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Abstract

This work presents an in-depth study of the analytical models for the performance estimation of GPUs. We show that the models’
analytical equations can be derived from a pipeline analogy that models each GPU subsystem as an abstract pipeline. We call this
the Pipeline model. All the equations are reformulated based on generic pipeline characteristics, namely throughput and latency.
Our analysis shows equivalences between models and reveals substantial problems with some of the equations. Rather than relying
on equations, the Pipeline model is then used to simulate the behavior of kernel executions based on the same hardware parameters
as the analytical models. The simplicity of the model and relying on simulation mean that this approach needs less assumptions,
is more comprehensive and is more flexible. More performance aspects can be taken into consideration. The different models are
compared and evaluated empirically with 14 kernels of the Rodinia benchmark suite with varying occupancy. The Pipeline model
gives an average MAPE of 24, while the average MAPE values of the other models lie between 27 and 136.
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1. Introduction

Although GPUs offer tremendous potential performance, the
current implementations of non-trivial algorithms only reach a
small portion of the peak performance. In particular, the effi-
ciency of their execution is degraded by many performance lim-5

iters. A performance model is often used to predict and under-
stand the performance and efficiency of GPU programs. Several
models have been proposed in the last decade, for overviews
see Lopez-Novoa et al. (2015) and Madougou et al. (2016).
This paper focuses on the analytical models, from which we10

extract the essential concepts on which their equations are—
often implicitly—based. These concepts are used to construct
the novel Pipeline model, which provides a unifying framework
in which existing and new modeling research can be situated.

The models try to estimate the performance of the execu-15

tion of code, called kernel, by a great number of threads on
massively parallel hardware. An instance of a kernel execu-
tion is called a kernel thread or work item. Processors consist
of a number of cores, which for the greatest part operate in-
dependently from each other. On NVIDIA GPUs, cores are20

referred to as streaming multiprocessors (and a CUDA core is
a processing unit within the multiprocessor), while AMD uses
the OpenCL term Compute Unit. The basic instruction stream
is the hardware thread or alternatively warp, which is also
the term used by NVIDIA. AMD uses the term wavefront.25

NVIDIA and AMD GPUs execute in Single Instruction Multi-
ple Thread (SIMT) fashion in which multiple kernel threads (32
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or 64) share the same instruction counter and consequently op-
erate in lockstep. Because the hardware thread is the scheduling
unit, the instructions modeled in the following are warp instruc-30

tions rather than kernel thread instructions.
The proposed model uses the pipeline analogy to model the

subsystems of a GPU core. A pipeline consists of multiple
stages each performing a part of the execution of an instruc-
tion or memory transaction. A pipeline is characterized by its35

throughput and latency, respectively by the rate at which in-
structions can be executed and the time that it takes to com-
plete an instruction. The inverse of the throughput we denote
with λ (Cycles Per Instruction; CPI) and the end-to-end latency
with Λ. Simple pipelines can issue an instruction each cycle40

and the latency equals the number of pipeline stages. In our
model, these are abstract parameters that should not correspond
to whole numbers of cycles nor should they be constants. They
also capture inefficient execution of instructions, such as cache
misses or serialization of concurrent memory transactions due45

to bank conflicts.
The memory subsystem can also be modelled as a pipeline. A

memory instruction initiates a memory transaction in the mem-
ory subsystem. Each memory transaction can also character-
ized by its throughput (the bandwidth) and by its completion50

latency. These parameters are not constants but can vary to take
the various performance aspects into account such as caching,
uncoalesced access or memory contention.

A major consequence of pipeline execution is the need for
sufficient independent instructions that can be executed con-55

currently to keep the pipeline busy. The amount of indepen-
dent instructions within a thread is called Instruction Level Par-
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allelism (ILP). Furthermore, instructions of different threads
are independent except for barrier instructions. Hence, hard-
ware threads (warps in GPUs) that run concurrently can fill the60

pipeline with their independent instructions. The concurrent ex-
ecution of warps is referred to as Warp Level Parallelism (WLP)
or Thread Level Parallelism (TLP). We define occupancy as the
number of hardware threads or warps that are executed concur-
rently on a GPU for a specific kernel and configuration. This65

is different than some of the literature where occupancy is de-
fined as the ratio of concurrent warps to the maximum number
of concurrent warps (which depends on the GPU architecture).

ILP multiplied by WLP is the instruction occupancy. For a
single pipeline with parameters λ and Λ and with an instruc-70

tion occupancy of 1, the throughput is λ/Λ times the maximal
throughput of the GPU. The instruction occupancy should be
at least Λ/λ to attain the maximal throughput. The plot of the
throughput as a function of the occupancy is called the occu-
pancy roofline (Volkov, 2018). When the occupancy is smaller75

than the ridge point, GPU kernel executions do not attain the
‘roof’. They are then called latency-bound kernels because
the performance is bounded by latencies which cannot be fully
hidden by concurrent instructions. Consequently, the pipeline
analogy naturally incorporates the effect of imperfect latency80

hiding.
We will show that most analytical models are based on this

analogy by demonstrating that the equations of these models
can be extracted from the pipeline analogy given the appropri-
ate assumptions and simplifications. The Pipeline model can85

be used to analyse the performance. However, instead of re-
lying on equations, the timing behavior of the execution of
a GPU kernel is mimicked by a simulation of the execution
of the instructions on the abstract pipelines for which the in-
verse of throughput is used as an issue latency. The advantage90

of simulation is that we can avoid complex equations, which
hamper understandability and extensibility. A Java implemen-
tation of microbenchmarks and Pipeline model is available at
www.gpuperformance.org.

This paper claims the following contributions:95

• First in-depth analysis of current analytical models: in-
terpretation of the sometimes complex equations, extrac-
tion of the underlying model, expression of the equations
in terms of general pipeline characteristics, revelation of
errors and problems, and proofs of equivalences between100

models.

• Definition of the Pipeline model which can be used for
simulating GPU execution. Simulation allows the quanti-
tative and qualitative analysis of more performance aspects
than the analytical models.105

• Empirical validation of the models with the Rodinia
benchmark suite. We are the first to do this by varying
the occupancy, while until now the kernels have only been
tested with the given configuration and occupancy.

In the next section we analyze the existing analytical models110

in terms of the pipeline analogy. From this analysis, the novel

Table 1: Model classes captured by the proposed Pipeline Model and the mod-
els present in the class. The main model of each class is shown in bold.

Model classes Member models
Roofline model Williams et al. (2009),

Boat Hull model (Nugteren and Corporaal, 2012),
Konstantinidis and Cotronis (2015, 2017)

Volkov’s model Volkov (2016), Transit (Li et al., 2015),
X-model (Li et al., 2016)

MWP-CWP Hong and Kim (2009),
GPUPerf (Sim et al., 2012)

WFG Model Baghsorkhi et al. (2010)
GPUMech Huang et al. (2014), MDM (Wang et al., 2019)

Figure 1: Example Kernel with 4 computational instructions (C) and 2 memory
instructions (M). The edges represent the dependencies.

Pipeline model is defined in section 3. Section 4 discusses the
components of the model. The models are then compared in
section 5. Finally, section 6 empirically validates the Pipeline
model.115

2. Analysis of the Analytical Models

The analytical models can be categorized into five main
classes which are shown Table 1. Each will be rephrased in
terms of the pipeline analogy and the parameters defined in Ta-
ble 2. For demonstration purpose, we will apply each model120

to the simple GPU kernel shown in Fig. 1. The example ker-
nel contains four computational instructions and two memory
transactions. The edges of the graph represent the dependen-
cies. The parameters used for the example are shown in the
second column of Table 2. Note that the communication per-125

formance is not specified in Bytes, but is given in terms of warp
memory instructions per cycle.
All of the models estimate the performance of a single core
which is then multiplied with the number of cores of the GPU.
The total number of threads is assumed to be evenly divided130

among the cores.

2.1. The Roofline Model
The Roofline model (Williams et al., 2009) gives a bound for

the performance that can be attained for some program. It con-
siders the throughput of the compute and memory subsystems.135

One of them will bound the overall performance, depending on
the Compute Intensity (CI) of the GPU kernel. The CI is ex-
pressed as computational operations per byte, but for simplicity
we will define it here as the amount of computations per mem-
ory operation. This results in a roofline-shaped graph of the140

computational throughput as a function of the compute inten-
sity. Programs whose CI is to the left of the ridge are memory
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Table 2: Parameters used to discuss the models and the values of the example.
Symbol Value Name

Hardware Parameters
IPCcomp 1 computation instruction throughput
λcomp 1 computational CPI = 1/IPCcomp
Λcomp 4 latency of computational instructions
BW 0.5 memory bandwidth = IPCmem
λmem 2 memory CPI = 1/BW
Λmem 6 latency of memory instructions
λinstr

mem 1 memory instruction CPI (Section 2.4.1)
Software Characterization

αcomp 4 number of computational instructions
αmem 2 number of memory instructions
CI 2 Compute intensity = αcomp/αmem

Execution Configuration
ω - occupancy

Performance of a kernel running on a GPU core
Λapp - cycles of 1 warp executed in isolation
IPCapp - IPC of application
WPCapp - Warp throughput
CPRapp - Cycles Per Run (1 run = ω warps)

bound, while those whose CI is to the right of the ridge are
compute bound.

