
Microbenchmarks for GPU characteristics: the
occupancy roofline and the pipeline model.

Jan Lemeire1,2,3, Jan G. Cornelis2,3, Laurent Segers1

1Vrije Universiteit Brussel (VUB), Industrial Sciences (INDI) Dept.,
Pleinlaan 2, B-1050 Brussels, Belgium

jan.lemeire@vub.ac.be
2Vrije Universiteit Brussel (VUB), Electronics and Informatics (ETRO) Dept.,

Pleinlaan 2, B-1050 Brussels, Belgium
3iMinds, Multimedia Technologies Dept.

Gaston Crommenlaan 8 (box 102), B-9050 Ghent, Belgium

Abstract—In this paper we present microbenchmarks in
OpenCL to measure the most important performance characte-
ristics of GPUs. Microbenchmarks try to measure individual cha-
racteristics that influence the performance. First, performance,
in operations or bytes per second, is measured with respect to
the occupancy and as such provides an occupancy roofline curve.
The curve shows at which occupancy level peak performance
is reached. Second, when considering the cycles per instruction
of each compute unit, we measure the two most important
characteristics of an instruction: its issue and completion latency.
This is based on modeling each compute unit as a pipeline
for computations and a pipeline for the memory access. We
also measure some specific characteristics: the influence of
independent instructions within a kernel and thread divergence.
We argue that these are the most important characteristics for
understanding the performance and predicting performance. The
results for several Nvidia and AMD GPUs are provided. A free
java application containing the microbenchmarks is available on
www.gpuperformance.org.

Index Terms—microbenchmarks, GPU, opencl, performance

I. INTRODUCTION

The goal of this paper is to extract the important GPU
performance parameters with microbenchmarks. Microbench-
marks are small programs especially designed to measure a
single parameter, in contrast with benchmarks that estimate
the performance for real applications.

The roofline model [9] is a simple approach for the per-
formance prediction of a code run on a parallel platform.
It is based on the computational and communication peak
performance to determine the number of computation and
communication cycles. It assumes that the execution of both
subsystems is perfectly overlapped and predicts the actual
runtime to be the maximum of both. To determine whether
a code is computation or communication bound, the arith-
metic intensity (the ratio of computation to communication)
is used. The roofline model uses ceilings to account for
inefficient usage of the GPU. These ceilings, however, are
software independent and cannot account for all sources of
overhead. The roofline model has been adapted for GPUs.
The best known examples are the boat hull model of [5]
and GPURoofline of [3] and, more recently, the quadrant-
split model of [4]. These approaches comply with our first

set of microbenchmarks. However, peak performance and
perfect overlap of computation and communication cannot be
guaranteed; a second set of microbenchmarks is necessary.

Although GPUs offer a performance that is 50 to even 200
times greater than CPU performance, this is restricted to fine-
grain data parallel code. This is code with a lot of independent
work where every unit of work (called work item) takes place
on local data and uses similar operations as the other units
and where furthermore few resources are needed to process
one work unit. A major performance parameter is the number
of threads that can run simultaneously (concurrently) on a
Compute Unit (CU). The CU, called streaming multiprocessor
on Nvidia GPUs, is the basic computing component on a GPU,
similar to a core on a CPU. This is called the occupancy of a
GPU. A higher occupancy ensures that all processing elements
are busy during each clock cycle through latency hiding. This
is shown in Fig. 1 in which each work item is executing
the same number of instructions. We gradually increase the
number of work items. One observes that the execution time
remains constant up to 2000 work items, since they will run
concurrently. Only when all processing pipelines are filled, the
execution time starts to increase.

The first set of benchmarks that we built are providing
the occupancy roofline for each computational and memory
instruction type. It shows the increase of performance with the
increase of concurrency and the convergence point at which
the peak performance is reached.

