
Towards a Generalised Performance Analysis of Parallel Processing

Jan LEMEIRE
And

Erik DIRKX
PADX, VUB

Brussels, Belgium
Email: jan.lemeire@vub.ac.be

Unpublished, Submitted for IPDPS 2003, Nice, France

ABSTRACT

This paper proposes a generalised model of parallel
performance. Our research investigates how far a
generalised approach can obtain the same detailed
results as current instantiated analysis of specific
parallel algorithms. Performance is decomposed into
the different overhead sources, that are expressed
analytically and we showed how to separate the
dependency of the algorithm and the system. We
present a new method to overcome reported
problems on measurability of overheads and this
detailed analysis reveals ‘hidden’ sources of
blocking overhead, due to communication or extra
computation. The presented approach can lead to an
automated experimental analysis, in order to support
performance prediction, straight forward
development of parallel programs, and can be used in
partitioning and load balancing algorithms.
Therefore, it is focussed on the programmers
viewpoint of parallel processing.

Keywords: Parallel processing, performance
analysis, speedup, performance overheads.

1. INTRODUCTION
To process a task in parallel, the use of specific,
instantiated parallel algorithms is still necessary.
However, for succes, the development of efficient
parallel programs should be straight forward. We
want to support this task by automating the
performance analysis, as performance is the sole
reason for parallel processing [Miller 2002].
Therefore we develop a generalised - but detailed –
analysis. This will serve as the basis of our
investigation of the possibility to fully automate the
parallel performance analysis that covers all aspects
and can interprete the results to obtain full insight in
the performance. So we want to extract the general
rules that guides a specific analysis, which is after all
the goal of all science.
We intend to serve a program-oriented view [Bull
‘96] [Pancake ‘99] on a simple, understandable and
reasonably accurate performance evaluation.

Note that we focus on message-passing architectures
and ignore memory bottlenecks in our discussion.

The next section outlines a performance metrics for
investigating its handicaps.

2. PARALLEL OVERHEAD

Our approach starts by looking for the reasons of
non-ideal performance: speedup less than the
number of processors. Figure 1 shows the timeline of
a typical parallel program on a message passing
architecture, with its different phases: the
partitioning of the work, the communication of data,
the useful work of the processors job, the
synchronisation and the induced blocking.

Figure 1: Parallel Processing

By writing the parallel execution time Tp as the
perfectly parallelised sequential work plus the
parallel overhead, speedup can be expressed by
[Kumar ‘94, Lemeire 2001]:

s

p

s

T
overhead

p
T
TSpeedup

+
==

1
 (1)

with p the number of processors and Ts the runtime of
the sequential algorithm. The total parallel overhead
is the sum of all sources of overhead, the overhead
terms OTj:

∑=
j

jOToverhead (2)

∑=
p

i
ijj OTOT ,

 (3)

Each overhead term is summed over all processors
(index i) to get an average value and an overall view
of the overhead. The relative impact of the overhead
on the speedup is then expressed by the slowdown
terms STj:

s

jj
j T

OT
SeqTime

rmOverheadTe
ST == (4)

Sequential Runtime
By ignoring memory bottlenecks, the sequential
runtime can be written as:

instrT instrs .#δ= (5)

Where δinstr represents the system dependency and
#instr the work of the program. From the
programmers viewpoint, the number of instructions
is the major abstract interpretation of the work, so we
use this as a useful first order approximation of the
sequential runtime.

Different Processing Powers
In systems with heterogenous processors, eq (1)
doesn’t hold, we therefore have to introduce pi,
representing the relative processing power with
respect to a reference processor [Zaki ‘96]:

reference

i
i CPU

CPU
p = (6)

We redefine p as the sum of the processing powers:

∑= ipp (7)

If the sequential runtime is measured on the
reference processor, equation (1) can be rewritten:

∑=
i

iiss pTT ., (8)

p
pT

T iip
p

.,∑= (9)

s

i j
iij

T

pOT
pS

∑∑
+

=
.

1
,

 (10)

This results in the (expected) conclusion that we
have to scale all time measurement on a processor
with pi. This corresponds to the cycle counting of
[Crovella ‘94].