IPCroof
app = min(IPCcomp, BW ∗CI) (1)

Discussion. The Roofline model considers two subsystems145

(compute and memory) that are assumed to operate indepen-
dently. All of the instructions can completely overlap and all
latencies are hidden. The performance is defined as a through-
put. The runtime can be calculated by counting the number of
compute instructions or bytes to be transferred from memory.150

By considering the inverse of the throughputs, the ridge point
is λmem/λcomp, which is two for our example. Since the CI is
also two, the performance of the example is exactly at the ridge
point. IPCroof

app is one which gives a warp throughput WPCapp of
1/4.155

Related models. The Boat Hull Model (Nugteren and Cor-
poraal, 2012) is a related approach which considers application
classes for better precision. The Roofline model can be ex-
tended to a mix of instructions of different types with different
throughputs (Konstantinidis and Cotronis, 2015, 2017).160

2.2. Volkov’s model

The model developed by Volkov (2016) estimates the warp
throughput for both the throughput bound and latency bound
case, resulting in an occupancy roofline for the whole kernel.
The throughput bound runtime of one warp is calculated by tak-
ing the maximum of the times needed by each subsystem to ex-
ecute this warp. The time needed by a subsystem is obtained by
adding the throughput CPIs for all the instructions executed on
that subsystem. This is similar to the approach of the roofline
model. For the latency bound case, the time needed to execute a

Figure 2: The performance estimation of the example kernel for the different
models.

single warp is mostly estimated with latencies, while also con-
sidering overlap when there are independent instructions and
the GPU has the capacity for ILP within a single thread. Then,
the instruction’s CPI is considered. This results in:

Λapp =
∑
i∈I

Λ
dep
i +

∑
j∈J

λ
indep
j (2)

where set J contains the instructions that can run in parallel
with other instructions, which are contained in set I. For the
warp throughput, the time is divided by the occupancy and the
inverse is taken. This gives the left-hand side of the roof.165

WPCvolkov = min(WPCroof , ω/Λapp) (3)

with WPCroof = IPCroof
app /α

roof and αroof the number of instruc-
tions executed on the bounding subsystem per warp.

The resulting occupancy roofline for the example is shown in
Fig. 2. Λapp = 25 which gives a WPC of 1/25 for one warp and
which reaches the peak of 1/4 for seven concurrent warps.170

To model memory contention, Volkov uses a contention
function which smoothens the curve around the ridge
point (Volkov, 2016, Sec. 6.4). This is not modeled because it
is not a generic solution, but based on the regression of a func-
tion on data of specific streaming kernels that employ perfectly-175

aligned memory access. Later we will refer to several generic
methods that model memory contention.

Discussion. Volkov takes into account the necessity of suffi-
cient concurrent threads (the occupancy) to keep all subsystems
busy (such that they overlap) and hide the pipeline latencies. If180

there is only 1 hardware thread active and no ILP, the runtime
of a warp is equal to the sum of all pipeline latencies. The ex-
ecution of additional threads running concurrently is assumed
to be completely hidden behind the first thread until the maxi-
mal throughput is achieved. Consequently, the model gives an185

upper bound of the performance under limited occupancy.
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Figure 3: The Transit model applied to the example for ω = 5. The computa-
tional roofline WPCcomp is reversed and its origin is placed at k = ω = 5.

2.2.1. Equivalence of Volkov and Transit
Like Volkov’s model, the Transit model (Li et al., 2015) pro-

vides a global view on the performance while taking the occu-
pancy into account. Here, we will show that they are equivalent.190

Transit represents the hardware by a computational and a
memory subsystem. Both are characterized by an occupancy
roofline which is measured separately with an appropriate mi-
crobenchmark. The software is characterized by its arithmetic
intensity, the number of memory operations and the total num-195

ber of threads executing concurrently i.e. the occupancy ω. The
software imposes a service demand on the computational sub-
system which in turn imposes a service demand on the memory
access subsystem. The number of concurrent warps is divided
among both subsystems: a warp is either computing or waiting200

for a memory request to complete. In the steady state of the
system, memory service demand g(x) and memory service sup-
ply f (k) are equal and correspond to the warp throughput. This
can be shown graphically based on the two occupancy rooflines:
The memory service demand g(x) and the memory service sup-205

ply f (k) are put into a single graph but with the axes reversed
and the origin of f is placed at ω of the x-axis of g (because
x + k = ω). The point at which the two plots cross gives the
throughput of the considered workload. This also determines
whether the code is latency bound, compute bound or memory210

bound. For our example and ω = 5, the two occupancy curves
are shown in Fig. 3.

Theorem 1. The Volkov and Transit models generate the same
occupancy roofline if not considering ILP.

Proof. We start with the two occupancy rooflines:

IPCcomp(x) = min(
1

λcomp
,

x
Λcomp

) (4)

IPCmem(k) = min(
1

λmem
,

k
Λmem

) (5)

For throughput bound code the crossing point of the two oc-
cupancy plots will lie ‘on’ the roof of the occupancy plot of
the bounding subsystem. This is equivalent to the Volkov
model, where the throughput bound performance is determined
by the most bounding subsystem. For the occupancy bound
case (x < Λcomp/λcomp and k < Λmem/λmem) we express the

performance as warps per cycle :

WPCcomp(x) =
x

Λcomp.αcomp
(6)

WPCmem(k) =
k

Λmem.αmem
(7)

Supply must match demand. For a given occupancy, k of the ω
warps are busy with memory access, the others with computa-
tions:

WPCmem(k) = WPCcomp(ω − k) (8)

⇔
k

Λcomp.αcomp
=

ω − k
Λmem.αmem

(9)

⇔ k.(
CI

Λmem
+

1
αcomp

) =
ω

Λcomp
(10)

⇔ k =
ω

1 + CI.Λcomp/Λmem
(11)

By replacing k in Eq. 7, we get:

WPCmem(k) =
ω

(1 + CI.Λcomp/Λmem).Λmem.αmem
(12)

=
ω

Λmem.αmem + Λcomp.αcomp
(13)

=
ω

Λapp
= WPC(ω) = WPCvolkov(ω) (14)

which is exactly the same as given by Volkov’s model.215

2.3. The MWP-CWP Model
In contrast to the models discussed so far which are based

on a global view, the following two models take the details of
instruction sequence and execution into account by extracting
equations that either (a) model the execution (the MWP-CWP220

model) or (b) consider the exact sequence of instructions (the
WFG model, discussed in the next section).

The MWP-CWP Model (Hong and Kim, 2009), approxi-
mates the software by a code consisting of P compute peri-
ods made up of Q instructions followed by a memory request.225

The number of compute periods is determined by the number
of memory requests, thus P = αmem. Because compute periods
are assumed to be equal, it follows that Q = CI.

Analytical equations for the timing behavior are derived by
considering three distinct cases which are based on the concepts230

of MWP and CWP.

2.3.1. Interpretation of MWP and CWP
Memory Warp Parallelism (MWP) is the number of warps

that can access memory simultaneously. Therefore, it is :

MWP = Λmem.BW = Λmem/λmem (15)

Meanwhile, Compute Warp Parallelism (CWP) is defined as the
number of warps that can be executed during the memory wait-
ing time of one warp plus one to include the warp that is waiting
for memory:

CWP =
Λmem

CI.λcomp
+ 1 (16)
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When ω ≥ MWP and ω ≥ CWP, the occupancy is large
enough to achieve maximal throughput. Then, according to the
model, CWP and MWP must be compared. Let us derive the
meaning of this comparison:

MWP > CWP (17)

⇔ Λmem/λmem >
Λmem

CI.λcomp
+ 1 (18)

⇔ (Λmem − λmem).CI >
Λmem.λmem

λcomp
(19)

⇔ CI >
λmem

λcomp.(1 − λmem/Λmem)
(20)

According to the roofline model, a program’s CI must be
greater than λmem/λcomp for it to be compute bound. This is
nearly the same condition as Equation (20). Here, CI has to235

be a little bigger, due to the fact that we do not assume perfect
overlap of computations and memory: the memory request can
only be initiated when the computations have finished. An addi-
tional warp is needed to keep the computational pipeline busy,
hence the +1 in the definition of CWP (Eq. 16).240

Hong calculates for the three cases the runtime of ω warps
which we call a run.

The memory-bound case: MWP < min(ω,CWP).
First, we map the model’s concepts onto the pipeline concepts:

Mem p = Λmem (21)
Comp p = CI.λcomp (22)

Mem cycles = αmem.Λmem (23)
Comp cycles = αmem.CI.λcomp (24)

N = ω (25)

Eq. 1 of (Hong and Kim, 2009) for the runtime of ω warps in
Cycles Per Run (CPR) can now be written as:

CPR = αmem.ω.λmem + CI.λcomp.MWP (26)

The first term is the memory access time at peak performance
and similar to the roofline model. The second term is the com-
putation pipeline fill time, see Hong and Kim (2009, Fig. 6).245

The compute-bound case: CWP < min(ω,MWP).
Eq. 3 of Hong and Kim (2009) results in (see Hong and Kim
(2009, Fig. 5)):

CPR = Comp cycles.ω + Mem p

= αcomp.λcomp.ω + Λmem (27)

The runtime is now the computation time (first term) plus the
memory pipeline drain time (second term).

