
 1

Causal Models for Parallel Performance Analysis

Jan Lemeire1, Sam Maes2, Erik Dirkx1

1Parallel Systems lab,
http://parallel.vub.ac.be

2Computational Modeling lab,
http://como.vub.ac.be/

Vrije Universiteit Brussel,
Pleinlaan 2, 1000 Brussels, Belgium

{jlemeire, erik}@info.vub.ac.be
sammaes@vub.ac.be

Abstract

This paper proposes causal models for enhancing the

performance analysis of parallel programs. Causal
models make the relations among the variables of interest
explicit. By applying this statistical methodology to
performance analysis we envisage to further automate the
performance modeling task and to present the user a
clear and understandable analysis. It is a flexible
approach, since new environment variables can easily be
integrated and performance can be estimated with
incomplete knowledge. Independency among variables is
the key information, therefore it can help the construction
of a performance model that separates application and
system dependency.

Keywords: Performance analysis, parallel performance,
causal models, causality, performance tools.

1. Introduction

For efficient parallel processing, the developer must
master various aspects influencing the performance,
ranging from high-level software issues to low-level
hardware characteristics. The performance analysis is
nowadays supported by various performance tools that
automatically instrument code, collect performance data
during program execution and provide a post-mortem
analysis that relates the hardware performance data to the
program code areas (SCALEA, VAMPIR, KappaPi,
Pablo, AIMS, etc.). Current challenges are further
automation, tackle complex situations (eg. in GRID
environments) and to give the software developer
understandable results with a minimum of learning
overhead [APART working group: http://www.fz-
juelich.de/apart].

We believe that causal models are a useful
representation for the performance analysis, capture the
relevant questions about performance and can guide
statistical analysis of experimentally retrieved
performance data

Causality is a part of the domain of statistics that
studies causal relations. It is widely used in social
sciences like economy and sociology, biology, machine
learning,… However, causality is a highly debated topic
among statisticians [Pearl 2000], since a causal relation
represents more than the basic statistical correlation
among probabilistic variables. However, causality cannot
be observed directly, only statistical correlations can,
where “a correlation being the observational shadow of
the underlying causal process” [Shipley 2000].

A causal model consists of a graph, which offers a
clear and understandable representation of the model and
shows the direct relations among variables. These
relations are closely related to the underlying process.
Therefore, causal models are closer to the human mental
models than other more traditional mathematical or
statistical models [Pearl 2000]. The models can be used
for prediction, but also for reasoning about the effects of
changes - called interventions - of the model [Pearl 2000].

Section 2 defines causal models, in section 3 we explore
how causal models about performance can be
constructed. Section 4 is dedicated to the automatic
discovery of causality in experimental data. Section 5
explains additional properties of the causal approach and
section 6 gives an overview of its utility.

2. Causal models

Figure 1 shows an example of a medical causal model,

in which diseases (middle row) are influenced by
environmental factors (top row) and generate symptoms
(bottom row). All relations are probabilistic and mean
that chances of a variable increase if one of its ascendants
increase.

A causal model consists of a Directed Acyclic Graph
(DAG) over a set V={V1,…, Vn} of vertices, representing
variables of interest, and a set E of directed edges, or
arrows, that connect these vertices. The interpretation of
such a graph has two components, probabilistic and
causal [Tian 2002]. The probabilistic interpretation view

 2

the arrows as representing probabilistic dependencies
among the corresponding variables, and the missing
arrows as representing conditional independence
assertions:

 Figure 1. Medical Example of a Causal Model

Each variable is independent of all its non-descendants
given its direct parents in the graph. In the example of
Figure 1, having positive X-ray results depend on being a
smoker, but not anymore if it is known if the patient has
cancer, than both variables become independent.

The assumptions amount to asserting that the joint
probability function P(v)=P(v1,…, vn) factorizes
according to the product

∏=
i

ii pavPvP)|()((1)

Where pai denotes the set of parents of variable vi in the
graph.

The causal interpretation views the arrows as
representing causal influences between the corresponding
variables. In this interpretation, the factorization of (1)
still holds, but the factors are further assumed to represent
autonomous data-generation processes, that is, each
conditional probability P(vi|pai) represents a stochastic
process by which the values of Vi are chosen in response
to the values pai, and the stochastic variation of this
assignment is assumed independent of the variations in all
other assignments. Moreover, each assignment process
remains invariant to possible changes in assignment
processes that govern other variables in the system. This
modularity assumption enables us to predict the effect of
interventions, whenever interventions are described as
specific modifications of some factors in the product of
(1).