For using the above performance equations, the next

section investigates the overhead terms in detail.

3. OVERHEAD TERMS

In our quest for a generalised model, we also plead
for a complete, orthogonal and meaningful overhead
inventarisation, as [Crovella ’94 and Bull ‘96].
However, our classification differs because we want
to reflect our experience and we doesn’t use
measurability [Bull ‘96] as a criterion. We use
deducibility as a basic requirement and will show in
the discussion that all our overhead terms are
deducible from the measured ones.
We first identify 3 major overhead classes:
1. Control of parallelism [Bull ‘96]: the extra

functionality necessary for parallelisation. This
can be subdivided into the different logical parts
of the parallel algorithm, like the partitioning,
the recombination and the synchronisation. The
synchronisation overhead is defined as the extra
calculations needed to ensure the correct course
of the parallel processing, like the calculation of
the cycle time for the barrier synchronisation in
parallel discrete event simulation [Lemeire
2000]. In a similar way, each phase of the
algorithm is added and the code of these parts
can easily be instrumated.

2. Communication: computational overhead (in
the sense of the loss of cycles [Crovella ‘94])
due to the exchange of data between processors.

3. Blocking: the processors idle time.

Table 1 subdivides these overhead classes, where the
thick border represent the measurable overheads.

Computation Blocking
Control of Parallelism

OT1 partitioning => OT7
OT2 recombination => OT8
OT3 synchronisation => OT9

Communicatio

OT4 bandwidth => OT10
OT5 link => OT11

Tdelay => OT12 network delay
Tcongestion => OT13 network blocking

Work Ts,j

useful parallel work => OT14 Amdahl
OT6 parallel work anomaly OT15 global imbalance

 OT16 temporal imbalance
Table 1: Overhead Inventarisation

The following discussion investigates the influences
of the algorithm and system on each overhead term.

Computational Overhead
The computational overhead is the extra computation
of the parallel algorithm (first column of table 1).
The partitioning overhead leads to a
system-independent ratio partitioning versus
sequential work:

seq
part

T
OTST

s #
#1

1 == (11)

Identically, recombination and synchronisation
results in parallel performance factors:

seq
recomb

T
OT

ST
s #

#2
2 == (12)

seq
sync

T
OT

ST
s #

#3
3 == (13)

The communication time is adopted as a simple
linear function of the transmitted data size and a
constant additive factor representing “link startup”
overheads. This is a conventional approach in
analyzing communications for most
message-passing, distributed systems [Bomans ’89,
Steed ‘96]. The communication overhead can thus be
split into the computation proportional to the
communicated data size (OT4) and the part
proportional to the setting up of the communication
links (OT5):

instr
bytes

T
OT

ST
cpu

comm

s #
#.4

4 δ
δ

== (14)

instr
links

T
OT

ST
cpu

link

s #
#.5

5 δ
δ

== (15)

We get 2 system performance characteristics (δcomm
and δlink) and 2 algorithm performance characteristics,
that again represent the programmers view on the
impact of communication. Both terms can easily be
deduced from the measured communication
overhead by linear curve fitting on the experimental
data.

The equations (11) – (15) of the slowdown terms
result in 2 system and 5 algorithm parallel
performance factors.

In specific cases, the sum of the useful parallel work
Ts,j differs from the sequential work Ts, as for
example in discrete optimisation problems [Kumar
‘94]:

6, OTTT sjs +=∑ (16)

We call this the parallel work anomaly OT6, which
can be positive or negative.

Blocking overhead
In literature, blocking overhead is mainly traced to
load imbalances, but this is not the only cause. [Bull
‘96] also refers to problems in classifying blocking.
The time diagram of Fig. 2 (a detail of Fig. 1) shows
that besides the load imbalance (OT14), blocking can
also be generated by communication phases (OT10)
and network delays (OT12).
In general, every computation and every network
delay can cause blocking. Partitioning for example
happens mostly sequentally on the master processor,
causing blocking on the slave processors, resulting in
a O(p) dependency of the partioning overhead. This
can also be the case for synchronisation and
communication phases, blocking other processors. In
our opinion, these effects are easily overlooked.