The occupancy-bound case: ω ≤ min(MWP,CWP).
For this case MWP and CWP are set to ω. Eq. 4 of Hong and
Kim (2009) results in (see (Hong and Kim, 2009, Fig. 8)):

CPR = (Mem cycles + Comp cycles) + Comp p.(ω − 1)
= (αmem.Λmem + αcomp.λcomp) + CI.λcomp.(ω − 1)
= Λ∗app + PipelineFillT ime (28)

The MWP-CWP model only takes the throughput of computa-
tions into account and it ignores their latency. Therefore, we
denote the execution of a single warp by Λ∗app.250

We conclude that the MWP-CWP model adds the pipeline
fill/drain time to the estimation of Volkov. Note that in the case
of barriers, a similar pipeline drain time is taken into account
for each barrier (Hong and Kim, 2009, Fig. 11).

2.3.2. Example255

The example kernel is approximated by two periods of two
instructions followed by a memory instruction. The kernel is
memory bound since MWP = 3 which is smaller than CWP
= 6/2+1 = 4. The performance in function of occupancy is
shown in Fig. 2. For low occupancies, the performance is higher260

than Volkov’s model because the computational latencies are
not taken into account.

2.3.3. Discussion.
Consider the assumptions of the model about the code’s exe-

cution. The timing behavior of instructions and memory trans-265

actions in the subsystems is stated explicitly: when they ‘oc-
cupy’ the subsystem – by their throughput – and how long it
takes before a dependent instruction or memory transaction can
start – their latency. More specifically, the computational in-
structions of a warp keep the computational subsystem busy for270

CI.λcomp cycles, after which a memory request is started. The
memory instructions result in a transaction handled by a sepa-
rate memory subsystem.

2.3.4. Memory Departure Delay.
For memory instructions, the MWP-CWP model defines a275

departure delay as the minimum departure distance between
two consecutive memory transactions. Furthermore, the band-
width limits the maximal number of warps that can access
memory simultaneously (during one memory warp waiting pe-
riod mem p = Λmem). In the Pipeline model, a second mem-280

ory transaction can only start in the memory subsystem after
the CPI (inverse of throughput) which we use as instruction la-
tency. The CPI determines the time between consecutive starts
of transactions in the subsystem. In our model, the MWP-
CWP’s departure delay is taken into account by the issue limit285

(which will be described in more detail later on).
This difference is shown in Fig. 4. In the MWP-CWP model,

with three concurrent memory transactions, the bandwidth is
attained such that the fourth memory transaction must wait until
the first transaction finishes. The Pipeline model uses the CPI
as an ‘issue latency’ in the simulation such that the second and
third memory transactions start later. Note that according to the
MWP-CWP model the first three transactions finish at a rate
larger than the bandwidth. By only considering the CPI, the
second term of Eq. 26 would change into:

PipelineFillT ime = CI.λcomp + (MWP − 1).λmem (29)

Note that the latencies of the MWP-CWP model take inef-
ficiencies into account, such as uncoalesced memory access.
They should be considered as abstract values capturing the to-
tal behavior of an instruction.290
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Figure 4: The difference between the MWP-CWP model (left) and the Pipeline
model (right).

2.4. The WFG Model

The WFG model (Baghsorkhi et al., 2010) models the soft-
ware in detail with a Work Flow Graph (WFG). A node of this
graph is either a block of computational instructions, a memory
transaction or a barrier synchronization point. There are two295

types of edges: first, transition arcs represent the order of in-
struction execution (branching is possible, but not considered
in this paper); and second, data-dependence arcs represent the
data dependence of one node on another as a result of a mem-
ory transaction. Thus, contrary to previous models, this model300

takes into account the actual sequence of instructions and the
dependencies among them.

2.4.1. Discussion of equations

A latency is attributed to each edge:

• Transition arcs leaving computational instructions (Bagh-
sorkhi et al., 2010, Eq. 3): the CPI plus part of the com-
pletion latency that cannot be hidden by independent in-
structions (WLP or ILP). (Baghsorkhi et al., 2010, Eq. 3).
If there is sufficient parallelism, then the pipeline latency
is completely hidden and only the CPI should be consid-
ered. The equation for the latency of edge i is similar to
Volkov’s model:

λtrans,i
comp = αi

comp.max(λcomp,
Λcomp

ILPi.ω
) (30)

with αi
comp the number of computations of the node and305

ILPi the ILP of the block of code.

• Transition arcs leaving a memory operation (Baghsorkhi
et al., 2010, Eq. 4): memory instructions impose a CPI
(λinstr

mem = λcomp) plus the latency that is not covered by the
total number of compute cycles CYCcomp of the kernel:

CYCcomp =
∑

i

λtrans,i
comp .α

i
comp + λinstr

mem.αmem (31)

= λ̄trans
comp.αcomp + λinstr

mem.αmem (32)

where λ̄trans
comp is a weighted average of the transition com-

putational latencies and αcomp =
∑

i α
i
comp. To compute

the memory’s CPI that is hidden, all compute cycles are

Figure 5: The WFG for the example kernel with the latencies for each edge as
a function of the occupancy.

considered to be available for hiding:

λtrans
mem = λinstr

mem + max(0,
CYCmem −CYCcomp

αmem
) (33)

= λinstr
mem + max(0,

αmem/BW − (λ̄trans
comp.αcomp + λinstr

mem.αmem)

αmem
)

= λinstr
mem + max(0, λmem − λ̄

trans
comp.CI − λinstr

mem)

= max(λinstr
mem, λmem − λ̄

trans
comp.CI) (34)

This equation is equivalent to having memory transactions
being issued on a separate memory subsystem that over-
lap with latencies from the computational subsystem, but
not with other memory latencies. Meanwhile, the mem-310

ory instruction’s CPI λinstr
mem cannot overlap with computa-

tional latencies. This assumes that the memory instruction
is handled on the same subsystem as computations.

• Dependency arcs leaving a memory operation: the mem-
ory latency may not completely overlap with compute cy-315

cles of other concurrent warps. The equation that com-
putes the number of non overlapped cycles, Latencyexposed,
uses the total number of compute cycles divided by
the number of memory operations and barriers plus one
(Baghsorkhi et al., 2010, Eq. 5 and Eq. 6). The equations320

(given in the next subsection) express that the compute cy-
cles are evenly ‘distributed’ among the memory instruc-
tions (resulting in an average). This expresses that depen-
dent instructions have to wait for the latency to be finished.
In the next subsection, we will discuss a problem with the325

given equations.

The WFG for the example kernel with the latencies for each
edge is shown in Fig. 5.

Once the latencies are established, the graph can be reduced
(flattened) by combining successive nodes. The tree is traversed330

and the latencies are summed. For memory nodes, the max-
imum latency of both edges leaving the node is taken. This
gives the (average) runtime of a warp (CPW) and when multi-
plied with ω it gives the CPR.

Note that the WFG model also considers work groups. Warps335

are executed in work groups. The WFG model assumes
that warps of the same work group proceed relatively syn-
chronously, while warps of different work groups run asyn-
chronously. The number of concurrent warps is based on a com-
bination of both and is expressed as WLPeffect. In this paper, we340

will not consider this and simply assume WLPeffect = ω.
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Figure 6: Examples showing the problems with the WFG model for the
occupancy-bound case.

2.4.2. Problems with the equations
The latency of the memory dependency arcs is calculated as

the portion of the GPU memory latency that is not covered by
interleaving execution of different warps. The equations of the
WFG model are (Baghsorkhi et al., 2010, Eq. 5 and Eq. 6):

NBCavg =
CYCcomp

αmem + αsync + 1
(35)

Λexposed = Λmem − (ω − 1).NBCavg (36)

where αsync is the number of barrier synchronization points.
Volkov reported serious deviations of the WFG model with

his results (Volkov, 2016). These deviations can be reproduced
with a simple example. Consider that αmem = 1 and ILP = 1.
Assume that for the computations, it is still occupancy-bound
(Eq. 30) and that for the memory, the dependency arc has a
larger latency than that of the transition arc (Λexposed > λtrans

mem).
When we neglect the small λinstr

mem, the performance is (we omit
index i):

CPW = λtrans
comp + Λexposed (37)

=
αcomp.Λcomp

ω
+ Λmem − (ω − 1).

αcomp.Λcomp

2.ω
(38)

CPR = CPW.ω (39)
= αcomp.Λcomp + Λmem.ω − (ω − 1).αcomp.Λcomp/2 (40)

Fig. 6 shows the results for three different parameter pairs.
Volkov’s model gives the same CPR for all pairs and all occu-345

pancies, namely 14. For case 1, αcomp.Λcomp = 8 and Λmem = 6
which is similar to the example kernel. Case 2 is compute-
intensive, αcomp.Λcomp = 11 and Λmem = 3. The CPR drops for
higher occupancies. This is impossible, the time for executing
two or more warps cannot be lower than that for one. Mean-350

while, case 3 has a high memory latency, αcomp.Λcomp = 3 and
Λmem = 11, which results in a fast-increasing CPR. We first
analyze the latter.

