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Abstract 

 
This paper proposes causal models for enhancing the 

performance analysis of parallel programs. Causal 
models make the relations among the variables of interest 
explicit. By applying this statistical methodology to 
performance analysis we envisage to further automate the 
performance modeling task and to present the user a 
clear and understandable analysis.  It is a flexible 
approach, since new environment variables can easily be 
integrated and performance can be estimated with 
incomplete knowledge. Independency among variables is 
the key information, therefore it can help the construction 
of a performance model that separates application and 
system dependency. 
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1. Introduction 
 

For efficient parallel processing, the developer must 
master various aspects influencing the performance, 
ranging from high-level software issues to low-level 
hardware characteristics. The performance analysis is 
nowadays supported by various performance tools that 
automatically instrument code, collect performance data 
during program execution and provide a post-mortem 
analysis that relates the hardware performance data to the 
program code areas (SCALEA, VAMPIR, KappaPi, 
Pablo, AIMS, etc.). Current challenges are further 
automation, tackle complex situations (eg. in GRID 
environments) and to give the software developer 
understandable results with a minimum of learning 
overhead [APART working group: http://www.fz-
juelich.de/apart]. 

We believe that causal models are a useful 
representation for the performance analysis, capture the 
relevant questions about performance and can guide 
statistical analysis of experimentally retrieved 
performance data 

Causality is a part of the domain of statistics that 
studies causal relations. It is widely used in social 
sciences like economy and sociology, biology, machine 
learning,… However, causality is a highly debated topic 
among statisticians [Pearl 2000], since a causal relation 
represents more than the basic statistical correlation 
among probabilistic variables. However, causality cannot 
be observed directly, only statistical correlations can, 
where “a correlation being the observational shadow of 
the underlying causal process” [Shipley 2000].  

A causal model consists of a graph, which offers a 
clear and understandable representation of the model and 
shows the direct relations among variables. These 
relations are closely related to the underlying process. 
Therefore, causal models are closer to the human mental 
models than other more traditional mathematical or 
statistical models [Pearl 2000]. The models can be used 
for prediction, but also for reasoning about the effects of 
changes - called interventions - of the model [Pearl 2000].  
 
Section 2 defines causal models, in section 3 we explore 
how causal models about performance can be 
constructed. Section 4 is dedicated to the automatic 
discovery of causality in experimental data. Section 5 
explains additional properties of the causal approach and 
section 6 gives an overview of its utility. 
 
2. Causal models 

 
Figure 1 shows an example of a medical causal model, 

in which diseases (middle row) are influenced by 
environmental factors (top row) and generate symptoms 
(bottom row). All relations are probabilistic and mean 
that chances of a variable increase if one of its ascendants 
increase. 

A causal model consists of a Directed Acyclic Graph 
(DAG) over a set V={V1,…, Vn} of vertices, representing 
variables of interest, and a set E of directed edges, or 
arrows, that connect these vertices. The interpretation of 
such a graph has two components, probabilistic and 
causal [Tian 2002]. The probabilistic interpretation view 
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the arrows as representing probabilistic dependencies 
among the corresponding variables, and the missing 
arrows as representing conditional independence 
assertions:  

 

 
 

 Figure 1. Medical Example of a Causal Model 

Each variable is independent of all its non-descendants 
given its direct parents in the graph. In the example of 
Figure 1, having positive X-ray results depend on being a 
smoker, but not anymore if it is known if the patient has 
cancer, than both variables become independent. 

The assumptions amount to asserting that the joint 
probability function P(v)=P(v1,…, vn) factorizes 
according to the product 

∏=
i

ii pavPvP )|()(  (1) 

Where pai denotes the set of parents of variable vi in the 
graph.  