Another goal of this paper is building microbenchmarks for
retrieving the GPU characteristics that determine the perfor-
mance of GPU programs in absence of full occupancy. The
program is then called latency-bound, since the latencies of
the GPU will determine the performance. Performance models
for such cases were designed by [1] and [2]. The goal of
these models is not to perform cycle-accurate simulations
but to attain a good balance between simplicity, generality
and accuracy. We argue that the main parameters for such
models are the issue and completion latencies of instructions
and memory requests. Consider a basic pipelined processor.
The issue latency is the time required between issuing two
independent instructions. This is one cycle for a simple

localadmin
Text Box
Proceedings of 24th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), Heraklion, Greece, 2016

Fig. 1. Execution time for the same kernel run with different number of work
items (NVidia Geforce).

pipeline. The completion latency is the time it takes for an
instruction to complete, i.e. the length of the pipeline. We
will motivate that more complex pipelines as in modern GPUs
can also be adequately characterized with both latencies, if
one accepts that the latencies cannot be mapped directly
on single hardware parameters. Although sometimes implicit,
both approaches for performance prediction [1], [2] are based
on the issue and completion latencies. In the work of [2] the
issue latency is called departure delay. They also designed a
microbenchmark to measure the departure delay, but it partly
relies on knowledge of some other hardware parameters. Our
approach on the other hand wants to take as few assumptions
as possible about the underlying hardware. Another related
work are the microbenchmarks of [4], but they focus entirely
on kernels that are not latency-bound. Also [10] uses mi-
crobenchmarks to understand the performance characteristics
of GPUs. They estimate peak performance and the necessary
concurrency to fully utilize the pipeline. But their main focus is
on special characteristics such as the effect of synchronization
and serialization.

First we discuss the GPU architecture, then we introduce
the occupancy roofline. In section 4 we define and discuss the
latencies of the pipeline model. Based on the definitions, we
present microbenchmarks to measure the latencies for com-
putational instructions (Section 5) and for memory requests
(Section 6). This results in a detailed report of the GPU
performance characteristics (Section 7).

II. THE GPU ARCHITECTURE

We first introduce a general architecture of most modern
GPUs, on which the performance analysis of this paper is
based. The level of detail is chosen such that it can model
a broad class of GPUs without getting lost in vendor or

TABLE I
HARDWARE AND SOFTWARE PARAMETERS OF A GPU.

Hardware parameters Software parameters
ClockFrequency workItems

NbrPE WGSize
NbrCU localMem

MaxLocalMem instrKernel
MaxConcWG memInstrKernel
WarpSize bytesPerElement

architecture specific details. The model is borrowed from
OpenCL and can easily be mapped on a typical GPU.

A GPU is connected to an external RAM memory that we
refer to as the global memory. It typically has a few GBs.
A GPU consists of a number of identical Compute Units
(CUs), denoted by NbrCU . On Nvidia GPUs they are called
streaming multiprocessors. Each CU has its own local memory
with size MaxLocalMem, which can be regarded as cache
memory. Code to be executed on a GPU is specified by writing
a kernel that describes what one work item must do. The
programmer will choose a sufficient number of work items,
workItems, to carry out all the work. Each work item will
execute the code specified in the kernel and use identifier
functions to find out what data to work on. The instructions
of the kernel will be performed by the processing elements
of the CU. The number of processing elements per CU for
the instruction under study is denoted by NbrPEitype where
itype denotes the instruction type.

Work items are organized in work groups. The size of
a work group (WG), WGSize, is chosen by the user. A
work group is executed on a single CU. Depending on the
register and local memory usage (localMem) of a work group
and as long as the maximum number (MaxConcWG) is
not reached, several work groups can run concurrently on
the same CU. We call this parameter concWG. Work items
within the same work group are executed in warps (Nvidia) or
wavefronts (AMD) in lockstep (SIMT). We will use the term
warp throughout the paper. The warp size is a fixed hardware
parameter (WarpSize). The CU scheduler considers the pool
of warps (from all concurrent WGs) and selects a warp
that has an instruction for which all dependent instructions
have completed (modern GPUs will schedule independent
instructions within the same kernel).

Table I summarizes the hardware and software parameters
used throughout the paper. Hardware parameters start with a
capital.

We denote the number of computational and memory
instructions under study (see later) by instrKernel and
memInstrKernel respectively. The element size in Bytes of
a memory instruction is denoted by bytesPerElement.