Probabilistic independence of X and Y upon

conditioning on Z, denoted Ind(X, Z, Y), implies that

Ind(X, Z, Y) P(X,Y|Z)=P(X|Z).P(Y|Z). (2)

For linear dependencies among the variables, this
dependency can be measured by its correlation
coefficient. The arrows represent direct causal relations,
meaning that they cannot become probabilistically
independent upon conditioning on some other set of
vertices.

A causal model implies all relations to be of causal
nature. A causal relation is an irreflexive, transitive and
asymmetrical (rain creates mud, but mud will not create
rain) relation. It also has the properties of productivity
(the effect is ‘produced’ by the cause) [Bunge 1979, p.
48], locality, it obeys the markov condition (for model A
→ B → C, if B is blocked, than A doesn’t cause C) and
represents a stable and autonomous physical mechanism
(“which is conceivable to change one relationship without
changing the others”) [Pearl 2000]. These properties
make it possible to reason about interventions (Pearl
therefore introduced the do(x) operator) and in some
cases answer questions like “what if I increase the cache
memory” or “what if I use another sort method”, without
actually performing these actions.

2.1. Information-Theoretic View

Probabilistic dependency can be rewritten, in terms of

Information Theory, as the mutual information I(X,Y) of X
and Y, which is the reduction in uncertainty or entropy of
X when knowing Y [Cover 1991]:

)|()():(YXHXHYXI −= (3)

It is zero, when both variables are independent. The

entropy of a discrete random variable X with alphabet A
and probability mass function p(x) is defined as

∑
∈

−=
Ax

xpxpXH)(log)()((4)

Entropy is defined as the amount of uncertainty of a
stochastic variable. The conditional entropy H(Y|X) is
defined as

∑
∈

=−=
By

yYXHypYXH)|()()|((5)

where B is the alphabet of random variable Y. The mutual
information can then be rewritten as

∑∑
∈ ∈

=
Ax By ypxp

yxpyxpYXI
)()(

),(log),():((6)

Conditional independence, I(X;Y|Z), is defined in the

same way.

 3

3. Causal Models of Performance

Our research investigates how a performance analysis can
benefit from the approaches offered by statistics, and
more specific causality theory. We believe that traditional
statistics can be beneficial in the in-depth investigation of
experimental data; we come back to this point later. Many
relations in performance models are of causal nature.
If we want to detect program performance problems, then
we seek the ‘true’ reasons of bad performance. See for
example performance analysis tools as Kojak [Mohr
2003], Paradyn or KappiPi [Espinosa 1998], which
searches for inefficiency patterns, like ‘blocked sender’,
‘lack of parallelism’, ‘barrier problems’,… These are
questions about causality.

However, if we define the efficiency of a parallel
program as E = S/p (with S the speedup and p the number
of processors), then we cannot speak about a causal
relation. E is not ‘caused’ by S or p. This is a functional
relation, S could also be derived from E, namely S=pE.
But this does not hold for causal relations (note: naturally
S and E are correlated, but this is because they share the
same causes) When A → B holds, we can write B = xA or
A =B/x, but the information that B is generated by A is
lost. The → operator expresses more than a pure
functional relation, which we will indicate in the
diagrams with just a straight line.

Figure 2 represents a causal model of performance
related data concerning a quicksort running on a
sequential computer. It represents a first-order
approximated performance model for the sequential
runtime Tcomp of a quicksort. #op is the number of basic
compare-swap operations, which is determined by the
array size n and the initial order of the elements. The
compare and swap statements correspond to a number of
basic instructions #instrop, that together with the
processor’s clock frequency fclock determine the time for 1
operation T1op. In the example of Fig. 2, once we know
the number of iterations #op, Tcomp becomes independent
of n or the initial order. This is a reduction of the
dependency complexity of the model.

Figure 2. Simplified Causal Performance Model of
Quicksort.

3.1. Parallel Performance Analysis

The models in the analysis of parallel applications can

also be written as a causal diagram, as shown in Figure 3
[Lemeire 2004]. Three main phases of the parallel
runtime Tpar are identified: computation, communication
and idling.

Figure 3. A Causal Model of Parallel Performance.

