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Abstract. What variables should be used to get explanations (of AI systems) that
are easily interpretable? The challenge to find the right degree of abstraction in
explanations, also called the ’variables problem’, has been actively discussed in
the philosophy of science. The challenge is striking the right balance between
specificity and generality. Concepts such as proportionality and exhaustivity are
investigated and discussed. We propose a new and formal definition based on
Kolmogorov complexity and argue that this corresponds to our intuitions about
the right level of abstraction. First, we require that variables are appropriately
uniform, so that they cannot be decomposed into less abstract variables without
increasing the Kolmogorov complexity. Next, uniform variables are optimal for
an explanation if they can compose its domain without increasing its Kolmogorov
complexity. For this, the concepts K-decomposability and K-composability of
sets are defined. Explanations of a certain instance should encompass a maximal
set of instances without being K-decomposable. Although Kolmogorov complex-
ity is uncomputable and depends on the choice of programming language, we
show that it can be used effectively to evaluate and reason about explanations,
such as in the evaluation of XAI methods.
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1 Introduction

How do we best explain a particular outcome of a binary function in terms of the prop-
erties of the input? One of the challenges in answering this question is finding the right
variables to use in these explanations. Intuitively, we prefer an explanation that is not
too specific, nor too abstract. Consider a Convolutional Neural Network (CNN) that is
trained to recognize coffee in images and assume the network successfully recognizes
coffee in all the images shown in Figure 1. An explanation for the identification of cof-
fee in image (a) is the dark brown color and the foam. But if image (b) also leads to
a positive identification, the property ‘dark brown’ is too specific; ‘brown’ is sufficient
and seems to better capture the behaviour of the network. Similarly, image (c) is linked
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Fig. 1. Images of coffee that are correctly identified by a trained Convolutional Neural Network.

to coffee by the shape of the cup and the steam, but a very specific description of the
cup may lead us to believe that the system generalizes less than it does if the more ab-
stract cup in image (d) is also classified as a coffee cup.This can be observed again in
image (e) where the ‘flower pattern’ in the foam may not be necessary for identification
if image (f) is also classified correctly. Vice versa, ‘rounded shapes’ may be too gen-
eral a variable for the explanation, even if it matches these examples. The final image
illustrates this again, where one may use ‘breakfast’ is too abstract for image (g). An
explanation is preferred that points to the actual properties of the image that lead to the
identification of coffee. For image (g) this is ‘a croissant, newspaper and a cup’.

However, it is a challenge to specify formally what this optimal degree of abstraction
is and on which concepts, called variables in the philosophical literature, an explanation
should be based. This is a general problem for theories of explanation [5, 7], but one
that reasserts itself in the field of XAI [6]. Especially in the philosophy of science
there has been earlier work on precisely this question, which we survey in section 2.
Our aim in this paper is to build upon this work by giving a formal definition of this
degree of abstraction using Kolmogorov complexity theory. We therefore first introduce
Kolmogorov complexity theory in section 3. In section 4 we point towards a failure
of current approaches and provide an alternative formal specification for the optimal
degree of abstraction of a variable in an explanation. While this will not give us a way
to find the absolute best set of concepts to use, it does provide a way to compare two
competing explanations along the dimension of the abstractness of their variables. We
then show in section 5 how this definition applies and resolves the current problems.
In the final section we illustrate how this theoretical discussion applies to XAI methods
for explanations.

With the context of XAI as part of the motivation for formalizing the discussion on
abstraction, we will consider the binary classifier b which outputs 0 or 1 for each input
x ∈ X . x is a multi-dimensional feature vector. The set of all inputs for which b outputs
a 1 is called the positive subset, which we denote with Sb. We return to this in section 3,
but b is also called the indicator function for set Sb. We then use the following definition
of an explanation as applied to black box algorithm b: “An explanation of output y1 of
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b, resulting from input x1 is: a generalization G where G(x1) = b(x1) ± δ, with δ
a chosen minimum accuracy of G such that furthermore, there is at least one set of
inputs x2 where G(x2) = b(x2) ± δ and b(x1) ̸= b(x2)" [6, p.567], based on [18].
An explanation of an instance is based on the properties of the image that ensured the
outcome. Whether the property is present in the image determines the outcome of b.
A property thus corresponds to a set of images and an explanation G to a subset SG

of the positive subset Sb. The problem for this paper is then to determine what the
optimal variables are in the function G and how large the subset SG should be. For this,
we will turn to algorithmic information theory. First, however, we will discuss related
(philosophical) work on this issue.