III. COMPUTATIONAL PEAK PERFORMANCE: OCCUPANCY
ROOFLINE

Here we study the computational peak performance for
each instruction type. Given that each processing element

can execute 1 instruction every cycle, the theoretical peak
performance is:

PeakPerfitype = NbrCU.NbrPEitype.ClockFrequency .
(1)

For most GPUs, this value can be multiplied by 2 for floating-
point multiply-add instructions since they are executed in the
same cycle. Furthermore we study the performance in function
of the occupancy, which results in a curve having the form of a
roof. The occupancy roofline is defined as the computational
performance in function of the number of concurrent work
items on one CU. The latter defines the occupancy.

The microbenchmark for measuring the occupancy roofline
executes many instructions of the selected type in an unrolled
for-loop. The number of iterations is chosen large enough to
make the impact of overheads very small. To avoid compiler
optimizations we make the instructions data-dependent, the
loop starts with a value of an input array. To make sure that
the compiler will not eliminate useless instructions, we pretend
that the result is written back to an output array. We add a
condition based on a boolean kernel parameter (which is set
to false at runtime) and the computed value so that no actual
write back is performed. The number of concurrent work items
is set by choosing the work group size WGSize, controlling
the number of concurrent work groups by choosing the amount
of local memory each work group needs.

localMem = bMaxLocalMem/concWGc (2)

The same experiment is performed 25 times. The average
and the 95% confidence interval is reported. The latter is calcu-
lated as 1.96 times the standard deviation of the experimental
values.

We do this for the different types of instructions:
• floating point instructions (SP),
• floating point multiply-add instructions (MADD),
• integer instructions (INT),
• double-precision (DP) (when supported by the GPU),
• native Special Functions (SF) instructions (e.g.
native cos),

• SF instructions without hardware support, which we call
software-sf (e.g. cos).

Fig. 2 shows the occupancy roofline model for the different
instruction types for a GeForce GT 640. The theoretical peak
performance (Eq. 1) is 361.2Gops since it has 2 CUs, 192 PEs
per CU (Fermi architecture) and a clock frequency of 900MHz.
For single-precision multiply-additions, 691 Gflops can be
attained theoretically. This performance is not attained in this
experiment since each instruction in the kernel depends on the
result of the previous; there are no independent instructions
that can be issued simultaneously. With 2 and 4 independent
instructions per iteration a peak performance of respectively
611 and 624 Gflops is measured.

From the roofline graph we can identify how much con-
currency is needed to fill the pipelines (and hence maximize
latency hiding). The curve converges to the peak performance

Fig. 2. Performance for different instruction types.

at the ridge point. In practice, we take the minimal point (in
number of work items) at which the relative difference with
the peak performance is smaller than 5%. Section 7 shows the
empirical numbers in a report.

IV. MICROBENCHMARKS FOR LATENCIES BASED ON THE
PIPELINE MODEL

The second set of microbenchmarks focusses on measuring
the relevant latencies of a GPU. We propose to use an abstract
pipeline model that is characterized by 2 latencies: issue and
completion latency. The pipeline model is discussed here. The
benchmarks are discussed in the following sections.

A. The pipeline model

The model is based on an abstract pipeline for model-
ing each subsystem of a Compute Unit (CU): one for the
computational subsystem and one for the memory subsystem.
A pipeline is mainly characterized by two parameters: the
number of cycles required between issuing two consecutive
independent instructions (called issue latency, denoted by λ)
and the number of cycles until the result of an instruction is
available for use by a subsequent instruction (called operation
latency or completion latency, denoted by Λ) [8]. Both laten-
cies are in most cases sufficient to estimate the execution time
of a program: the issue latency is the time before the next
independent instruction can be started, the completion latency
is the time before the next dependent instruction can be started
if all other instructions it depends on have completed as well.

Peak performance is attained with full pipelines, which
relies on hiding the completion latencies. Latency hiding is
achieved by executing independent instructions (from the same
thread or from a different thread) at the same time: the
completion latencies will be (partially or completely) hidden.
When completely hidden, the issue latencies determine the run
time and we attain peak performance.

For a scalar pipeline the issue latency is one clock cycle:
after one clock cycle the instruction enters the next stage and a
new instruction can enter the pipeline. The completion latency
is the number of stages in the pipeline multiplied by the issue
latency. This is no longer true for modern processors which
are much more complex.