The parallel performance metrics uses an overhead

quantification based on the lost-cycle approach [Crovella
’94]. It aims at attributing each part of the overhead
runtime (the so-called lost cycles) to the purpose it was
spent. This can be viewed as questions about causality.
Program parameters and system characteristics (grey
ovals) influence the quantities of the overheads and
therefore are also of causal nature.

3.2. Models for Network Performance

In the study of network performance - for analysis or
prediction - communication delays should be attributed to
the different steps of the communication process, like
machine latency, transfer time, network contention, flight

 4

time, etc [Badia 2003]. Correct understanding of the
correct origins – or causes – is indispensable. However,
when low level issues, like specific protocol behavior,
window delays or chatter are the reasons, the task of
identifying them becomes extremely difficult [NetPredict
2003], since they are not always fully understood and
cannot be measured directly. The understanding of these
message delays can also be viewed as the search for
causes.

4 Discovery of Causal Relations

The construction of causal models out of experimental
data is widely investigated since the pioneer work of both
Verma and Pearl [1991] and Spirtes, Glymour and
Scheines [1993] in the early 90’s. Algorithms are based
on the d-separation criterion, which gives the necessary
and sufficient conditions for two vertices in a graph to be
probabilistically independent upon conditioning on some
other vertices. This indicates that there is no direct causal
relationship and no edge in the graph, as explained in
section 2 [Pearl 2000, pp. 16-19]. Various tools that
implement these algorithms exist, like TETRAD
[http://www.phil.cmu.edu/projects/tetrad/] or PNL
[http://www.intel.com/research/mrl/pnl/]. Most
algorithms work for discrete variables. For continuous
variables however, the correct model is expected to be
multivariate normal and approximately linear, since they
use statistical correlations for testing conditional
independence. Performance models are not always linear
and a mixture of discrete and continuous variables
We applied the construction algorithms of TETRAD on
experimental data gathered from a quicksort of an array
of n elements of different types (short, integer, float and
double). The performance results for the computation
time Tcomp are shown in Figure 4.

Figure 4. Quicksort runtime versus array size for
different element types.

The impact of both parameters is obvious. However, the
causal discoveries algorithm of TETRAD only find a
relation between n and Tcomp, as can be seen for the PC
algorithm in Figure 5. This can be explained by the
diagrams of Figure 6, that show that the array size
dependency is quasi linear, while the runtime dependency
of the element type is less clear.

Figure 5. Causal structure learning out of experimental
data with the PC algorithm of Tetrad 4.3.

Figure 6. Quicksort runtime versus array size (left) and
element type (right).

We will have to enlarge the scope of the algorithms, by
using a more general test of conditional independence, as
given by information-theoretic definitions (see 2.1).

5 Advanced Properties of Causal

Performance Models

For successful application of causal models in the study
of parallel performance, two more requirements should be

 5

met, namely flexibility and the possibility to reduce
submodel dependencies.

5.1. Flexibility

At each stage, it should be possible to refine models with
extra information [Lemeire 2004]. Figure 7 shows an
extended version of the quicksort performance model of
Figure 2. Memory overheads, denoted by Tmemory, were
added to the model, they are caused by the application’s
data size, memory usage and the processor’s memory
capacity and bandwidth.

Figure 7. Detailed Causal Performance Model of
Quicksort.

The modeler can integrate additional information into

the model, like the cache misses (measured with for
example the PAPI tool for accessing hardware counters
on microprocessors [Browne 2001]) or the processor type
, as shown in Figure 7. Through statistical analysis, the
dependencies with the other variables can be found and
the predictive qualities of this extra information can refine
the performance model.
On the other hand, not all variables should be known for
performance prediction. By the use of statistics, the
expectancies can be calculated for unknown variables.

In this way, it should be possible to create flexible,
hierarchical models.

5.2. Separation of application and system
dependency

 The ultimate goal of the performance analysis is to be
able to predict the runtime of an application on any
system without having to run tests on it. This requires
however that there exist independent application and
system characteristics and a functional relation to
calculate the resulting performance. This is the case in the
simplified example of Fig. 2, where these characteristics

are #op, #cyclesop for the application and fcl for the
system. The equation becomes simply:

 Tcomp=#op.#cyclesop.1/fcl. (7)

This first-order approximation however only holds for
small problem sizes. When memory overheads come into
play, as in the extended model of Figure 7, the separation
is much less trivial [Snavely 2002].
This requires the construction of submodels that are
independent of either algorithm or system. This
dependency information is exactly what causal models
represent.

