on the experimental 
data. 
 
The equations (11) – (15) of the slowdown terms 
result in 2 system and 5 algorithm parallel 
performance factors. 
 
In specific cases, the sum of the useful parallel work 
Ts,j differs from the sequential work Ts, as for 
example in discrete optimisation problems [Kumar 
‘94]: 
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We call this the parallel work anomaly OT6, which 
can be positive or negative.  
 
Blocking overhead 
In literature, blocking overhead is mainly traced to 
load imbalances, but this is not the only cause.  [Bull 
‘96] also refers to problems in classifying blocking. 
The time diagram of Fig. 2 (a detail of Fig. 1) shows 
that besides the load imbalance (OT14), blocking can 
also be generated by communication phases (OT10) 
and network delays (OT12). 
In general, every computation and every network 
delay can cause blocking. Partitioning for example 
happens mostly sequentally on the master processor, 
causing blocking on the slave processors, resulting in 
a O(p) dependency of the partioning overhead. This 
can also be the case for synchronisation and 
communication phases, blocking other processors. In 
our opinion, these effects are easily overlooked. 

CPU

OT14

OT10

OT12

CPU

 
Figure 2: blocking source 

 
It is necessary to determine the sources of blocking 
in order to add blocking overhead to its source 
overhead. First, imbalances in computation phases 
are represented by the ratios βI: 
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Where the differences of computational phases are 
measured between synchronisation points.  
But not every imbalance induces an equivalent 
blocking: 
1. Imbalances on different processors can cancel 

each other out. 
2. A processor can simultaneously generate 

blocking on several processors (master 
processor in Fig 1). 

3. Blocking on one processor can be caused by 
several processors (slave processors in Fig 1). 

We express this cause-effect relation by a global 
factor Γ, that can be measured. So, blocking due to 
computational imbalances can be calculated 
according to: 
 

iii OTOT ..6 βΓ=+     (i=1..5)  (18) 
 
Network delays  
Besides computational imbalances, network delays 
are also generating blocking. We separate the 
communication delay -depended on the speed of the 
connections - from the delay caused by network 
congestion. The totalisation of the communication 
delays is: 
 

delaydelay linksT δ.#=    (19) 

delayTOT .12 Γ=   (20) 
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where #links is determined by the algorithm and δdelay 
the average delay of a message. 



For calculating OT13 we need the total congestion 
time Tcongestion, this delay is also proportional to the 
number of communication links: 
 

congestioncongestion linksT δ.#=   (22) 

 
However, for δcongestion it is more difficult to seperate 
algorithm and system dependency. This delay 
depends on the congestion-sensitivity of the 
communication behaviour of system and algorithm: 
the overlap of communication paths, the amount of 
simulataneous communication and how the 
communication maps on the network topology. A 
first order approximation for δcongestion is: 
 
    δcongestion= system-sensitivity*alg-sensitivity  (23) 
 
where system-sensitivity is the average congestion 
delay with random communication and the 
algorithm-sensitivity is measured on an average 
network. Equation (23) thus seperates system- and 
algorithm dependency, but is only a rough 
approximation. For better results, models of the 
communication behaviour is necessary. 
Note that δdelay in Eq (19) is also a first order 
approximation: the average communication delay 
between 2 processors, without any knowledge of the 
specific communication of the algorithm. 
Seperating the influence of algorithm and system 
benefits in porting parallel programs between 
different parallel systems, as all parallel performance 
characteristics can be measured independently. 
 
Workload imbalances 
The most important blocking, due to work 
imbalances, can be subdivided into 3 important parts. 
First, Amdahls law expresses the limitation of 
parallelism, parallel execution time can be written as 
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with s, the serial, unparallelisable fraction of the 
algorithm. Speedup gives then [Barton ‘89]: 
 

sp
pS

).1(1 −+
=   (25) 

 
So, to obtain a uniform analysis, we will represent 
Amdahls law by OT14, the blocking, due to the 
limitation of parallelisation: 
 

spOT ).1(14 −=   (26) 
 

This overhead is different than blocking due to bad 
partioning, which can be split into 2 terms: the global 
and the temporal load imbalances. The first is the 
difference of the total work of the processors, the 
temporal is caused by load fluctuations between 
synchronisation points. Whereas the global load 
imbalance can be reduced by good partitioning, 
temporal load imbalances are more difficult to 
master and can give high slowdowns, especially with 

increasing p, as reported in [Lemeire 2000].  
This subdivision of imbalances is useful for 
partitioning algorithms. This and other benefits of 
our approach are discussed in the next section. 
 
4. BENEFITS 
 
First of all, a generalised  analysis of parallel 
performance makes exchange of results easier and 
more relevant. Moreover, to support the programmer 
with a performance analysis tool, a standard 
overhead classification is necessary. 
Next, the here developed detailed analysis of the 
overhead terms, ends in a clear and complete 
understanding of the parallel performance. This is 
certainly true in the cases of non-trivial and 
unpredictable overhead, for example when the 
blocking is mainly caused by simultaneous 
communication [Parent 2002]. This insight is 
indispensable for efficient optimisation of the 
parallel algorithm. 
 