CPU

OT14

OT10

OT12

CPU

Figure 2: blocking source

It is necessary to determine the sources of blocking
in order to add blocking overhead to its source
overhead. First, imbalances in computation phases
are represented by the ratios βI:

i

phases
i

i OT

OTdiff∑
=

)(
β (i=1..5) (17)

Where the differences of computational phases are
measured between synchronisation points.
But not every imbalance induces an equivalent
blocking:
1. Imbalances on different processors can cancel

each other out.
2. A processor can simultaneously generate

blocking on several processors (master
processor in Fig 1).

3. Blocking on one processor can be caused by
several processors (slave processors in Fig 1).

We express this cause-effect relation by a global
factor Γ, that can be measured. So, blocking due to
computational imbalances can be calculated
according to:

iii OTOT ..6 βΓ=+ (i=1..5) (18)

Network delays
Besides computational imbalances, network delays
are also generating blocking. We separate the
communication delay -depended on the speed of the
connections - from the delay caused by network
congestion. The totalisation of the communication
delays is:

delaydelay linksT δ.#= (19)

delayTOT .12 Γ= (20)

cpu

delay

instr
linksST

δ
δ

.
#
#.12 Γ= (21)

where #links is determined by the algorithm and δdelay
the average delay of a message.

For calculating OT13 we need the total congestion
time Tcongestion, this delay is also proportional to the
number of communication links:

congestioncongestion linksT δ.#= (22)

However, for δcongestion it is more difficult to seperate
algorithm and system dependency. This delay
depends on the congestion-sensitivity of the
communication behaviour of system and algorithm:
the overlap of communication paths, the amount of
simulataneous communication and how the
communication maps on the network topology. A
first order approximation for δcongestion is:

 δcongestion= system-sensitivity*alg-sensitivity (23)

where system-sensitivity is the average congestion
delay with random communication and the
algorithm-sensitivity is measured on an average
network. Equation (23) thus seperates system- and
algorithm dependency, but is only a rough
approximation. For better results, models of the
communication behaviour is necessary.
Note that δdelay in Eq (19) is also a first order
approximation: the average communication delay
between 2 processors, without any knowledge of the
specific communication of the algorithm.
Seperating the influence of algorithm and system
benefits in porting parallel programs between
different parallel systems, as all parallel performance
characteristics can be measured independently.

Workload imbalances
The most important blocking, due to work
imbalances, can be subdivided into 3 important parts.
First, Amdahls law expresses the limitation of
parallelism, parallel execution time can be written as

s
s

p Ts
p

TsT .).1(
+

−
= (24)

with s, the serial, unparallelisable fraction of the
algorithm. Speedup gives then [Barton ‘89]:

sp
pS

).1(1 −+
= (25)

So, to obtain a uniform analysis, we will represent
Amdahls law by OT14, the blocking, due to the
limitation of parallelisation:

spOT).1(14 −= (26)

This overhead is different than blocking due to bad
partioning, which can be split into 2 terms: the global
and the temporal load imbalances. The first is the
difference of the total work of the processors, the
temporal is caused by load fluctuations between
synchronisation points. Whereas the global load
imbalance can be reduced by good partitioning,
temporal load imbalances are more difficult to
master and can give high slowdowns, especially with

increasing p, as reported in [Lemeire 2000].
This subdivision of imbalances is useful for
partitioning algorithms. This and other benefits of
our approach are discussed in the next section.

4. BENEFITS

First of all, a generalised analysis of parallel
performance makes exchange of results easier and
more relevant. Moreover, to support the programmer
with a performance analysis tool, a standard
overhead classification is necessary.
Next, the here developed detailed analysis of the
overhead terms, ends in a clear and complete
understanding of the parallel performance. This is
certainly true in the cases of non-trivial and
unpredictable overhead, for example when the
blocking is mainly caused by simultaneous
communication [Parent 2002]. This insight is
indispensable for efficient optimisation of the
parallel algorithm.