6 Utility

The utility of causal models is twofold: they should

support the modeler as well as the user.

6.1. Support of the performance modeling process

1. Model validation: validation of the (in)dependency
assumptions made by the modeler.

2. Reuse of autonomous relations: for example, the
statistical analysis of several experiments on a certain
network would give an overall model for the
communication time versus the data size.

3. Detection of abnormal, unexpected dependencies,
like non-homogeneous situations or high overheads.
The statistical model of point 2 can be used to warn
for communication delays above the average, in for
example GRID environments [Balis 2004].

4. Flexibility is a necessary requirement, as discussed in
the previous section.

6.2. Presentation of a clear performance report

In order to understand complex situations with many
variables and dependencies, a structured representation of
the relations is required. Causal models furthermore
correspond to physical mechanisms and enable the
filtering of the relevant information: the statistical
analysis will reveal the impact of every factor, so that the
most influential factors can be highlighted.
Besides the explanational facilities, the causal models
could be exploited to reason about the performance and
answer questions like: Which part of the application gives
space for adequate optimization? What is the most
efficient upgrade of the system?

7. Conclusions

Recent developments by statisticians and computer
scientists in the field of causality show promising results

 6

for being applied in the construction of performance
models. Causal modeling and the corresponding statistical
analysis make explicit what is done by the scientist when
analyzing performance. This makes further automation
possible.

However, current tools do not support the analysis of
models as we encounter in the field of (parallel)
performance analysis. Our current ongoing work
therefore focuses on the extension of current algorithms
for discovery of causal relations.

8. References

Badia, Rosa M. et all., DIMEMAS: Predicting MPI

applications behavior in Grid environments,
Workshop on Grid Applications and Programming
Tools (GGF8), 2003.

Balis, B. et all. Performance Evaluation and Monitoring
of Interactive Grid Applications, In Proc. of the 11th
EuroPVM/MPI Conference, Budapest, Hungary, Sept.
19-22, 2004.

Browne, S., Dongarra, J.J., Garner, N., Ho G., and Mucci,
P. A Portable Programming Interface for
Performance Evaluation on Modern Processors,
International Journal of High Performance Computing
Applications, 14:3 (Fall 2000), pp. 189-204.

Bunge, Mario. Causality and Modern Science, third
revised edition, Dover Publications, New York, 1979.

Cover, Thomas M. and Thomas, Joy A. Elements of
Information Theory, Wiley, 1991.

Crovella, M. E. and Leblanc, T.J.: Parallel Performance
Prediction using Lost Cycles Analysis. In: Proc. of
Supercomputing ’94, IEEE Computer Society (1994).

Espinosa, A., Margalef, T. and Luque, E., Automatic
Detection of PVM Program Performance Problems. In
Proc. of the 5th PVM/MPI Conference, pp. 19-26,
1998.

Lemeire, J., Crijns, A., Crijns, J. and Dirkx, E., A
Refinement Strategy for a User-Oriented Performance
Analysis. In Proc. of the 11th EuroPVM/MPI
Conference, Budapest, Hungary, Sept. 19-22, 2004.

Mohr, B., and Wolf, F. KOJAK - A Tool Set for
Automatic Performance Analysis of Parallel
Programs. Euro-Par Conf. 2003: 1301-1304.

NetPredict, Inc. Common Mistakes in Performance
Analysis, White Paper, NetPredict Inc, March 2003.

Pearl, J. Causality. Models, Reasoning and Inference.
Cambridge University Press, Cambridge, 2000.

Shipley, Bill. Cause and Correlation in Biology,
Cambridge University Press, 2000.

Snavely, A. et all., A framework for performance
modeling and prediction. In Proc. of the 2002
ACM/IEEE conference on Supercomputing,
Baltimore, Maryland pp. 1-17, 2002.

Spirtes, P., Glymour, C. and Scheines, R. Causation,
prediction and search. New York, Springer-Verlag,
1993.

Tian, J. and Pearl, J. A general identification condition for
causal effects. In Proc. of the national conference on
Artificial intelligence, Edmonton, Canada, pp. 567-
573, 2002.

Verma, T. and Pearl, J. Equivalence and synthesis of
causal models. In Proc. of the 6th workshop on
uncertainty in Artifical Intelligence, Cambridge, MA,
1991.