2.4.3. First error in Eq. 6 of the WFG model
Eq. 36 is trivially correct for one warp, but for multiple warps

the average warp latency is multiplied by the number of warps
ω to estimate the total runtime. However, for ω > 1, the cal-
culated Λexposed must be taken into account only once, because

Figure 7: Overlap of λcomp of the succeeding warps with the latencies of com-
putations and memory.

the exposed latency of the first warp (Eq. 36) hides the memory
latency of subsequent warps. When using Eq. 6 of Baghsorkhi
et al. (2010), the exposed memory latency is multiplied by ω
resulting in an overestimation of the runtime as long as the la-
tency is not completely hidden. Therefore, we have to divide
the exposed latency by the WLP, ω:

Λexposed =
Λmem − (ω − 1).NBCavg

ω
(41)

Note also that in Eq. 30 (Baghsorkhi et al., 2010, Eq. 3), the355

pipeline latencies of the computations are divided by ω.

2.4.4. Second error in Eq. 6 of the WFG model
Eq. 5 of Baghsorkhi et al. (2010) calculates the amount of

computation cycles NBCavg that can hide memory latencies. As
can be seen in Eq. 35, all computation cycles are used to hide360

memory latencies but these latencies include those that already
hide the computational latencies. The latter is already taken into
account in Eq. 30. Consequently, it is possible for the runtime
of a few warps to become shorter than that of one warp. In
the example, one sees that the performance curve of Fig. 2 is365

slightly above Volkov’s roofline for ω = 3 or 4. This effect
becomes more apparent with a higher CI.

As shown in Fig. 7, the λcomp of warps 2 and 3 are overlap-
ping with the computational latency of warp 1. Only warps 4
and 5 are overlapping with the memory latencies. One should
subtract the overlap from computational latencies. We therefore
propose the following equation for replacing (Baghsorkhi et al.,
2010, Eq. 6):

Λexposed =
Λmem

ω
−max(0,

ω − 1
ω

.NBCavg −
αi.Λcomp

ω.ILPi ) (42)

where the last term refers to the preceding computation transi-
tion arc.

This equation assumes that the memory instruction depends370

on the results of the computations. In case of independence, the
computational cycles can indeed completely overlap with the
memory cycles. But in that case one should also overlap them
for a single warp, which is not the case because then (ω−1) = 0
in Eq. 36 and no overlap is considered.375

2.5. GPUMech
GPUMech (Huang et al., 2014) uses interval analysis to esti-

mate the amount of latency hiding that occurs. Interval analysis
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is based on establishing steady state performance and then sub-
tracting performance loss due to miss events (Eyerman et al.,380

2009).
The most representative warp is divided into intervals each

ending with a dependency with a large latency which results in
a stall period. The model proposes equations to estimate how
many instructions of concurrent warps are issued during the385

stall periods depending on the scheduler: Round-Robin (RR) or
Greedy-Then-Oldest (GTO). The resulting performance is then
calculated with the number of non-overlapping instructions.
When implementing this part of the model, we did not consider
latencies of computational instructions and applied the same390

corrections as Volkov (2016, p. 105), who confirmed the ty-
pos with the primary author: Eq. 7 calculates IPC instead of
CPI, while in Eq. 15 and Eq. 16 max is used in place of min
and vice versa.
Second, GPUMech models resource contention related to the395

MSHRs and the DRAM bandwidth by estimating the additional
cycles which are then added to the global CPI. This memory
access analysis is necessary to obtain the correct latencies of
memory instructions. Since the evaluation of the models hap-
pen under the assumption that the correct latencies have been400

obtained, this part of the model is not implemented.
The results for both schedulers are shown in Fig. 2 and are

similar to those reported by Volkov (2016, Fig. 7.9): with RR,
the performance goes through the roof; while with GTO, the
performance converges to Volkov’s the roof. We now analyze405

both in more detail.

2.5.1. Problems with the Round-Robin equations.
Strangely enough, the equations of GPUMech result in a

different estimation than shown by the given example (Huang
et al., 2014, Fig. 8). The example in the paper shows an interval410

with 3 instructions and 6 stall cycles. Then the issue probabil-
ity is 0.333 (Eq. 9; 3 divided by (3 plus 6)), and for 4 warps the
number of non-overlapped instructions is 2 according to Eq. 11.
But Fig. 8 show 6 non-overlapped instructions.

The problem arises with the issue probability: it assumes that415

there will not always be an instruction scheduled in the waiting
slots, rather, the Round Robin policy ensures that after the issue
of an instruction of the representative warp, instructions of the
remaining warps are scheduled. We therefore have to set the
issue probability to 1.420

This results in one overlapped instruction for each remaining
warp, which is in concordance with the text. But the number
of overlapped instructions should be limited to the number of
stall cycles. Otherwise the IPC becomes higher than 1 (while an
issue rate of 1 is assumed). As a result we propose the following
equations to replace Eq. 11 (overl stands for overlapped):

#overl instsi = min(stall cyclesi, #warps − 1)
#nonoverl instsi = (#warps − 1) × #interval instsi − #overl instsi

2.5.2. Equivalence of GPUMech GTO With Volkov
The equations for the GTO scheduler also rely on the issue

probability (Eq. 9). Its value, however, is most often close to 1.
In that case, GPUMech is equivalent to Volkov’s model when

ignoring computational latencies. With an issue probability of
1, all instructions of the remaining warps are used for over-
lapping with the stall cycles (Eq. 12 and Eq. 14) until all stall
cycles are overlapped (Eq. 16). To show that the issue proba-
bility is rarely below 1, we replace the sums in nominator and
denominator by the average in Eq. 9 and combine it with Eq. 15:

#issue prob in stalli < 1

⇔
avg interval instr × stall cyclesi

avg interval instr + avg stall cycles
< 1

⇔stall cyclesi < 1 +
avg stall cycles

avg interval instr

This will happen for intervals with a latency smaller than the av-
erage latency divided by the average number instructions of an
interval; thus, a small portion of the intervals. Moreover, With
small latencies, there is not much performance to lose, so that425

the overall performance will remain close to that of Volkov’s
model. Since computational latencies are not considered, the
performance curve is slightly above that of Volkov in Fig. 2.

2.6. Extracting the underlying model

The analysis shows that all analytical models can be derived430

from an abstract pipeline analogy.
The Roofline model and Volkov’s occupancy roofline provide

an upper bound but do not capture detailed behavior. They do
not take into account the interplay of the different threads and
subsystems which gives rise to additional inefficiencies (mainly435

idling). The MWP-CWP model is based on a detailed execu-
tion profile, while the WFG model uses a detailed description
of the kernel. However, both are limited because they strive
to capture the behavior with analytical equations. To achieve
this, the MWP-CWP model approximates the software, while440

the WFG model ‘smears out’ the compute cycles to estimate
the latency hiding. Based on the detailed work flow graph, it
is possible to determine exactly which compute cycles overlap
with memory latencies. The Pipeline model does this by com-
bining the execution profile of the MWP-CWP model with the445

detailed software description of the WFG model. The equa-
tions of GPUMech are based on two scheduling policies: RR
and GTO. The scheduler is explicitly added as a parameter to
the Pipeline model and will be used to simulate kernel execu-
tion.450

3. The Pipeline Performance Model

This section defines the Pipeline model. Table 3 summarizes
both the input parameters and the functions of the pipeline per-
formance model.

3.1. Model Input455

The input for the Pipeline model consists of 3 components:
software, hardware and execution configuration.
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Table 3: Pipeline performance model summary.
Common Definitions

Instruction set I
instruction i

Software Characterization
IDG of each warp IDG j for j : 1..Ω

Execution Configuration exe
Group size |γ|

Number of concurrent groups γ
Number of concurrent warps ω = |γ|.γ

Total number of warps per core Ω

Hardware Characterization
Subsystem set S

Scheduler σ
Issue Limit IL

Context-independent mapper f : (i ∈ I) 7→ (s ∈ S, λ,Λ)
Context-dependent mapper g : (i ∈ I, code, exe)

7→ (s ∈ S, λ,Λ)

3.1.1. Software
The instruction sequence of each hardware thread (warp) is

modelled by an Instruction Dependence Graph (IDG), which is460

a directed acyclic graph in which each vertex of the graph corre-
sponds to a single executed instruction. The edges between the
vertices represent the def-use dependencies between the corre-
sponding instructions, which can either be data dependencies or
control dependencies. Instructions are elements from a global465

Instruction set I. Instructions belong to one and only one of
the following three categories. Memory instructions copy data
from one memory level to another (e.g. RAM to registers).
Computation instructions apply operations to register data. Bar-
rier instructions synchronize hardware threads that belong to470

the same group.
In theory, every warp can follow a different execution path

making it necessary to create a different IDG for every thread.
However, in many cases all or most of the threads follow the
same execution path, making it possible to use a single IDG for475

the simulation. Different strategies can be followed if there is
divergence between the execution of threads.

3.1.2. Execution configuration
The kernel threads for which a software must be executed are

organized in groups. A group is assigned in its entirety to one480

of the cores where it remains until it completes execution.
The execution configuration then consists of the following

parameters:
Group size |γ| The number of kernel threads of each group.
Number of concurrent groups γ The number of groups that485

can run concurrently on a single core. This is determined by the
amount of resources each work group needs.