Parameter and system dependency
The performance should be known in function of all
relevant algorithm and system parameters. The
number of processors p and the problem size W are
the most general parameters, but each algorithm and
system adds specific ones. This is necessary for
scalability analysis [Kumar ‘91], for cost-speedup
tradeoff [Kumar ‘94], for calculation of the optimal
speedup, etc.
A possible way of obtaining the analytic equations
Speedup=f(parameters) is by experimentally
measuring the perfomance for different values of the
parameters. Then, analytic equations should be
extracted from the experimental data. We expect this
to be possible due to the detailed overhead
measurement of our approach, so that each part will
mostly depend on a simple equation derivable from
experimental data.

The interpretation layer
Once all of the overhead terms are calculated, these
results should be interpreted. Insignificant terms can
be neglected in order to extract the major bottlenecks.
The algorithm and system dependency of these
bottlenecks will then reveal the nature of the parallel
performance.

Utilisation of S(parameters)
The major problems at algorithmic level of parallel
processing are the parallelisation, the load balancing
[Zaki ‘96], the partioning and the performance
analysis (fig. 3). We will investigate how far a
generalised and automated performance analysis can
serve the necessary performance information for
parallelisation, load balancing and partitioning
algorithms.

In this discussion, there should be made a difference
between embarassingly parallel problems and
non-trivial parallel algorithms. In the first category,
the performance analysis can be reduced to the
communication – computation ratio and is therefore
easy to compute, the load balancing will be the main
difficulty. The only benefit of our approach would be
the automatic analysis of the system dependency of

the performance. For the second category, particular
parallel solutions are necessary, resulting

Parallel system

Parallel algorithm

CPU CPU CPU

partitioning performance analysis

Sequential algorithm

Communication
Network

Performance
Characteristics

parameters

load balancing

Performance prediction

synchronisation

Overhead understanding

parallelisation

Figure 3: Parallel Processing

in specific performance bottlenecks [Kumar ‘94].
We will have to proof that our general approach can
reveal these ‘hot spots’.

An approach of generalisation should lead to a tool
for an automated performance evaluation, discussed
in the next section.

5. AUTOMATED ANALYSIS

The standard communication layer Pvm is supported
by the visual tool XPvm [Kohl ‘95], which
automatically analyses the computation,
communication and blocking phases. These are
measured within the pvm communication layer, so
no extra code has to be added to the parallel program.
However, we argued that a more detailed overhead
analysis is necessary, as implemented in tools like
VGV [Kim 2002], Ovaltine [Bane 2000], Paradyn
[Miller ‘94] and SCALEA [Truong 2002]. Where
this last one resembles best the tool we envisage.

In our approach the computational phases are
differentiated by code instrumentation, indicating the
role of each part. Simultaneously, the values of
relevant algorithm variables are passed, like the
communication datasize or the number of performed
iterations. As with SCALEA [Truong 2002], a
“multiple experiment performance analysis” is
possible to investigate S(parameters). Herefore, an
“experiment director” decides what experiments are
necessary and configures the parameters of system
and algorithm. The visual part of the tool presents the
interpreted results in different layers, where each
layer represents an aspect of the analysis:

1) The time layer shows all variables of one
experiment in function of the algorithm
runtime (figure 1).

2) The processor layer shows all totalised
values per processor.

3) The experiment layer shows all total
values of an experiment and the
conclusions about speedup and
bottlenecks.

4) The parameter layer shows all values in
function of the system and algorithm

parameters.
Additional interesting features are the possiblity for
the user to input equations between the parameters
that can then be compared with the experimental
results. Also the possibility to perform partial
measurements in order to extract equations of
fundamental operations, eg. perform 1 sort iteration
to measure its time constant.