2 Related work

There is a wide-ranging literature on explanations of AI systems [1]. Methods showing
how important different features were for the output [15, 13] are one option, as are
methods extracting rules (e.g. decision trees) to describe the (local) behaviour of the
AI system and counterfactuals showing what should be changed to the input to achieve
the desired output [11]. And while there is still disagreement about how we should
define explanations, both in the computer science literature [9] and in the philosophical
literature on explanation [3], the overall goal on all of these definitions is to let recipients
of explanations better understand the AI system.

In all of these cases, too, explanations require the use of variables: either the input
variables of the system, or a set of (often more abstract) variables that are closer to the
variables humans are used to working with. Examples of the latter are so-called concept-
based explainability methods, such as Concept Activation Vectors [8, 20] which attempt
to extract (some of) the patterns that a convolutional neural network uses to arrive at
the output classification. Alternative methods use crowd workers to attribute concepts
to highlighted regions in images [2, 4], thus abstracting from highlighted individual
pixels to more abstract concepts. This makes explanations not only more interpretable,
as humans are more used to reasoning with concepts such as chairs and tables than we
are with sets of pixel values. It also makes explanations more general, as more abstract
variables typically cover a wider set of cases.

This is important, as a common standard for the quality of an explanation is how
general the explanation is [6]. In other words, “powerful explanations should, just like
any predictor, generalize as much as possible" [11, p.36]. However, finding the point
where an explanation has generalized as much as possible is difficult. The ‘variables
problem’ [7, 17] in the philosophy of explanation shows the challenge of identifying the
right degree of abstraction for explanations. To illustrate with an example commonly
used in philosophical literature, there is an intuitive sense that of the following three
explanations the second is the best, being neither too specific nor too general:

(1) The pigeon pecked (rather than only looked) because it was presented with a scarlet
stimulus (rather than some other stimulus)

(2) The pigeon pecked (rather than only looked) because it was presented with a red
stimulus (rather than some other stimulus)
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(3) The pigeon pecked (rather than only looked) because it was presented with some-
thing stimulating (rather than some other thing)

Specifying why this is so is non-trivial, but by now two approaches can be found.
[5] suggests that we opt for the most abstract variables that are still specific, where
abstraction and specificity are defined as follows:

An explanation with explanans variable(s) e1 is more abstract than an explana-
tion with explanans variable(s) e2 when the actual value of e1 is implied by the
actual value of e2, but not vice versa

An explanation with explanans variable(s) e1 is more specific than an ex-
planation with explanans variable(s) e2 when e2 is a function f of e1 and
other variables e3, . . . en such that for e1 = e1,A neither e1 nor G(e2) =
G(f(e1, e3 . . . en)) change value if the variables e3, . . . en are varied.

These definitions apply as follows: using red leads to a better explanation than using
scarlet because it is more abstract (if scarlet = 1 then red = 1, but not vice versa) without
being more specific. On the other hand, using red leads to a better explanation than using
something stimulating because it is more specific (something stimulating can be seen as
a function f(red, food, tickle) = red ∨ food ∨ tickle where the value of f remains
the same as long as red = 1).

[19] takes a slightly different approach to the same problem, stating that a re-
quirement of proportionality instead motivates the choice of variable. This principle
of proportionality states that “ther things being equal, we should prefer those causal
claims/explanations that more fully represent or exhibit those patterns of dependence
that hold" [19, p.247]. It then functions as follows: using scarlet suggests the follow-
ing relation: if scarlet = 1 then peck = 1, if scarlet = 0 then peck = 0. The latter part
is false, as the bird will also peck when other shades of red are presented. Hence, the
explanation that if red = 1 then peck = 1, if red = 0 then peck = 0 is better.

3 The Kolmogorov complexity of functions

To introduce Kolmogorov complexity, we consider first how we can describe an indi-
cator function of a set. If a set contains only random elements then a description must
rely on an enumeration of all elements. As they are random, they will have, in general,
no properties in common. In most cases, however, we are interested in sets that mean
something, of which the elements have properties in common on which the indicator
function can be built. Then, the implementation of the indicator function will become
shorter than a literal enumeration. This can be formalized by algorithmic information
or ‘Kolmogorov complexity’, a concept put forward as an objective measure of com-
plexity.