The occupancy (number of concurrent warps) ω is then the
number of concurrent groups multiplied by the group size.

3.1.3. Hardware490

A GPU core is characterized by the following elements:

Subsystem set S A set of symbols, one for each pipeline that
models a subsystem.

Scheduler σ The scheduler determines which instruction is
issued next given the groups currently present on a core and the495

state of the subsystems. An important parameter of the sched-
uler is the issue limit, which determines the maximum number
of instructions that can be scheduled in one cycle.

The timing behavior of the execution of instructions is mod-
eled by the two characteristics of a pipeline: throughput and500

end-to-end latency. For the first, we will use the inverse of
throughput (IPC), which we denote by λ (CPI). The latency or
Λ is the duration from the issue of an instruction to a subsystem
until its result becomes available for dependent instructions.

In general, for computational instructions, the lambdas are
constants and independent of the context of the instruction’s ex-
ecution. So, the following mapping can be defined for context-
independent instructions:

f : (i ∈ I) 7→ (s ∈ S, λ,Λ)

It defines a mapping from instruction type to subsystem, λ and505

Λ.
On the other hand, the timing behavior of instructions might

depend on the context in which they execute. Typical examples
are memory instructions that may be serviced faster or slower
due to the effects of caching, memory access patterns or con-
tention with other threads. All three factors are determined by
a combination of the hardware (memory and cache configu-
ration, . . . ), the software (memory indices, previous accesses,
. . . ) and the execution configuration. To accommodate this phe-
nomenon, the mapper f should be replaced by a mapper which
takes the software characterization and execution configuration
into account:

g : (i ∈ I, code, exe) 7→ (s ∈ S, λ,Λ)

3.2. Model execution by simulation
At first, hardware-dependent information is added to the

IDGs in two steps. The parameter mappers f and g are used
to determine the appropriate subsystem and lambdas for each510

instruction. The interaction between software and hardware is
then analyzed by simulating the timing behavior of the execu-
tion.

A detailed execution profile is generated by simulating the
timing behavior of each warp with the IDG and the latencies.515

Examples are shown in Figs. 8 and 9. The throughput is simu-
lated by using λ (CPI) as ‘issue latency’: the time between two
consecutive issues. Ready instructions (for which the depen-
dencies are satisfied) are issued when their subsystem is idle
(i.e. λ of the previously issued instruction has transpired). The520

dependencies of an instruction are satisfied if the dependent in-
structions have terminated their completion latency. When mul-
tiple instructions are ready to be issued, the scheduler’s policy
decides which instruction is issued first.

The simulation returns the runtime expressed in processor525

cycles of a kernel on a single core. We refer the reader
to Lemeire et al. (2016) for the detailed equations to compute
global performance.
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Figure 8: Execution profile of the example kernel and the example parameters, for an occupancy of 1 warp (top) and 2 warps (bottom). The computational and
memory pipeline are shown. Each instruction ‘occupies’ the pipeline when entering it according to its throughput CPI. The latency determines when the instruction
leaves the pipeline. Blue arrows indicate instructions that have to wait for others to finish because of a dependency.

Figure 9: Execution profile of the example kernel and the example parameters, for an occupancy of 4 warp (top) and 10 warps (bottom). With 10 warps, the
execution is almost at the peak performance (no idle periods except for the pipeline fill and drain).
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4. Discussion

The above description formally defines the abstractions that530

together make up the Pipeline model. However, a number of
questions that concern the implementation of this model were
left unanswered. This section will discuss the most salient of
them, and where appropriate it will mention how they are han-
dled by existing models.535

4.1. From WFG to IDG
The WFG of Baghsorkhi et al. (2010) defines the instruction

execution order and the def-use dependencies between mem-
ory transactions and the computational instructions depending
on the data. The dependencies among computational instruc-540

tions in a basic block are expressed by the ILP factor, but the
WFG does not describe how memory instructions depend on the
outcome of computational instructions (the memory address or
data). This gives rise to problems with the equations as dis-
cussed in Sec. 2.4.4. To overcome this problem, the IDG de-545

scribes all def-use dependencies in the graph.
There are three differences between the WFG and the IDG

of the Pipeline model. Fig. 1 shows the IDG of the example
kernel. This is mainly motivated by allowing maximal detail
without adding additional parameters. The first difference is550

that the IDG does not group computational instructions into a
single node but maps each instruction onto a node. The second
difference is that the IDG only contains edges for all def-use
dependencies, not for the execution order. Not fixing the exe-
cution order when describing the GPU kernel is motivated by a555

possible reordering by either:

• The compiler, which means that the order is hardware de-
pendent and might not be known when describing the ker-
nel from the source code; or

• The GPU’s instruction scheduler, which may issue out-of-560

order.

The scheduler σ of the model decides on the execution order.
The third difference is that the Pipeline model allows every

warp to have a different IDG in the case of warp divergence.
Meanwhile, the WFG model estimates the runtime based on a565

‘typical’ warp by taking weighted averages in case of branch
divergence.

4.2. Subsystems and Issue Limits
The Pipeline model considers each subsystem as a separate

and independent pipeline. The timing behavior of an instruc-570

tion is characterized by a throughput and a latency. All analyt-
ical models consider at least two subsystems: a computational
and a memory subsystem. However, the architecture of mod-
ern GPUs is more complex than a simple pipeline. It contains
several warp schedulers and dispatch units. A multiprocessor575

of the Nvidia Pascal architecture can issue four instructions per
cycle on 128 CUDA cores, which we model with a λ of 0.25
cycles. The WFG model defines the CPI in the same way as
S IMDwork/S IMDengine with S IMDwork the warp size (number
of kernel threads that are executed together in lock-step) and580

IPC ≤ IL

ALU

SFU

memory

Figure 10: The Pipeline model: subsystems are modelled as pipelines and the
issue limit as a valve.

Figure 11: Instruction Dependency Graph (IDG) of the Instruction Mix kernel.

S IMDengine the number of scalar processors on a multiproces-
sor. Many GPUs have separate SFU units which can be mod-
elled with a separate SFU subsystem besides the ALU subsys-
tem for integer and floating point calculations. There are typi-
cally less SFU units, resulting in a lower throughput. Even in585

the presence of independent subsystems, the total number of in-
structions that can be issued per cycle is limited by the number
of warp schedulers and dispatch units. This is modelled with
an overall issue limit (expressed as IPC), which the scheduler
takes into account. Also the Volkov model takes this limit into590

account. Given the number of executed instructions per warp,
it is translated to a warp throughput that imposes an additional
bound (Volkov, 2016). The issue limit can be regarded as a
common valve as shown in Fig. 10.

The subsystems and issue limits can be revealed empiri-595

cally with a parameterized Instruction Mix benchmark kernel
(Volkov, 2016). The kernel is a repetition of a sequence of β in-
structions of type 1 followed by one instruction of type 2 (where
λ1 < λ2), as shown in Figure 11. The number of repetitions N
is chosen large enough such that the kernel overhead can be ne-600

glected. The performance is then measured as a function of β at
maximal occupancy. There are three possible situations:

1. The instructions are executed on the same subsystem
(modelled by one pipeline). The performance (throughput
of the instructions of type 1) is then:

IPCinstr1(1 subsystem) =
β

β.λ1 + λ2
(43)

2. The instructions are executed on different subsystems
(modelled by two independent pipelines) without issue
limit. The performance is then:

IPCinstr1(2 subsystems) = min(
1
λ1
,

1
λ2

) (44)

3. The instructions are executed on different subsystems but
there is an overall issue limit of the number of instructions
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Figure 12: The theoretical performance of the Instruction Mix benchmark for
different architectures with λ1 = 1, λ2 = 4 and IL = 1.

Table 4: The GPUs with their instruction parameters and Issue Limit (IL).
archi-

GPU tecture λALU λS FU IL
NVIDIA Tesla C2050 Fermi 1 8 1

NVIDIA GeForce GTX 650 Ti Kepler 0.25 1 4
NVIDIA Quadro K620 Maxwell 0.25 1 4

NVIDIA GeForce GTX 1060 Pascal 0.25 1 4
NVIDIA GeForce RTX 2070 Turing 0.5 2 2

AMD Radeon R9 380 Tonga 1 5 1

that can be issued within a cycle. The performance is then:

IPCinstr1(2 with issue limit IL) = min(
1
λ1
,

1
λ2
,

β

β + 1
.IL)

(45)

The three curves for some example parameter values are shown
in Fig. 12.