B. Complex GPUs

Each instruction or memory transaction is characterized by
its issue and completion latency, also when more complex
processors are considered. We argue that it is appropriate to
model complex GPUs with the same 2 pipelines, but use more
complex latencies that may even depend on the context. The
latencies should not be integers. They can also depend on the
context of the instruction in which case they are not constants.

Let’s discuss some more detailed characteristics of modern
GPUs and show how they can be modeled by both latencies.

Within a CU, different instruction types can have different
Processing Elements (PEs) at their disposal. This is modeled
by considering different latencies for each instruction type.
Also for memory instructions we will use different latencies
for different memory levels. The effect of caching can be
considered as context (whether the data is cached or not) that
determines the completion latency.

So-called superscalar pipelines can execute more than one
instruction at the same time. On a GPU a warp of work items
is executing the same kernel in lockstep. Only one instruction
is scheduled which is executed for all WarpSize work items.
This is called Single Instruction Multiple Thread (SIMT)
where the execution of a work item can be considered a
thread. The pipeline model is about scheduling computational
or memory instructions. Therefore we have to consider a
warp as the fundamental scheduling unit or ‘thread’. In the
remainder of the text we will use the term ‘warp’ to denote
the basic scheduling unit (and not the term ‘thread’ because
it may result in confusion). It is therefore more interesting to
consider the latencies for a warp and not for a work item. An
Nvidia GPU of the Tesla generation has 8 floating point PEs,
giving an issue latency of 1/8 for a floating point instruction.
If we consider a warp, the issue latency is 4: each 4 cycles, a
warp can be scheduled.

Each CU of an Nvidia GPU of the Kepler generation has 4
warp schedulers each having 2 instruction dispatchers, which
makes that 2 independent instructions of 4 ready warps can be
scheduled. This results in a warp issue latency of 1/8. Note that
this is only achieved with a good mix of instructions since the
number of processing elements per instruction type is limited.
A Kepler CU has 192 single precision processing elements, so
that maximally 6 floating point instructions can be scheduled
together (warp issue latency of 1/6).

Lastly, overheads due to inefficient execution of instructions
may induce larger latencies. For SIMT it is not always possible
to execute all instructions of a warp simultaneously. In some
cases instructions or memory requests must be serialized.
With bank conflicts for instance, the memory cannot serve the
concurrent memory requests instantly. Requests that cannot

be served together have to be served one after the other
(serialized) because local memory is partitioned into banks.
Each bank can only handle one memory request at the same
time.

C. Performance understanding and prediction

We believe that the resource usage is effectively modelled
with the abstract pipeline, in the sense that it leads to a good
balance between accuracy and simplicity. The model can be
used to understand, predict or analyze the performance. The
effect of each instruction individually is modelled by both
latencies, while the interplay of the different instructions is
modelled by the pipelines: an independent instruction can be
scheduled after the issue latency of the previous instruction. A
dependent instruction can be scheduled when all instructions it
depends on have completed. The exact moment is determined
by the completion latencies of said instructions.

V. COMPUTATIONAL INSTRUCTION LATENCIES

In this section we discuss how we measure both lambdas
for computational instructions.

A. Microbenchmarks

Measuring the completion latency for computational instruc-
tions is straightforward: one runs a single thread in which all
instructions are dependent. To achieve this we make a work
group of 1 work item and ensure that only 1 work group will be
run simultaneously on a multiprocessor. Therefore we allocate
a block of local memory that occupies almost completely the
local memory of a multiprocessor, as expressed by Eq. 2.
Then the number of Cycles Per Instruction (CPI) reflects the
completion latency.

Measuring the issue latency is more difficult: we have to
ensure that the pipeline is completely full. In attempting to
reach full latency hiding, one has to exploit two levels of
parallelism: Warp-Level Parallelism (WLP) and Instruction
Level Parallelism (ILP), which is achieved by independent
instructions within a single kernel. We increment the work
group size (a runtime parameter) and the number of concurrent
work groups by lowering the local memory needed by a single
work group. We employ kernels with a different number of
independent instructions.