The causal interpretation views the arrows as 
representing causal influences between the corresponding 
variables. In this interpretation, the factorization of (1) 
still holds, but the factors are further assumed to represent 
autonomous data-generation processes, that is, each 
conditional probability P(vi|pai) represents a stochastic 
process by which the values of Vi are chosen in response 
to the values pai, and the stochastic variation of this 
assignment is assumed independent of the variations in all 
other assignments. Moreover, each assignment process 
remains invariant to possible changes in assignment 
processes that govern other variables in the system. This 
modularity assumption enables us to predict the effect of 
interventions, whenever interventions are described as 
specific modifications of some factors in the product of 
(1). 

 
Probabilistic independence of X and Y upon 

conditioning on Z, denoted Ind(X, Z, Y), implies that  
 
Ind(X, Z, Y)  P(X,Y|Z)=P(X|Z).P(Y|Z).     (2) 
 

For linear dependencies among the variables, this 
dependency can be measured by its correlation 
coefficient. The arrows represent direct causal relations, 
meaning that they cannot become probabilistically 
independent upon conditioning on some  other set of 
vertices. 

A causal model implies all relations to be of causal 
nature. A causal relation is an irreflexive, transitive and 
asymmetrical (rain creates mud, but mud will not create 
rain) relation. It also has the properties of productivity 
(the effect is ‘produced’ by the cause) [Bunge 1979, p. 
48], locality, it obeys the markov condition (for model A 
→ B → C, if B is blocked, than A doesn’t cause C) and 
represents a stable and autonomous physical mechanism 
(“which is conceivable to change one relationship without 
changing the others”) [Pearl 2000]. These properties 
make it possible to reason about interventions (Pearl 
therefore introduced the do(x) operator) and in some 
cases answer questions like “what if I increase the cache 
memory” or “what if I use another sort method”, without 
actually performing these actions. 

 
2.1. Information-Theoretic View 

 
Probabilistic dependency can be rewritten, in terms of 

Information Theory, as the mutual information I(X,Y) of X 
and Y, which is the reduction in uncertainty or entropy of 
X when knowing Y [Cover 1991]:  

 
)|()():( YXHXHYXI −=      (3) 

 
It is zero, when both variables are independent. The 

entropy of a discrete random variable X with alphabet A 
and probability mass function p(x) is defined as 
 

∑
∈
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xpxpXH )(log)()(             (4) 

Entropy is defined as the amount of uncertainty of a 
stochastic variable. The conditional entropy H(Y|X) is 
defined as 

 

∑
∈

=−=
By

yYXHypYXH )|()()|(          (5) 

where B is the alphabet of random variable Y. The mutual 
information can then be rewritten as 

 

∑∑
∈ ∈

=
Ax By ypxp

yxpyxpYXI
)()(

),(log),():(      (6) 

 
Conditional independence, I(X;Y|Z), is defined in the 

same way. 
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3. Causal Models of Performance 
 
Our research investigates how a performance analysis can 
benefit from the approaches offered by statistics, and 
more specific causality theory. We believe that traditional 
statistics can be beneficial in the in-depth investigation of 
experimental data; we come back to this point later. Many 
relations in performance models are of causal nature.   
If we want to detect program performance problems, then 
we seek the ‘true’ reasons of bad performance. See for 
example performance analysis tools as Kojak [Mohr 
2003], Paradyn or KappiPi [Espinosa 1998], which 
searches for inefficiency patterns, like ‘blocked sender’, 
‘lack of parallelism’, ‘barrier problems’,… These are 
questions about causality. 
 
However, if we define the efficiency of a parallel 
program as E = S/p (with S the speedup and p the number 
of processors), then we cannot speak about a causal 
relation. E is not ‘caused’ by S or p. This is a functional 
relation, S could also be derived from E, namely S=pE. 
But this does not hold for causal relations (note: naturally 
S and E are correlated, but this is because they share the 
same causes) When A → B holds, we can write B = xA or 
A =B/x, but the information that B is generated by A is 
lost. The → operator expresses more than a pure 
functional relation, which we will indicate in the 
diagrams with just a straight line. 
 