To identify the best-fitting model of a GPU we performed605

experiments with a mix of β floating point instructions (ALU)
with one special function instruction (SFU). Four different ar-
chitectures were validated. Their latencies were measured with
microbenchmarks (Lemeire et al., 2016) and are shown in Ta-
ble 4. Fig. 13 shows the experimental results with the three610

theoretical curves. The results reveal that the Fermi and Ke-
pler architectures can be modelled with a separate ALU and
SFU subsystem, while considering an overall issue limit. The
Tonga architecture is best modeled as a single subsystem for
ALU and SFU instructions. For the Pascal and Turing it is how-615

ever less clear. The differences of the real performance with the
theoretical curves come from the higher complexity of the real
architectures. Each multiprocessor contains multiple instruc-
tion buffers, warp schedulers and dispatch units, for which the
generic and simple pipeline analogy can only provide an ap-620

proximation. Kepler converges to an IPC of 4.3, which is higher
than the expected maximum of 4. The Kepler architecture with
192 CUDA cores can issue six warp instructions per cycle, but
this can only happen with ILP because there are only four warp
schedulers, which is not present in the instruction mix kernel.625

GPUPerf (Sim et al., 2012), an extension of the MWP-CWP
model, also considers separate subsystems. It considers the
ALU and SFU as two separate subsystems without issue limit
and takes the maximal execution time of both (Eq. 44).

Figure 13: Experimental results (‘real’) of the Instruction Mix kernel and the 3
models with the GPU parameters of Table 4.
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4.3. Instruction parameters λ and Λ630

Because the basic scheduling unit is the hardware thread or
warp, the CPI of an instruction depends on the ratio of the warp
size and the number of processing elements to execute the given
instruction. This ratio can be more or less than one, illustrat-
ing the abstract nature of the parameter. The throughput can635

often be derived from the device specifications but in general
we have to rely on microbenchmarks, especially for the laten-
cies (Lemeire et al., 2016)1. A microbenchmark estimates the
value of a single characteristic of the hardware. Some instruc-
tions can be measured in isolation, while others (like a branch640

instruction) have to be mixed with other instructions. Next the
latencies obtained from the experiments are rounded to the clos-
est multiple of 1

N where N is the issue limit.
The lambdas for multiplication mul and division div in-

structions for different types are shown in Table 5: single645

precision and double precision floating point f32 and f64
and signed integers s32. This table also shows the lamb-
das for the hardware accelerated cosine cos.approx.f32,
barrier instructions bar.sync and global memory and local
memory access for four byte values: ld.global.s32 and650

ld.local.s32. The lambdas are expressed in clock cycles.
The λ of mul.f32 and cos.approx.f32 correspond to
what is expected given the core ALU count NALU and the core
SFU count NS FU . This is not the case for the Maxwell GPU.
The λ for simple floating point instructions on this GPU was655

measured to be 0.375 cycles rather than 0.25 cycles as would
be expected given the architectural details (there are four warp
schedulers per compute unit and 4 × 32 ALU processing ele-
ments). The measured value corresponds to an IPC of 8

3 rather
than the expected 8

2 . To obtain the latter IPC, it is necessary660

to introduce instruction level parallelism in the code. Until
the date of this writing no explanation was found for this phe-
nomenon.

A few additional observations are worth making. First, for all
NVIDIA GPUs λdiv. f 32

λmul. f 32
is 3. For the AMD GPU it is 2.25. Sec-

ondly, λmul. f 64

λmul. f 32
is 2 for the Fermi GPU – one especially designed

for computing –, while it is 16, 20, 32 and 38 for the Kepler,
Maxwell, Pascal and Turing GPUs respectively. For the Tonga
GPU it is 8. Furthermore, barrier synchronization has become
relatively costlier compared with regular instructions on more
recent GPUs. Finally, the global memory read CPI allow us to
compute the obtained throughput:

throughput(GB/s) = N(Π) ×
|ω| × 4
λRAM

× fclock(GHz)

Table 6 compares the peak throughput with the theoretical
bandwidth of the device. The theoretical bandwidth for the665

Fermi GPU assumes that error control and correction or ECC
is disabled. ECC adds overhead and decreases the achieved
throughput.

1In our previous work, we called λ the issue latency and Λ the completion
latency, but these terms cause too much confusion.

4.4. Memory Analysis Modules for mapper g
Ultimately, we would like to have a model with a separate670

characterization of software and hardware such that combina-
tions of hardware and software can easily be studied. The
Pipeline model achieves this for context-independent instruc-
tions (when mapper f is used). Unfortunately, instructions that
do depend on context break the separation of concerns. On675

GPUs, this happens mostly for memory instructions. Hardware,
software and configuration should be considered together to de-
termine the correct lambdas. Examples are memory bank con-
flicts, which depend on memory organization and the memory
access pattern, and cache misses which depend on cache orga-680

nization and memory access. This is represented in the Pipeline
model by mapper g.

For memory instructions we can implement g as a Mem-
ory Analysis Module which estimates the lambdas and feeds
them to the Pipeline model. For these lambdas, one can either685

consider average values based on aggregate numbers obtained
from a profiler, or one can take the execution sequence and in-
struction dependencies into account. An example of the for-
mer is GPUPerf (Sim et al., 2012) (an extension of the MWP-
CWP model), which uses the Average Memory Access Time690

(AMAT), while the latter is analyzed in detail in GPUMech and
the related MDM (Wang et al., 2019).

5. Comparison with the analytical models

From the analysis of Sec. 2 we can deduce that the Pipeline
model captures all aspects of the analytical models except695

for the difference with the MWP-CWP model discussed in
Sec. 2.3.4 and shown in Fig. 4. But the Pipeline model is more
flexible. For each model, Table 7 shows which performance as-
pects it takes into account. The Pipeline model combines all of
them.700

5.1. Comparison of performance
To compare the application of the models on the example ker-

nel, we correct and extend the equations such that the same as-
pects are taken into account (see Table 7). The corrected models
are indicated with an asterisk.705

MWP-CWP* is the corrected version which takes the laten-
cies for computational instructions into account by replacing
Λ∗app in Eq. 28 with Λapp defined by Eq. 2. Now it is however
less clear for which values of ω we are in the occupancy-bound
case. To determine this, we take the maximal CPR value of710

the three cases. For our corrected version of the WFG model,
the memory instruction CPI λinstr

mem is set to 0 and Eq. 42 is used
instead of Eq. 36. GPMech(RR)* is the corrected version pro-
posed in Sec. 2.5.1.

This results in the performance curves shown in Fig. 14. The715

figure clearly shows that Volkov’s model provides an upper
bound for occupancy-bound kernels2. It assumes maximal la-
tency hiding. At the left-hand side of the ridge point, the first

2GPUMech ignores the computational latencies, hence the performance is a
bit above Volkov’s curve.
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Table 5: The parameters CPI (λ) and latency (Λ) for selected instructions expressed in number of clock cycles.
Fermi Kepler Maxwell Pascal Turing Tonga

Instruction λ / Λ λ / Λ λ / Λ λ / Λ λ / Λ λ / Λ

cos.apx.f32 8 / 40 1 / 18 1 / 15 1 / 15 2/21 5 / 24
mul.f32 1 / 18 0.25 / 9 0.375 / 6 0.25 / 6 0.5/4 1 / 5.25
mul.f64 2 / 22 4 / 22 7.5 / 42 8 / 43 19/45 8 / 76
mul.s32 2 / 18 0.5 / 5 0.875 / 12.5 0.75 / 12 0.25 / 2 1 / 5.25
div.f32 3 / 45 0.75 / 28.5 1.125 / 20 0.75 / 18 1.5 / 12.5 2.25 / 14
div.f64 19 / 253 26 / 260 47 / 376 47 / 376 - / - 155 / 740
div.s32 20 / 200 3 / 96 7 / 105 5 / 100 5/65 24 / 192
bar.sync 2 / 40 0.75 / 24 4.5 / 125 2.25 / 70 1.5/17 7.5 / 150
ld.global.s32 23 / 475 7.5 / 300 18 / 440 12 / 345 18/450 42 / 136
ld.local.s32 2 / 28 1 / 28 1 / 28 1 / 25 2/32 2 / 60

Table 6: Comparison of achieved throughput and theoretical bandwidth.
Device Throughput (GB/s) Bandwidth (GB/s) Efficiency
Fermi 89.6 144 62.2%

Kepler 70.5 86.4 81.5%
Maxwell 22.6 29 77.8%

Pascal 160.6 192 83.7%
Turing 288 361 80.5%
Tonga 172 176 97.7%

Table 7: The performance aspects taken into account by the models.
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Aspects considered in comparison of Sec. 5.1
ILP Y Y N Y N Y

Λcomp N Y N Y N Y
Λmem N Y Y Y Y Y

Other aspects
barriers N N Y Y N Y

more than 2 subsystems Y Y N N N Y
workgroups N N N Y N Y

divergent warps N N N Y Y Y
issue limit N Y Y N N Y
scheduler N N N N Y Y

Figure 14: The performance estimations of the different models after correc-
tions for taking the same aspect into account.

warp hides all the other warps. At the right-hand side of the
ridge point, all latencies are hidden.720

The WFG model expresses that successive warps cannot be
hidden completely behind the first warp. The MWP-CWP
model adds to Volkov’s roofline the idling during the pipeline
fill and drain. However, the impact of this gets negligible for
complex kernels. MWP-CWP and Volkov assume that at all725

other moments there is a ready instruction present that can be
scheduled (i.e. it assumes that an ideal scheduling order exists
and that an omniscient scheduler uses the optimal scheduling).

In practice, schedulers use scheduling policies based on
heuristics. The Pipeline model uses a real scheduler to gen-730

erate the execution profile. It reveals the idling due to non-ideal
scheduling; as a result, the occupancy-performance curve is fur-
ther flattened.