3.1 Definition of Kolmogorov complexity

First we define the Kolmogorov complexity (KC) of a single object:
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Definition 1. For a binary sequence x ∈ {0, 1}∗, the algorithmic information K(x)
(or ‘Kolmogorov complexity’) is defined as the length of the shortest program on a
universal Turing machine that generates x and then stops:

K(x) = min
p:U(p)=x

l(p) (1)

with U a universal computer, and l(.) the length in bits of a binary sequence.

The shortest program is denoted with p∗x.
To illustrate this definition, consider the following two sequences of 1000 bits:

– 01111000011001100111 . . . 00001111100100011101
– 00010001000100010001 . . . 00010001000100010001

The first string is random, while the second repeats “0001”. K(x) is maximal for
the random string, namely 1000 bits. The shortest program literally encodes the string.
The second string can be described by program REPEAT 250 TIMES "0001" and
needs far fewer bits. The program exploits the ‘regularities’ (patterns) of the string to
compress its description. It is these regularities that make up the meaningful information
we are interested in. This same idea can then be applied to indicator functions:

Definition 2. The Kolmogorov complexity of a binary function b that takes as argu-
ment x ∈ X and returns a 0 or a 1, is defined as the length of the shortest program p∗

that when executed by a universal Turing machine together with any argument x ∈ X
returns the same output as b(x): U(p∗, x) = b(x). The shortest program is denoted as
p∗b ,

Definition 3. The Kolmogorov complexity of a set S ⊆ X is defined as the Kolmogorov
complexity of the indicator function of S.

3.2 Limitations and practical use of Kolmogorov complexity

There are two problems to apply Kolmogorov complexity to practical problems [10].
First, Kolmogorov complexity is not computable. It is proven that there is no algorithm
that given a bitstring will output the length of the shortest program and halts. For a lot of
cases, however, the shortest program is indisputable, as will be shown in the discussed
examples. Still, for more intricate programs it is not trivial, as for example in the case
of neural networks trained to detect objects – which quickly use millions of parameters.
Instead of trying to identify the absolute shortest implementation (and with that the
absolute best concept to use in the explanation), we will therefore use the definitions to
compare and validate implementations in the same way as explanations are compared
in philosophical literature.

Second, Kolmogorov complexity depends on the choice of programming language
up to a constant. Since one programming language can be translated into another one
with a program of length C, the difference of describing x in both languages, can be
maximally be C. Therefore, theorems often have to incorporate this constant [12]. This
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can be seen in the additivity rule (which we need later) for the joint Kolmogorov com-
plexity has the following formulation:

K(x, y)
+
= K(x) +K(y|p∗x) , (2)

where K(y|p∗x) denotes the conditional Kolmogorov complexity of y, given the shortest
program p∗x of x. As usual in algorithmic information theory, +

= denotes equality up to
a constant that is independent of the string x, but does depend on the Turing machine.

4 Abstraction and undecomposable concepts

The underlying idea behind the formal definitions that we introduce below is that vari-
ables should be both general and, at the same time, undecomposable. In other words,
the variable should track a single property that can be tested for in a canonical manner.
To see how this differs from the abstraction - specificity suggestion of [5], it helps to
consider the following two variations on the pigeon example.

4.1 Illustration of the challenge

First, imagine a scenario where a pigeon pecks at both red and yellow stimuli. In this
case, we could use an explanation with the two colour variables separately, arriving at
the explanation:

(4) The pigeon pecked (rather than only looked) because it was presented with either a
red or a yellow stimulus (rather than some other stimulus)

Or we could introduce a new, more abstract variable redow = red∨ yellow and use
the following explanation:

(5) The pigeon pecked (rather than only looked) because it was presented with a redow
stimulus (rather than some other stimulus)

If we compare these two explanations there seems to be a clear preference for (4),
where no new abstract variable is introduced to cover the two cases in one go. However,
judging by the criteria of [5] we should in fact prefer (5). The variable is more abstract
(yellow = 1 implies redow = 1 and red = 1 implies redow = 1) but not more specific (red
changes values if the value of yellow is changed and vice versa).