The first curve (full circles) of Fig. 3 shows the result for
a kernel with all dependent integer instructions: the CPI in
function of the number of concurrent work items. The leftmost
point reflects the completion latency (Λ) or, in the case of a
simple pipeline, the number of pipeline stages the instruction
needs to traverse until it is completed and the scheduler is
ready to issue another dependent instruction. For the Nvidia
GeForce GT 640 it is 6 cycles. By increasing the concurrency,
the number of cycles per instruction decreases due to the
filling of the pipelines and the latency hiding. It converges to
0.5 cycles (λ). Kepler architectures have 32 PEs per CU for
integers and can execute an integer multiply-add as a single
instruction. Our benchmark was an iteration of multiplications
and additions.

Fig. 3. CPI(warp) in function of concurrent workitems for 1, 2 or 4
independent integer instructions in kernel (Nvidia GeForce GT640).

Note that this graph is a kind of upside down occupancy
roofline.

B. Equations

We derive equations to calculate the CPI from the measured
runtime of a microbenchmark. We start by an approximated
value. The computational performance, expressed in operation
per second, is given by the following equation:

performance = nbrInstructions/runtime

= instrKernel ∗ workItems/runtime

Given the processor’s clock frequency, the number of Cycles
Per Instruction (CPI) can be calculated:

CPIGPU = runtime ∗ ClockFrequency/nbrInstructions

The approximated CPI of a single Compute Unit (CU) is then:

CPI
′

CU = CPIGPU ∗NbrCU (3)

CPI
′

CU is more useful than CPIGPU because GPUs of the
same generation use the same CUs, which makes the results
portable across all GPUs of the same generation. It will also
be easier to map the latencies on the hardware parameters of
the CU.

These equations are only correct if the GPU is fully utilized
during the whole execution. This is not always the case as
shown in Fig. 4. We call the concurrent execution of a set of
work groups by a compute unit a run (gray box in figure).
As such, the execution can be regarded as the distribution of
the runs over the available compute units. Here we assume
that all concurrent work groups start and stop at the same
time. At the end of the execution, there may be less runs
left than compute units or a run may not be occupied by the

Fig. 4. Execution of the work groups of warps by the compute units of a
GPU. Here we have 3 compute units that each run 2 work groups concurrently.
Each work group consists of 3 warps.

same number of work groups. This will result in a lower
performance. To correct for this, we base the calculation
of the performance variables on the execution time of one
run, denoted by timeOfRun. This leads to the following
equations:

WG = dworkItems/workGroupSizee

concWG = min(MaxConcWG,WG,
MaxLocalMem

localMemSize
)

warpsWG = dWGSize/WarpSizee
actualWarpSize = WGSize/warpsWG

concWarps = min(MaxConcWarps, warpsWG ∗ concWG)

totalWarps = workItems/actualWarpSize

runsCU = dtotalwarps/NbrCUs/concWarpse
timeOfRun = runtime/runsCU

cyclesOfRun = timeOfRun ∗ ClockFrequency
instrRun = instrKernel ∗ workGroupSize ∗ concWG

CPICU = cyclesOfRun/instrRun

CPIwarp = CPICU ∗ actualWarpSize

Based on these definitions, we can empirically extract the
latencies for an instruction of type itype as

λitype = min
exp

CPIitypewarp (4)

Λitype = max
exp

CPIitypewarp (5)

where the minimum and maximum is taken over a set of
experiments varying from 1 concurrent warp to full occupancy.

Table II shows the obtained latencies for different genera-
tions of GPUs.

C. Instruction-Level Parallelism

The presence of independent instructions in a kernel makes
it possible for the instruction scheduler to issue more than one
instruction of the same warp without having to wait for their
completion. Fig. 3 shows the CPI in function of the occupancy

TABLE II
ISSUE AND COMPLETION LATENCIES FOR SINGLE POINT FLOATS (SP),

DOUBLE PRECISION (DP) AND SPECIAL FUNCTIONS (SF) FOR THE
THREE GENERATIONS OF NVIDIA GPUS AND TWO TYPES OF AMD GPUS

(SOUTHERN ISLANDS AND NORTHERN ISLANDS).

Kepler Fermi Tesla Southern Northern
Λ λ Λ λ Λ λ Λ λ Λ λ

SP 9 0.18 18 1 22 4 6 1 8 2.7
DP 32 4 22 2 - - 22 5 32 8
SF 18 1 40 8 51 16 29 7 51 10

for 3 kernels with respectively 1, 2 and 4 independent integer
instructions. The body of the loop of the benchmarks consists
of respectively 1, 2, 4 instructions that only depend on the
previous iteration’s results.