5.2. Model Inputs

The Pipeline model is based on a combination of the parame-735

ters of the analytical models without introducing new ones. For
their input some models rely on aggregate instruction counts
(Roofline, Volkov, MWP-CWP), while others rely on a detailed
dependency graph (WFG, GPUMech, Pipeline model). Except
Roofline, all of the models consider throughput (or CPI, the740

inverse of throughput) and at least the latencies for memory
instructions. For most computational instructions, the lamb-
das only depend on the GPU and can be estimated with mi-
crobenchmarks. Meanwhile, for memory transactions the lamb-
das also depend on the access pattern, cache utilization, spatial745

locality and resource contention. For this, each model employs
a separate memory analysis as explained in Sec. 4.4. For our ex-
periments, a memory analysis module is introduced in Sec. 6.3.

5.3. Understanding performance

Besides accurate prediction of runtime, a performance analy-750

sis should also yield insight into the aspects limiting the perfor-
mance. This is more easy to achieve by the proposed abstract
simulation than by the analytical equations. The generated exe-
cution profile (Figs. 8 and 9) can, for instance, be used to calcu-
late the filling rate of each pipeline or the amount overlap (e.g.755

as defined by GPUMech). A detailed analysis can further reveal
the causes of non-overlap.
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Figure 15: Instruction Dependency Graph of the Iterative Barrier Kernel. Node
I stands for a computational instruction and node B for a barrier instruction.

Figure 16: Performance of the iterative barrier kernel with different occupan-
cies and work group sizes for the Fermi and Pascal GPU. Occupancy varies
between 1 and the maximum (resp. 48 and 64), work group size varies between
32 and 1024. The results are first sorted on occupancy and then on work group
size.

6. Empirical Validation

We validate the model on the NVIDIA GPUs from Table 4.
The lambdas for the instructions that were used to carry out the760

simulations are shown in Table 5 (Lemeire et al., 2016).

6.1. Instruction Mix Kernel

First, we consider the instruction mix kernel from Section 4.2
with β = 4 (around the roofline ridge point) and varying occu-
pancy. The mix is run 256 times in an unrolled loop to minimize765

the kernel overhead.

6.2. Iterative Barrier Kernel

Next, we consider a kernel that consists of a sequence of N
dependent instructions each separated by a barrier instruction,
as shown in Figure 15. N is chosen large enough such that770

the kernel overhead can be neglected. This kernel allows us to
study the impact of the group size on the kernel’s performance
and the pipeline model’s ability to take this into account. As
can be seen in Figure 16 the performance is indeed highly in-
fluenced by the group size. This is also reflected by the results775

of the Pipeline model. For more recent GPUs there are addi-
tional factors that influence the performance that are not taken
into account. Table 8 shows the performance estimation accu-
racy of the Pipeline model for both experiments. The Pipeline
model is quite accurate, although it is less accurate for the more780

recent Pascal GPU.

Table 8: Pipeline model accuracy: Mean Absolute Percentage Error (MAPE)
of the performance for the different experiments.

Fermi Kepler Pascal
Instruction mix 6.7% 7.1% 20.5%
Barrier kernel 3.8% 3.9% 5.1%

Table 9: Kernels used for evaluation and occupancy range of experiments. The
minimum and maximum occupancy is expressed in number of warps. The min-
imum occupancy corresponds to the size of a single work group. It is the mini-
mum occupancy on the Quadro K620 because on the GeForce GTX 1060 6GB
it is not possible to limit the number of concurrent work groups to one with
local memory.

Kernel Benchmark Occupancy
Application Range

Fan2 Gaussian Elimination 2 – 64
nw kernel1 Needleman-Wunsch 1 – 32
kmeans kernel c Kmeans 8 – 64
kmeans swap Kmeans 2 – 64
lud perimeter LUD Decomposition 1 – 32
lud internal LUD Decomposition 8 – 64
hotspot Hotspot3D 8 – 64
opt srad1 SRAD 8 – 64
opt srad2 SRAD 8 – 64
bpnn layerforward ocl Back Propagation 8 – 64
bpnn adjust weights ocl Back Propagation 8 – 64
compute step factor CFD Solver 6 – 60
time step CFD Solver 6 – 60
compute flux CFD Solver 6 – 60

6.3. Rodinia Benchmark Suite
Finally, we evaluated the Pipeline model and existing per-

formance models on 14 kernels from the well-known Rodinia
benchmark suite (Che et al., 2009), which was also used by the785

authors of most analytical performance models. The choice of
kernels was based on practical considerations such as the exis-
tence of an OpenCL version, a sufficiently large problem size
and the relative independence of the execution path on the pro-
cessed data. We executed each kernel under investigation on790

two different GPUs for a range of occupancies determined by
the kernel’s group size. For this, the code was adapted to run
with different numbers of concurrent work groups by allocat-
ing local memory. Table 9 gives an overview of the kernels
together with the benchmark application to which they belong.795

The same lambdas were used for all models (Table 5).
Memory lambdas

To determine the loop-trip counts and the memory access laten-
cies we used statistics obtained from the NVIDIA profiler tool
nvprof. The memory lambdas were determined as follows:800

• For global memory access we compared the number of
bytes accessed in DRAM bytesDRAM to the number of
bytes accessed in global memory bytesglobal. In the fol-
lowing we represent the ratio of both as R =

bytesDRAM
bytesglobal

.
Furthermore, the DRAM and L2 lambdas are denoted by805

ΛDRAM , λDRAM and ΛL2, λL2 respectively.

– R < 1. We assume the fraction 1 − R of the bytes is
accessed from L2 cache: With a issue probability of
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Figure 17: Experimental and model performance of kernels opt srad1 and
nw kernel1 on the Quadro K620 (Maxwell). The performance (throughput) is
normalized with respect to the real performance at minimal occupancy which
is set to 100.

1, all instructions of the remaining warps are used for
overlapping with the stall cycles until all stall cycles810

are overlapped.

Λglobal = R × ΛDRAM + (1 − R) × ΛL2

λglobal = R × λDRAM + (1 − R) × λL2

– R = 1.

Λglobal = ΛDRAM

λglobal = λDRAM

– R > 1. More bytes are accessed in DRAM than
strictly necessary. We compute the lambdas as fol-
lows:815

Λglobal = ΛDRAM + (R − 1) × λDRAM

λglobal = R × λDRAM

• For local memory access we use the bank conflict degree
D to estimate the lambdas as follows:

Λ′local = Λlocal + D × λlocal

λ′local = (1 + D) × λlocal

Results Some experimental results are shown in Figures 17
and 18. Volkov’s model clearly gives an upper bound to the
performance but is too optimistic. WFG corr and Pipeline are820

Figure 18: Experimental results of kernels lud perimeter and nw kernel1 on the
GeForce GTX 1060 (Pascal). Note that for both kernels the curve for Volkov’s
model is not visible since it lies exactly on the mwpcwp corr curve. The per-
formance (throughput) is normalized with respect to the real performance at
minimal occupancy which is set to 100.

closer to the true values. But especially for the Pascal GPU, the
Pipeline model gives a shape very similar to the true occupancy
curve, although there is a clear offset between both curves. This
reflects that quantitatively Pipeline is not completely accurate,
but that the model correctly captures the qualitative behavior of825

the GPUs. To quantify shape similarity, we derive a new metric
from the MAPE metric with which the predictive accuracies are
assessed.

The MAPE (Mean Absolute Percentual Error) of the perfor-
mance is used to assess predictive accuracy:

MAPEmodel =

∑
occ |WPCmodel

occ −WPCreal
occ |/WPCreal

occ

n
× 100

where occ traverses all occupancy values, and with n the num-
ber of values. The result tables also show the average MAPE830

per model for all kernels.
The new metric MAPE shape measures how well the shape of

the occupancy curve is modelled. It is calculated as follows:

MAPEmodel
shape =

∑
occ |WPCmodel

occ −WPCreal
occ − l f (occ)|

WPCreal
occ × n

× 100

with l f (occ) the best linear fit of all values WPCmodel
occ −WPCreal

occ .
The new metric measures the MAPE of the differences to the
linear fit. This procedure reduces the original MAPE value: a
constant offset and a constant drift of this offset is subtracted835

from the differences.

16



The results of the evaluation are shown in Tables 10 to 12 for
the Quadro K620, the GeForce GTX 1060 and GeForce RTX
2070 respectively.

The Pipeline model obtains the best results, with Volkov’s840

model a close second. The other models perform worse, unless
we apply the proposed corrections for WFG and MWP CWP.
Then the accuracies of these models are between Pipeline and
Volkov. MAPE shape gives values below 10% (and even better
for the Pascal and Turing) which indicates that the errors are845

largely due to incorrect lambdas rather than an incorrect mod-
eling of GPU behavior.