To get to the idea that it is the uniformity of the concept, consider a second variation
on the same example. Here, there is a range of different colours that a pigeon responds
to. What they all have in common is that they are bright colours, such as red, orange
and yellow. So, we again have two options for an explanation. Either we use the more
abstract variable bright colour or we use a disjunction of less abstract variables:

(6) The pigeon pecked (rather than only looked) because it was presented with a red or
an orange or a yellow stimulus (rather than some other stimulus)
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(7) The pigeon pecked (rather than only looked) because it was presented with a bright
coloured stimulus (rather than some other stimulus)

Both [5] and [19] will correctly classify (7) as the better explanation. Still, it seems
that the abstract concept in (7) is preferable whereas the abstract concept in (5) is not,
even though in principle both are specifiable as disjunctions of incompatible colour
concepts. So what is the difference? In our view, it is that there is a separate, unde-
composable way to define bright colour. Specifically, colours can be defined using
the HSV colour space (https://en.wikipedia.org/wiki/HSL_and_HSV),
where the V-component defines the brightness using a single numerical value. There is
no such unifying measure for redow, which could be why we find this a less illuminating
concept to use.

4.2 Formal definition of uniformity

Formalizing this idea of having a unifying measure and undecomposable definition
available for a concept we can appeal to Kolmogorov complexity to define when a
concept meets this requirement. To make this translation we have to interpret concepts
as sets, where the set has as members every element to which the concept applies. The
question of whether the corresponding concept is appropriately uniform can then be
approached in terms of the Kolmogorov complexity of the description of the set:

Definition 4. A set S is K-decomposable if there exist different and non-empty subsets
S1 and S2 such that:

– S = S1 ∪ S2, and
– K(S)

+
= K(S1) +K(S2|p∗S1

).

The conditional in the second term of the last equation indicates that the identification
of the square by p∗S1

can be reused for describing S2. If they are nevertheless of equal
complexity as S, then signifies that S1 and S2 contain no additional information that
is not already required to describe S. K-decomposability thus refers to the possibility
of decomposing a set into multiple sets without increasing the descriptive complexity.
The description of the total set can be decomposed into a separate description of sub-
sets. Note that this definition has the same form as the additivity rule (Equation (2)
in section 3.3), which always holds for Kolmogorov complexities. In the case of K-
decomposability, however, we only get additivity if the set decomposition does not
bring in new ‘elements’ on the right side of the equation that are not present on the
left side.

Applied to the example of something stimulating we can see that it is in fact K-
decomposable. The three variables red, food, and tickle are identified with three sep-
arate functions and so K(S)

+
= K(red) + K(food |p∗red) + K(peck |p∗red , p∗food). The

Kolmogorov complexity of the set S is the sum of the KC of the three subsets. On the
other hand, a concept that is appropriately uniform cannot be decomposed. Consider
the set of all squares. To decompose this set, we would have to segregate the squares
according to a certain criterion. For example, we could apply a threshold on their size
to distinguish small from large squares. But then we have to include this criterion in
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the indicator functions of both subsets, which makes the total description larger than
the original one and invalidates the decomposition. Thus, we can plausibly say that
‘square’ is not K-decomposable.

Using the notion of K-decomposable sets we can then define when a variable V is
uniform, in accordance with the informal characterization above:

Definition 5. V is a uniform variable if the set SV that corresponds to V is not K-
decomposable

In other words, the variables that we are looking for are those that attach to a unified
characteristic, such as red or brightness, guaranteed by the fact that the concepts used
are not K-decomposable. Importantly, for any explanation and element x there is a wide
range of uniform variables that can be used. A specific x could be both red (one uniform
variable), and a rectangle (a second uniform variable) and a large object (a third uniform
variable) at the same time. Furthermore, variables at various levels of abstraction can be
uniform: scarlet is uniform, as is red and colour. Which uniform variables one chooses
then depends on the specific explanation (and to be more precise the domain of that
explanation), to which we turn next.