In the case of a single concurrent warp (first point at the left)
we observe that a lower CPI is attained, showing that the GPU
architecture is able to exploit the independencies by filling the
pipelines with independent instructions. On the other hand,
the CPI of the 3 kernels converges to 1/2 cycle, which means
that the presence of independent instructions is not necessary
to fully occupy the pipelines because the pipeline needs less
concurrent warps to be filled.

D. Thread divergence

Most GPUs execute work items in warps, in which each
member executes the same instruction. In case of conditional
instructions (if or while statements), instructions are issued
for the whole warp but only executed for those work items
for which the condition holds. So with an if-then statement,
the instructions after the if-condition and after the then are
issued but only executed for some work items. Due to code
divergence within a warp, some performance is lost. If for
instance the if and then part have the same number of
instructions, then performance is halved for that part of the
code. If all work items of a warp follow the same branch, then
the instructions of the unfollowed branches are not issued.

To test this effect we created a benchmark that consists of
4 branches each having the same number of computational
instructions (enough to hide all overhead). Each work item
follows one branch according to its global id. We vary the
number of consecutive work items that follow the same
branch, denoted by parameter convItems. The branch of a
work item is chosen as (get local id(0)/convItems)%4. The
performance in function of convItems for an Nvidia GPU is
shown in Fig. 5. Performance reaches its maximal value at a
value of 32, since then all work items of warp 1 are following
the first branch, warp 2 the second branch, and so on. Absence
of divergence within each warp happens for multiples of the
warp size.

VI. MEMORY REQUEST LATENCIES

When estimating the latencies of memory requests, we have
to consider different memory types (global, local, constant and
private memory) and different element sizes (1, 2, 4, 8, 16
bytes). Furthermore, each memory type can have a cache.

Fig. 5. Performance of kernels with thread divergence.

Each characteristic is measured with a specific microbench-
mark:

• Bandwidth and Issue latency: Copy-kernel
• Completion latency: Random walk
• Cache behavior: Varying-size random walk

A. The copy-kernel

To measure the issue latency, we copy data from an input
array to an output array. The impact of overheads, such
as the computational instructions needed for calculating the
address, is minimized by letting each work item read several
elements (in an unrolled for-loop). To ensure that maximal
bandwidth is attained, the data should be read in a regular
way that complies with the hardware. We let work items read
consecutive elements: work item 1 reads element 1, work item
2 reads element 2, etcetera. In the next iteration, each work
items adds the number of work items to the address it is going
to read. This is shown in the code below.

d e f i n e N 100
/ / s r c : a r r a y w i t h N ∗ NBR WORK ITEMS e l e m e n t s
/ / d s t : a r r a y w i t h NBR WORK ITEMS e l e m e n t s

k e r n e l void copy (g l o b a l f l o a t ∗ s r c ,
g l o b a l f l o a t ∗ d s t , i n t f l a g)

{
i n t i d = g e t g l o b a l i d (0) ;
i n t i n d e x = i d ;
i n t NBR WORK ITEMS = g e t g l o b a l s i z e (0) ;
f l o a t sum = 0 ;

pragma u n r o l l
f o r (i n t i = 0 ; i < N; i ++) {

sum += s r c [i n d e x] ;
i n d e x += NBR WORK ITEMS;

}

i f (f l a g ∗ sum)
d s t [i d] = sum ;

}

Fig. 6. Bandwidth for different memory reads per kernel (AMD Radeon 6900
Cayman GPU).

GPUs can be regarded as massive ‘thread’ processors for
which threads do not cause overheads (this in contrast with
the large context switch overhead on CPUs). Having a lot of
work items with each just a small amount of instructions is in
theory as efficient as few work items with each having more
work. To verify this assumption, we vary the number of read
instructions of the copy-kernel. The results are shown in Fig. 6.
We compare a kernel based on a loop determined by a kernel
parameter (’dynamic loop’) with that of a constant (defined at
compile time) determining the number of iterations and an un-
rolled for-loop (shown in the listing above). The results show
that a parameterized loop (‘dynamic loop’) attains a much
lower bandwidth then a constant loop. Explicit loop unrolling,
however, does not offer a substantial additional performance
increase. The graph also shows some noisy periods in which
the performance fluctuates a lot. This was especially true for
the AMD Cayman GPU.