6. CONCLUSIONS

This paper wants to contribute in the development of
a generalised parallel performance analysis. The
parallel overhead sources were studied in detail with
the criterion of deducibility. This resulted in a better
understanding of the reasons for blocking and we
showed that it is a wrong assumption to completely
dedicate blocking to load imbalances. Then the
impact of the algorithm and the system were
seperated by a first order approximation and we
showed how this can result in an automated analysis.
The goal of our research is to facilitate parallel
processing, therefore we are investigating if a
generalised, standard analysis can provide all
necessary results for the parallel programmer. The
here developed approach will serve as the basis of
this research. First, we will have to proof that we can
get the same detailed results as an instantiated
algorithm-specific analysis. Herefore, we will try to
find again known results, like the performance
discussions described in [Kumar ‘94]. It is also not
yet clear if experimental data suffices for obtaining
analytic dependencies. Next, the desciption of the
system-dependency is crucial, in certain cases, a
first-order approximation will fail and higher-order
analysis will become necessary. Finally, we will
have to investigate whether these results can be used
in partitioning and load balancing algorithms.

7. REFERENCES

Bane, M.K. and Riley, G.D., "Automatic Overheads

Profiler for OpenMP Codes". In proceedings of
EWOMP2000 conference, Edinburgh, Scotland,
2000.

Barton, M.L. and Whiters, G.R., “Computing
performance as a function of the speed, quantity,
and cost of the processors.” Supercomputing, pp.
759-764, 1989.

Bomans, L. and Roose D., “Benchmarking the
iPSC/2 Hypercube Multiprocessors”,
Concurrency: Practice and Experience, Vol. 1, No.
1, pp.3-18, September 1989.

Bull, J.M. “A Hierarchical Classification of
Overheads in Parallel Programs”, in Proceedings
of First IFIP TC10 International Workshop on
Software Engineering for Parallel and
Distributed Systems, Chapman Hall, pp. 208-219,
March 1996.

Crovella, M. E. and Leblanc, T.J., “Parallel
Performance Prediction using Lost Cycles
Analysis”, in Proc. of Supercomputing ’94, IEEE
Computer Society, 1994.

Kim, S.W., Voss, M. et al. “VGV: Supporting
Performance Analysis of Object-Oriented Mixed
MPI/OpenMP Parallel Applications”, in Proc. of
the 16th IPDPS Conf., IEEE, California, April

2002.
Kohl, J.A. and Geist, G.A.. “XPVM 1.0 User’s

Guide”. Tech. Rep. 12981, Computer Science and
Mathematics Division, Oak Ridge National
Laboratory, April 1995.

Kumar, V., Grama, A., Gupta, A. and Karypsis, G.,
Introduction to Parallel Computing. Design and
Analysis of Algorithms. Benjamin Cummings,
California, 1994.

Kumar, V. and Gupta, A., “Analysis of scalability of
parallel algorithms and architectures: a survey.” in
Proc. of the 5th International Conference on
Supercomputing, pp. 396-405, ACM, Cologne,
Germany, 1991

Lemeire, J. and Dirkx, E., “Performance Factors in
Parallel Discrete Event Simulation”, in Proc. of
the 15th European Simulation Multiconference
(ESM 2001), Prague, 2001.

Miller, Barton P., et all. “Performance Evaluation,
Analysis and Optimization”, In Proc. of the 8th
International Euro-Par Conf., p. 131, Paderborn,
Germany, August 2002.

 Miller, B.R, Hollingsworth, J.K. and Callaghan,
M.D., "The Paradyn Parallel Performance
Measurement Tools and PVM", in: J. Dongarra, B.
Tourancheau (Eds.), "Environments and Tools for
Parallel Scientific Computing", SIAM Press
(1994).

Pancake, C.M. “Applying Human Factors to the
Design of Performance Tools”, in Proc. of the 5th
Euro-Par Conf., Springer, 1999.

Steed, M.R. and Clement, M.J. “Performance
Prediction of PVM Programs”, Proc. of the 10th
Int’l Parallel Processing Symposium, april 1996.

Truong, H-L and Fahringer, T. “SCALEA: A
Performance Analysis Tool for Distributed and
Parallel Programs.” In Proc. of the 8th
International Euro-Par Conf., Paderborn,
Germany, August 2002.

Zaki, M.J., Wei Li and S. Parthasarathy,
“Customized dynamic load balancing for a
network of workstations”, Proc. of the High
Performance Distributed Computing (HPDC'96),
IEEE, 1996.