4.3 Formal definition of optimal variable in an explanation

To arrive at our final definition of optimal variables for an explanation we then also need
the notion of K-composability. The idea here is that in explanations we often use more
than one variable to capture the set of inputs X for whose outputs Y the explanation
is supposed to provide additional insight. The interaction of these different variables
needs to be accounted for, as they should be complementary. To capture this aspect we
therefore define K-composability as follows:

Definition 6. A set S is K-composable if there exist different and non-empty subsets S1

and S2 such that:

– S1 \ S2 ̸= ∅,
– S2 \ S1 ̸= ∅,
– S = S1 ∩ S2, and
– K(S)

+
= K(S1) +K(S2|p∗S1

).

Using both K-decomposability (based on the union of sets) and K-composability
(based on the intersection of sets) we can then define when variables are of the optimal
degree of abstraction for an explanation of an input x. Here, we will say that an expla-
nation G(x) of b(x) regarding element x aims to cover as large a set as possible while
still using only patterns (of dependence) relevant to x.

Definition 7. An optimal explanation G of x has domain SG ⊆ Sb, where SG is a
maximal non-K-decomposable set which contains x

For optimal explanations of x there is then a guarantee that SG contains as many inputs
as possible, while it does not include irrelevant information for x (as in this case it
would be possible to K-decompose SG).

Our definition then states that the optimal variables together identify this subset SG

of inputs in a complementary fashion, building on the definition of a uniform variable.
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Definition 8. Uniform variables V1, . . . Vn, associated with set SV1
, . . . SVn

, are opti-
mal variables in explanation G(x) of input x for b(x) if the set SG associated with
the explanation is such that the sets SV1 , . . . SVn corresponding to uniform V1, . . . Vn

K-compose SG.

Figure 2 helps to visualize what this definition states. Our choice of SG as the max-
imal subset of Sb that is non-K-decomposable and contains x is illustrated on the left.
On the right we see how an explanation of x is then built up using optimal variables.
The composability requirement states that if we use different variables in an explana-
tion then they have to overlap, to together characterize SG. However, they have to do so
in complementary fashion (and with a minimal number of variables). So, these sets will
be similar to those seen on the right-hand side in the image. For example, if SG is the
set of all big, red rectangles then it is K-composed of the sets SV 1: ‘rectangles’, SV 2:
‘big objects’ and SV 3: ‘red objects’. The requirement that the difference sets are non-
empty helps to exclude the possibility to further compose the set of rectangles based on
the set of ‘quadrilaterals’ or ‘polygons’. This is not a valid composition of ‘rectangles’
by our definition since ‘rectangles’ minus ‘quadrilaterals’ is the empty set. This, to-
gether with the requirement that the Kolmogorov complexity does not increase through
K-composition, helps prevent the move to more abstract concepts.

Fig. 2. An explanation G explains inputs in subset SG of the positive subset Sb (left), and does
so using the intersection of global variables SV 1, SV 2 and SV 3 (right).

5 Application of the definition to the pigeon case

If we apply this proposed definition to the examples depicted in Section 4.1, we see that
it tracks exactly the judgements we are inclined to make. According to our definition, we
should prefer red over scarlet because the resulting explanation covers a larger subset
(namely all red stimuli rather than only the scarlet stimuli), while red can be defined
in simpler (i.e. shorter) terms than as a disjunction of the different shades of red. The
subset SG is in this case the set of all red stimuli, assuming that x is a specific red
stimulus. While we could describe this with variables of different shades of red (which
are uniform variables), this increases the Kolmogorov complexity of the set as red is
not K-decomposable. Hence, we should prefer red over a disjunction of shades of red.
We should also prefer it over scarlet, as scarlet does not K-compose SG on its own.
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Finally, more abstract variables such as colour are ruled out as composition of more
abstract variables is more complex than simply using red (violating the last condition
of K-composition). However, had the bird pecked only at scarlet stimuli, our definition
would state that scarlet is the optimal variable to use. In that case, Sb would not have
contained other shades of red and so likewise SG ⊆ Sb would have been restricted
to the specific set of scarlet stimuli, which are then captured by the uniform variable
scarlet.