B. The random walk

To accurately measure the completion latency we have
to ensure that two consecutive memory reads in a kernel
are dependent. This is accomplished by a chasing pointer
algorithm applied on a given array with arraySize elements
that resides in a particular memory type. The array is traversed
by using the element’s value as the index of the next element:

i n t n u m i t e r a t i o n s = 1000 ;
i n t i n d e x = g e t g l o b a l i d (0) % a r r a y S i z e ;
whi le (n u m i t e r a t i o n s −−)

i n d e x = a r r a y [i n d e x] ;

We generate a random memory access pattern such that
there can be no benefit of prefetching caches (as speculative
loads become impossible) and cache-line hit rates reduce. We
also have to ensure that the whole array is traversed. Therefore
the array randomization is performed by swapping two random
elements as shown in the following listing:

/ / i n i t i a l i s a t i o n s t e p : encode i n d e x as v a l u e s

f o r (i n t i n d e x = 0 ; i n d e x < l e n g t h ; ++ i n d e x)
a r r a y [i n d e x] = i n d e x ;

/ / s h u f f l e t h e a r r a y
i n t index , swap pos , swap va l ;
f o r (i n d e x = 0 ; i d x < l e n g t h − 1 ; ++ i n d e x) {

swap pos = random (index , l e n g t h) ;
swap va l = a r r a y [i n d e x] ;
a r r a y [i n d e x] = a r r a y [swap pos] ;
a r r a y [swap pos] = swap va l ;

}

The function random(min,max) randomly generates a value
in the range [min,max[. The algorithm is a minor variation
on the Fisher-Yates shuffle known as Satollo’s algorithm [7].
It generates an array that encodes a complete pass through the
whole array. It is paramount for the pass to equal the length
of the array, as some memory locations may be left unread
otherwise. This would cause inaccurate results as the memory
range subject to the test could be smaller than requested. In-
depth studies on more intricate properties of Satollos algorithm
are available in literature, e. g. Helmut Prodinger presents a
detailed mathematical analysis on two parameters, ‘the number
of moves’ and ‘distance’, in [6].

The completion latency of a memory access is measured
similar to that of computational instructions: it is given by
the number of Cycles Per Memory Request (CPMR) when 1
concurrent warp is run.

Besides measuring the latencies for global memory, we also
apply it to local, constant and private memory. By private
memory we mean arrays defined as local variables in a kernel.
These arrays do not reside in registers as simple local variables
do, but will be stored in global memory and may be cached.
The benchmarks for local and private memory first copy the
randomized array from global memory before starting the
random walk. The choice of the array size is discussed in
the next subsection, since we will measure the cache latencies
at the same time.

C. Varying-size random walk
Cache sizes and latencies can be identified by using different

array sizes during random walk experiments. As long as the
array fits in the cache, the complete array will reside in
the cache after 1 pass through the whole array. We perform
multiple passes to measure the cache completion latency. By
increasing the array size, the CPMR increases as a rounded
step function, a step for each cache level. As soon as the
array does not fit any longer in the cache, there will be cache
misses, but still some cache hits as well, since by chance the
data might be in the cache. The cache hit ratio is the cache
size divided by the array size.

CPMR = ΛL1 + (ΛL2 − ΛL1)(1− CacheSize

arraySize
) (6)

This explains the rounded step function for the constant
memory latencies shown in Fig. 7. The cache has a size of
8 KB. These experiments give us the completion latencies for
the memory under study and show also the cache hierarchies,
their sizes and latencies. It can be seen that arrays stored in
private memory are not cached.

Fig. 7. Varying-size random walk on Nvidia Quadro K620.