The total simulation time of the Pipeline model for all the
results (226 experiments for each of the 3 devices) was about 3
minutes.850

7. Conclusion

The Pipeline model is shown to be the underlying model of
the analytical GPU performance models. It allows the inter-
pretation and validation of their assumptions and their often
complex analytical equations, based on simple concepts (i.e.855

pipelines, throughputs and latencies). Simulation is used to es-
timate the performance instead of equations. It provides a men-
tal model of how threads are executed on GPUs and it offers
the modeling community a clear description of the underlying
concepts of current models. Moreover, the Pipeline model of-860

fers the flexibility to take more aspects into account, includ-
ing scheduler, barrier synchronization, concurrent work groups
and multiple subsystems. Empirical validation shows that the
Pipeline model gives a reasonable accuracy on real kernels (av-
erage MAPE of 24%). On the other hand, the accuracy of the865

simplest model taking occupancy into account, Volkov’s model,
has an average MAPE of 52.9% which was hard to beat by the
more complex analytical models.

We conclude that Volkov’s model can be used for a quick
estimation of an upper bound of the performance, while simu-870

lation of the Pipeline model is needed for an improved accuracy
and for a quantitative or qualitative analysis of the various per-
formance aspects.

Our website www.gpuperformance.org offers a Java
app for microbenchmarking GPUs. The GPU performance875

characteristics can then be added to and compared with the
GPUs of our database. An implementation of the simulation
of the Pipeline model is also available.
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Fan2 12 / 4.8 15 / 7.8 22 / 17.0 91 / 32.3 11 / 6.6 22 / 17.3 63 / 30.4 48 / 22.9
nw kernel1 20 / 10.5 78 / 32.3 98 / 43.4 78 / 20.5 76 / 31.4 11 / 5.5 92 / 18.4 49 / 10.3

kmeans kernel c 49 / 8.8 49 / 9.8 59 / 4.2 96 / 9.9 49 / 9.8 57 / 4.9 46 / 9.3 25 / 7.7
kmeans swap 51 / 15.8 52 / 16.8 51 / 13.4 87 / 16.8 52 / 16.8 52 / 13.1 212 / 16.6 212 / 16.6
lud perimeter 9 / 4.9 19 / 11.6 18 / 11.0 83 / 25.3 19 / 11.6 32 / 10.3 51 / 23.4 17 / 7.1
lud internal 36 / 11.1 63 / 22.4 47 / 17.1 92 / 6.4 50 / 17.0 21 / 6.5 54 / 3.4 18 / 3.1

hotspot 18 / 9.4 22 / 13.3 15 / 4.4 95 / 13.3 22 / 12.9 19 / 5.9 40 / 12.9 38 / 11.2
opt srad1 28 / 15.0 72 / 24.2 40 / 15.3 74 / 5.7 28 / 3.7 26 / 9.3 243 / 19.7 48 / 13.4
opt srad2 10 / 3.7 33 / 18.8 26 / 15.5 92 / 10.2 28 / 15.8 12 / 9.2 117 / 8.3 49 / 2.9

bpnn layerforward ocl 13 / 7.6 15 / 8.9 60 / 15.9 87 / 10.6 3 / 1.7 25 / 8.2 136 / 6.3 36 / 7.2
bpnn adjust weights ocl 38 / 9.4 63 / 13.2 70 / 8.1 98 / 13.2 63 / 13.1 72 / 8.8 48 / 13.2 48 / 13.1

compute step factor 7 / 7.6 2 / 1.1 17 / 13.4 94 / 1.0 4 / 1.8 18 / 11.6 86 / 1.1 80 / 2.5
time step 2 / 1.3 2 / 1.3 14 / 12.3 91 / 1.3 2 / 1.2 13 / 8.9 208 / 1.1 202 / 1.5

compute flux 12 / 3.6 14 / 5.7 25 / 4.9 82 / 9.6 14 / 5.8 29 / 2.4 58 / 6.9 33 / 3.8

average 22 / 8.1 36 / 13.4 40 / 13.9 88 / 12.6 30 / 10.7 29 / 8.7 104 / 12.2 65 / 8.8

Table 10: MAPE and MAPEshape values (percentages) of the Rodinia kernels for the Quadro K620 (Maxwell)
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Fan2 28 / 4.9 30 / 6.7 27 / 10.9 92 / 19.9 24 / 5.2 21 / 10.1 75 / 18.4 59 / 14.1
nw kernel1 54 / 10.6 184 / 46.6 243 / 51.3 70 / 13.3 184 / 46.4 40 / 7.9 200 / 9.7 102/ 13.7

kmeans kernel c 16 / 4.7 16 / 4.7 24 / 8.4 94 / 4.8 16 / 4.7 22 / 6.1 108 / 4.7 59 / 15.4
kmeans swap 38 / 14.8 38 / 14.9 38 / 14.7 84 / 14.9 38 / 14.9 39 / 14.4 391 / 14.640 391/ 14.2
lud perimeter 15 / 4.7 37 / 9.7 35 / 10.3 78 / 11.4 37 / 9.7 18 / 4.5 96 / 9.2 25 / 5.1

lud internal 23 / 2.9 45 / 5.3 44 / 4.5 93 / 5.9 43 / 5.1 32 / 0.9 35 / 4.0 37 / 3.7
hotspot 20 / 5.7 20 / 5.9 27 / 2.4 96 / 6.0 20 / 5.9 32 / 1.4 27 / 5.7 23 / 4.6

opt srad1 33 / 7.1 67 / 1.9 20 / 1.9 78 / 2.0 20 / 1.9 21 / 4.1 234 / 10.8 28 / 5.5
opt srad2 28 / 2.6 54 / 10.9 43 / 9.1 93 / 5.5 47 / 8.9 13/ 4.9 147 / 3.7 60 / 0.8

bpnn layerforward ocl 3 / 2.7 27 / 12.6 55/ 1.9 88 / 3.3 16 / 7.1 26 / 5.6 138 / 1.6 25 / 2.5
bpnn adjust weights ocl 40 / 6.7 66 / 6.7 68 / 4.5 98 / 6.8 66 / 6.7 70 / 4.0 42 / 6.7 42 / 6.6

compute step factor 12 / 1.6 14 / 0.4 16 / 10.2 93 / 0.4 11 / 0.7 17 / 9.5 108 / 0.6 98 / 2.1
time step 4 / 0.18 5 / 0.18 9 / 7.8 90 / 0.22 5 / 0.15 9 / 6.2 235 / 0.54 228 / 1.8

compute flux 7 / 3.1 9/ 4.3 12 / 7.5 80 / 4.3 8 / 4.2 15 / 1.4 74 / 2.3 29 / 2.1

average 23 / 5.2 44 / 9.3 47 / 10.4 88 / 7.1 38 / 8.7 27 / 5.8 136 / 6.6 86 / 6.6

Table 11: MAPE and MAPEshape values of the Rodinia kernels (percentages) for the GeForce GTX 1060 (Pascal).
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Fan2 24.5 / 7 47.2 / 12 38.9 / 21 40.8 / 8 88.7 / 23 26.5 / 15 61.5 / 23 57.1 / 20
nw kernel1 11.6 / 5 339.8 / 18 486.8 / 99 339.1 / 18 47.2 / 9 123.3 / 13 277.9 / 10 273.9 / 12

kmeans kernel c 57.2 / 8 37.0 / 10 57.5 / 8 37.1 / 10 95.3 / 10 52.2 / 7 42.9 / 10 42.9 / 10
kmeans swap 44.7 / 9 34.2 / 10 37.5 / 6 34.2 / 10 83.6 / 10 37.8 / 6 191.1 / 10 191.2 / 10
lud perimeter 7.5 / 8 116.8 / 34 106.9 / 27 116.7 / 34 71.2 / 8 36.3 / 9 95.5 / 9 97.2 / 10

lud internal 34.9 / 12 151.6 / 26 151.7 / 26 148.7 / 25 86.3 / 6 22.4 / 2 74.7 / 6 50.4 / 5
hotspot 21.1 / 4 29.4 / 9 30.2 / 7 28.5 / 8 94.8 / 9 37.6 / 7 29.6 / 8 29.4 / 8

opt srad1 31.3 / 10 139.7 / 36 75.7 / 21 48.2 / 8 65.7 / 7 64.9 / 10 271.7 / 8 119.8 / 11
opt srad2 12.4 / 0 37.8 / 7 28.9 / 5 31.4 / 7 90.8 / 5 7.4 / 1 68.0 / 4 50.6 / 1

bpnn layerforward ocl 17.8 / 5 17.3 / 5 94.8 / 19 7.1 / 3 82.6 / 6 22.3 / 4 106.8 / 4 71.0 / 8
bpnn adjust weights ocl 47.9 / 8 62.4 / 11 73.9 / 8 62.7 / 11 98.2 / 11 76.5 / 10 69.6 / 11 69.5 / 11

compute step factor 5.8 / 3 31.3 / 10 23.6 / 7 24.6 / 9 92.5 / 11 23.1 / 6 33.5 / 11 33.3 / 10
time step 22.0 / 6 44.0 / 11 13.5 / 4 43.0 / 11 86.8 / 11 4.9 / 4 105.8 / 11 106.2 / 11

compute flux 49.8 / 5 13.2 / 4 43.4 / 9 13.6 / 4 83.1 / 10 39.2 / 5 28.1 / 10 42.4 / 7

average 27.8 / 6 78.7 / 15 90.2 / 19 69.7 / 12 83.3 / 10 41.0 / 7 104.0 / 10 88.2 / 10

Table 12: MAPE and MAPEshape values of the Rodinia kernels (percentages) for the GeForce RTX 2070 (Turing)
.
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