Figure 2 represents a causal model of performance 
related data concerning a quicksort running on a 
sequential computer. It represents a first-order 
approximated performance model for the sequential 
runtime Tcomp of a quicksort. #op is the number of basic 
compare-swap operations, which is determined by the 
array size n and the initial order of the elements. The 
compare and swap statements correspond to a number of 
basic instructions #instrop, that together with the 
processor’s clock frequency fclock determine the time for 1 
operation T1op. In the example of Fig. 2, once we know 
the number of iterations #op, Tcomp becomes independent 
of n or the initial order. This is a reduction of the 
dependency complexity of the model. 

 

 
 

Figure 2. Simplified Causal Performance Model of 
Quicksort. 
 
3.1. Parallel Performance Analysis 

 
The models in the analysis of parallel applications can 

also be written as a causal diagram, as shown in Figure 3 
[Lemeire 2004]. Three main phases of the parallel 
runtime Tpar are identified: computation, communication 
and idling.  

 

 
 
Figure 3. A Causal Model of Parallel Performance. 
 
The parallel performance metrics uses an overhead 

quantification based on the lost-cycle approach [Crovella 
’94]. It aims at attributing each part of the overhead 
runtime (the so-called lost cycles) to the purpose it was 
spent. This can be viewed as questions about causality. 
Program parameters and system characteristics (grey 
ovals) influence the quantities of the overheads and 
therefore are also of causal nature. 

 
3.2. Models for Network Performance 
 
In the study of network performance - for analysis or 
prediction - communication delays should be attributed to 
the different steps of the communication process, like 
machine latency, transfer time, network contention, flight 
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time, etc [Badia 2003]. Correct understanding of the 
correct origins – or causes – is indispensable. However, 
when low level issues, like specific protocol behavior, 
window delays or chatter are the reasons, the task of 
identifying them becomes extremely difficult [NetPredict 
2003], since they are not always fully understood and 
cannot be measured directly. The understanding of these 
message delays can also be viewed as the search for 
causes. 
 
4 Discovery of Causal Relations 
 

The construction of causal models out of experimental 
data is widely investigated since the pioneer work of both 
Verma and Pearl [1991] and Spirtes, Glymour and 
Scheines [1993] in the early 90’s. Algorithms are based 
on the d-separation criterion, which gives the necessary 
and sufficient conditions for two vertices in a graph to be 
probabilistically independent upon conditioning on some 
other vertices. This indicates that there is no direct causal 
relationship and no edge in the graph, as explained in 
section 2 [Pearl 2000, pp. 16-19]. Various tools that 
implement these algorithms exist, like TETRAD 
[http://www.phil.cmu.edu/projects/tetrad/] or PNL 
[http://www.intel.com/research/mrl/pnl/]. Most 
algorithms work for discrete variables. For continuous 
variables however, the correct model is expected to be 
multivariate normal and approximately linear, since they 
use statistical correlations for testing conditional 
independence. Performance models are not always linear 
and a mixture of discrete and continuous variables 
We applied the construction algorithms of TETRAD on 
experimental data gathered from a quicksort of an array 
of n elements of different types (short, integer, float and 
double). The performance results for the computation 
time Tcomp are shown in Figure 4.  
 

 
 

Figure 4. Quicksort runtime versus array size for 
different element types. 

 

The impact of both parameters is obvious. However, the 
causal discoveries algorithm of TETRAD only find a 
relation between n and Tcomp, as can be seen for the PC 
algorithm in Figure 5. This can be explained by the 
diagrams of Figure 6, that show that the array size 
dependency is quasi linear, while the runtime dependency 
of the element type is less clear. 
 

 
 

Figure 5. Causal structure learning out of experimental 
data with the PC algorithm of Tetrad 4.3. 

 
 

  
 

Figure 6. Quicksort runtime versus array size (left) and 
element type (right). 