D. Equations

The bandwidth and CPMR can be calculated in a straight-
forward way:

bytesComm = workItems ∗memInstrKernel ∗ bytesPerElement
bandwidth = bytesComm/runtime

totalMemInstr = workItems ∗memInstrKernel
CPMR

′
= runtime ∗ ClockFrequency/totalMemInstr

(7)

As is the case with the computational instructions, the CPMR
can be calculated more precisely as follows:

memInstrRun = memInstrKernel ∗WGSize ∗ concWG

CPMRCU = cyclesOfRun/memInstrRun

CPMRwarp = CPMRCU ∗ actualWarpSize

VII. GPU PERFORMANCE CHARACTERISTICS REPORT

Based on the microbenchmarks we developed a benchmark
suit that produces a report of a GPU’s major performance
characteristics. The report for the Nvidia Quadro K620 is
shown in Table III. Multiple values for the computational
latencies refer to the latencies for ILP levels of 1, 2 and 4.
Multiple values for the memory latencies refer to the latencies
of the different memory levels and indicate the presence of
caches. The cache sizes are given in the last column.

VIII. CONCLUSIONS

One of the challenges of GPU computing is writing ef-
ficient programs. For this, knowledge of the architecture is
indispensable. But as not all hardware details are disclosed by
GPU vendors, we built microbenchmarks to determine them
empirically. Our approach is to characterize computational
instructions and memory requests by their issue and comple-
tion latency. These parameters can be used to understand and

TABLE III
PERFORMANCE REPORT OF A NVIDIA QUADRO K620 BASED ON THE

MICROBENCHMARKS. PERFORMANCE IS IN GOP/S, BANDWIDTH IN GB/S,
LATENCIES IN CYCLES.

Computations
itype Performance λ Λ ridge point
SP 249/363/388 .43/.30/.28 9.1/4.7/4.7 1536

INT 125/130/130 .86/.77/.83 16.2/12.9/12.6 1536/1024/512
SF 27/27/27 4.0/4.0/3.9 62/39/29 512/384/256

Global Memory
Element Bandwidth λ Λ cache size

1B 15.7 3.96 42.4 -
2B 21.6 5.83 59.7 -
4B 25.0 9.89 52.5 -
8B 26.2 18.9 78.5 -

16B 26.4 37.7 144.2 -
Local Memory

Bandwidth λ Λ cache size
4B 138 1.3 43.1 -

Constant Memory
Bandwidth λ Λ cache size

4B 97.1 1.48 48/90.6 8KB
Private Memory

Bandwidth λ Λ cache size
4B - - 177 -

predict the performance based on performance models. A java
application containing all benchmarks is freely available on
www.gpuperformance.org.

This research has been funded by the Flemish ‘Instituut
voor Wetenschap en Technologie’ (IWT) in the context of the
ITEA-2 MACH project (IWT130177): ‘Massive Calculations
on Hybrid Systems’.

REFERENCES

[1] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D.
Gropp, and Wen mei W. Hwu. An adaptive performance modeling
tool for gpu architectures. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’10, pages 105–114, New York, NY, USA, 2010. ACM.

[2] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu
architecture with memory-level and thread-level parallelism awareness.
ACM SIGARCH Computer Architecture News, 37(3):152–163, 2009.

[3] Haipeng Jia, Yunquan Zhang, Guoping Long, Jianliang Xu, Shengen
Yan, and Yan Li. Gpuroofline: A model for guiding performance
optimizations on gpus. In Euro-Par 2012 Parallel Processing - 18th
International Conference, pages 920–932, 2012.

[4] Elias Konstantinidis and Yiannis Cotronis. A practical performance
model for compute and memory bound GPU kernels. In 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2015, pages 651–658, 2015.

[5] Cedric Nugteren and Henk Corporaal. The boat hull model: adapting the
roofline model to enable performance prediction for parallel computing.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP 2012, 2012.

[6] Helmut Prodinger. On the analysis of an algorithm to generate a random
cyclic permutation. Ars Combinatoria, 65:7578, 2002.

[7] Sandra Sattolo. An algorithm to generate a random cyclic permutation.
Information processing letters, 22(6):315317, 1986.

[8] John Paul Shen and Mikko H. Lipasti. Modern Processor Design.
McGraw-Hill, 2005.

[9] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65–76, 2009.

[10] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi,
and Andreas Moshovos. Demystifying GPU microarchitecture through
microbenchmarking. In IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2010, pages 235–246, 2010.