Furthermore, we should prefer red over something stimulating in the situation where
the bird pecks at a wider range of stimuli. Despite the broader reach of something stim-
ulating it is K-decomposable in terms of red, food and tickle. As a result, we first fix
SG as one of the maximal non-K-decomposable subsets, in the case of a red stimulus
this will be red. This means that something stimulating, the variable that covers all Sb,
is ruled as being too abstract. Instead, we should look at the minimal number of non-
K-decomposable sets that together K-compose the smaller set SG, which is simply
red again. Should we want a more general explanation of the behaviour of the pigeon
then we can simply go for the disjunction of the explanations corresponding to our K-
decomposed subsets: red ∨ food ∨ tickle. For the follow-up examples we get again the
desired results: red is preferable to redow because redow is K-decomposable in terms of
red and yellow (which affects the choice of SG), whereas bright coloured is preferable
because it is not K-decomposable, again assuming that the set of positive instances that
we aim to explain is in the first case that of red and yellow stimuli and in the second
case that of bright coloured stimuli.

To consider this in the pigeon example just discussed, we can imagine a setting in
which the brain of the pigeon is studied and neural signals are measured. Based on these
measurements it is observed that when a particular part of the brain gets stimulated it
cause the pecking. In such a context, with the knowledge of what’s going on in the brain,
‘something stimulating’ can provide a good (uniform) explanation for the pecking. For
each of the different stimuli (a bright color, food or tickle), a similar process in the
brain can be observed. This then changes what the optimal variable is, as it shows that
something stimulating is in fact not K-decomposable as we initially thought.

6 Explanations in AI

A popular option in XAI for explaining black-box algorithms is to fit decision trees to
them, which aim to approximate the input-output relation of b [11, 16]. They offer a
human-understandable description, thanks to the explicit variables and clear decision
paths (for trees that are not too large). Can they represent/describe the level of abstrac-
tion we defined in this paper? Decision trees are based on clauses that form conditions
on the input variables by conjunctions, negations, and disjunctions. Also rule-based
systems are based on such clauses.

Figure 3 shows the decision tree for the Pigeon2 example in which the color might
be red or yellow. The decision tree provides an explanation for all positive instances,
where each node is an optimal variable for an explanation and each leaf represents the
right level of abstraction for an explanation of an individual outcome (an SG-set).
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Fig. 3. Decision tree for the Pigeon2 example (Red or Yellow).

In this example, the decision tree is the shortest description of the partitioning. But
this is not always true: for more regular structures, a shorter description is possible.
Consider the partitioning of a chessboard into 64 squares. Describing all black squares
separately results in a large tree. An algorithm can do this in a more succinct way by
exploiting the regularities of a chessboard. The KC of the black squares is smaller than
a literal enumeration of all squares.

Likewise, the set of images containing a pattern, such as a rectangle which is rec-
ognized by a NN, cannot be explained succinctly by a decision tree. The NN employs
multiple layers of various operations applied to the image pixels to achieve the recog-
nition. This cannot be described by simple clauses. Patterns are the regularities that
reduce the KC, while constraints on parameters do not reduce the KC. Consider the set
Sb of the rectangles of a certain size and color. An explanation for Sb is K-composed
of 3 optimal variables: the rectangular shape, the size and the color. The variables can
be extracted without increasing the KC. The first one describes the pattern. The second
and third are constraints. Such constraints can be formed by conditions on the input
variables, but also conditions on the parameters of the patterns. Conditions can be de-
scribed succinctly by a decision tree or rules. Patterns, however, cannot. To overcome
this challenge, [14] propose to use decision trees containing prototypes that are repre-
sentative for a set of similar instances. By checking against the prototype in the node it
is possible to classify a case using more abstract concepts.

7 Conclusion

How abstract should variables in explanations be? We have proposed an account based
on Kolmogorov complexity which, although not computable, gives us a formal defini-
tion of the optimal degree of abstraction. As shown in section 5, our formal definition
handles the examples in the philosophical literature well. We have done so by first
defining the notion of a uniform, i.e. undecomposable, variable. Which of these uni-
form variables is optimal for a given explanation is then based on what variables can
be combined to characterize the patterns of dependence captured by the explanation
with minimal Kolmogorov complexity. Ultimately, therefore, we approach the problem
of abstraction by arguing that the optimal degree of abstraction is that which leads to
the least complex description of the patterns and constraints in the explanation. As ab-
straction is precisely meant to simplify description, we consider it a natural link to say
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that the optimal degree of abstraction is that which optimally reduces the complexity of
descriptions.
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