 
We will have to enlarge the scope of the algorithms, by 
using a more general test of conditional independence, as 
given by information-theoretic definitions (see 2.1). 
 
 
5 Advanced Properties of Causal 

Performance Models 
 
For successful application of causal models in the study 
of parallel performance, two more requirements should be 
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met, namely flexibility and the possibility to reduce 
submodel dependencies. 
 
5.1. Flexibility 
 
At each stage, it should be possible to refine models with 
extra information [Lemeire 2004]. Figure 7 shows an 
extended version of the quicksort performance model of 
Figure 2. Memory overheads, denoted by Tmemory, were 
added to the model, they are caused by the application’s 
data size, memory usage and the processor’s memory 
capacity and bandwidth.  
 

 
 

Figure 7. Detailed Causal Performance Model of 
Quicksort. 

 
The modeler can integrate additional information into 

the model, like the cache misses (measured with for 
example the PAPI tool for accessing hardware counters 
on microprocessors [Browne 2001]) or the processor type 
, as shown in Figure 7. Through statistical analysis, the 
dependencies with the other variables can be found and 
the predictive qualities of this extra information can refine 
the performance model.  
On the other hand, not all variables should be known for 
performance prediction. By the use of statistics, the 
expectancies can be calculated for unknown variables. 

In this way, it should be possible to create flexible, 
hierarchical models.  
 
5.2. Separation of application and system 
dependency 
 
 The ultimate goal of the performance analysis is to be 
able to predict the runtime of an application on any 
system without having to run tests on it. This requires 
however that there exist independent application and 
system characteristics and a functional relation to 
calculate the resulting performance. This is the case in the 
simplified example of Fig. 2, where these characteristics 

are #op, #cyclesop for the application and fcl for the 
system. The equation becomes simply: 
 
  Tcomp=#op.#cyclesop.1/fcl.         (7) 
 
This first-order approximation however only holds for 
small problem sizes. When memory overheads come into 
play, as in the extended model of Figure 7, the separation 
is much less trivial [Snavely 2002]. 
This requires the construction of submodels that are 
independent of either algorithm or system. This 
dependency information is exactly what causal models 
represent. 
 
6 Utility 

 
The utility of causal models is twofold: they should 

support the modeler as well as the user. 
 

6.1. Support of the performance modeling process 
 

1. Model validation: validation of the (in)dependency 
assumptions made by the modeler. 

2. Reuse of autonomous relations: for example, the 
statistical analysis of several experiments on a certain 
network would give an overall model for the 
communication time versus the data size. 

3. Detection of abnormal, unexpected dependencies, 
like non-homogeneous situations or high overheads. 
The statistical model of point 2 can be used to warn 
for communication delays above the average, in for 
example GRID environments [Balis 2004]. 

4. Flexibility is a necessary requirement, as discussed in 
the previous section.  

 
6.2. Presentation of a clear performance report 

 
In order to understand complex situations with many 
variables and dependencies, a structured representation of 
the relations is required. Causal models furthermore 
correspond to physical mechanisms and enable the 
filtering of the relevant information: the statistical 
analysis will reveal the impact of every factor, so that the 
most influential factors can be highlighted. 
Besides the explanational facilities, the causal models 
could be exploited to reason about the performance and 
answer questions like: Which part of the application gives 
space for adequate optimization? What is the most 
efficient upgrade of the system? 
 
7. Conclusions 
 

Recent developments by statisticians and computer 
scientists in the field of causality show promising results 
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for being applied in the construction of performance 
models. Causal modeling and the corresponding statistical 
analysis make explicit what is done by the scientist when 
analyzing performance. This makes further automation 
possible.  

However, current tools do not support the analysis of 
models as we encounter in the field of (parallel) 
performance analysis. Our current ongoing work 
therefore focuses on the extension of current algorithms 
for discovery of causal relations. 
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