Parameter and system dependency 
The performance should be known in function of all 
relevant algorithm and system parameters. The 
number of processors p and the problem size W are 
the most general parameters, but each algorithm and 
system adds specific ones. This is necessary for 
scalability analysis [Kumar ‘91], for cost-speedup 
tradeoff [Kumar ‘94], for calculation of the optimal 
speedup, etc.  
A possible way of obtaining the analytic equations 
Speedup=f(parameters) is by experimentally 
measuring the perfomance for different values of the 
parameters. Then, analytic equations should be 
extracted from the experimental data. We expect this 
to be possible due to the detailed overhead 
measurement of our approach, so that each part will 
mostly depend on a simple equation derivable from 
experimental data. 
 
The interpretation layer 
Once all of the overhead terms are calculated, these 
results should be interpreted. Insignificant terms can 
be neglected in order to extract the major bottlenecks. 
The algorithm and system dependency of these 
bottlenecks will then reveal the nature of the parallel 
performance.  
 
Utilisation of S(parameters) 
The major problems at algorithmic level of parallel 
processing are the parallelisation, the load balancing 
[Zaki ‘96], the partioning and the performance 
analysis (fig. 3). We will investigate how far a 
generalised and automated performance analysis can 
serve the necessary performance information for 
parallelisation, load balancing and partitioning 
algorithms. 
 
In this discussion, there should be made a difference 
between embarassingly parallel problems and 
non-trivial parallel algorithms. In the first category, 
the performance analysis can be reduced to the 
communication – computation ratio and is therefore 
easy to compute, the load balancing will be the main 
difficulty. The only benefit of our approach would be 
the automatic analysis of the system dependency of 



the performance. For the second category, particular 
parallel solutions are necessary, resulting 
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Figure 3: Parallel Processing 
 
in specific performance bottlenecks [Kumar ‘94]. 
We will have to proof that our general approach can 
reveal these ‘hot spots’.  
 
An approach of generalisation should lead to a tool 
for an automated performance evaluation, discussed 
in the next section. 
 
5. AUTOMATED ANALYSIS 
 
The standard communication layer Pvm is supported 
by the visual tool XPvm [Kohl ‘95], which 
automatically analyses the computation, 
communication and blocking phases. These are 
measured within the pvm communication layer, so 
no extra code has to be added to the parallel program. 
However, we argued that a more detailed overhead 
analysis is necessary, as implemented in tools like 
VGV [Kim 2002], Ovaltine [Bane 2000], Paradyn 
[Miller ‘94] and SCALEA [Truong 2002]. Where 
this last one resembles best the tool we envisage. 
 
In our approach the computational phases are 
differentiated by code instrumentation, indicating the 
role of each part. Simultaneously, the values of 
relevant algorithm variables are passed, like the 
communication datasize or the number of performed 
iterations. As with SCALEA [Truong 2002], a 
“multiple experiment performance analysis” is 
possible to investigate S(parameters). Herefore, an 
“experiment director” decides what experiments are 
necessary and configures the parameters of system 
and algorithm. The visual part of the tool presents the 
interpreted results in different layers, where each 
layer represents an aspect of the analysis: 

1) The time layer shows all variables of one 
experiment in function of the algorithm 
runtime (figure 1). 

2) The processor layer shows all totalised 
values per processor. 

3) The experiment layer shows all total 
values of an experiment and the 
conclusions about speedup and 
bottlenecks. 

4) The parameter layer shows all values in 
function of the system and algorithm 

parameters. 
Additional interesting features are the possiblity for 
the user to input equations between the parameters 
that can then be compared with the experimental 
results. Also the possibility to perform partial 
measurements in order to extract equations of 
fundamental operations, eg. perform 1 sort iteration 
to measure its time constant.  
 
6. CONCLUSIONS 
 
This paper wants to contribute in the development of 
a generalised parallel performance analysis. The 
parallel overhead sources were studied in detail with 
the criterion of deducibility. This resulted in a better 
understanding of the reasons for blocking and we 
showed that it is a wrong assumption to completely 
dedicate blocking to load imbalances. Then the 
impact of the algorithm and the system were 
seperated by a first order approximation and we 
showed how this can result in an automated analysis. 
The goal of our research is to facilitate parallel 
processing, therefore we are investigating if a 
generalised, standard analysis can provide all 
necessary results for the parallel programmer. The 
here developed approach will serve as the basis of 
this research. First, we will have to proof that we can 
get the same detailed results as an instantiated 
algorithm-specific analysis. Herefore, we will try to 
find again known results, like the performance 
discussions described in [Kumar ‘94]. It is also not 
yet clear if experimental data suffices for obtaining 
analytic dependencies. Next, the desciption of the 
system-dependency is crucial, in certain cases, a 
first-order approximation will fail and higher-order 
analysis will become necessary. Finally, we will 
have to investigate whether these results can be used 
in partitioning and load balancing algorithms. 
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