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Abstract. Consider data given as a sequence of events, where each event has a
timestamp and is of a specific type. We introduce a test for detecting marginal
independence between events of two given types and for conditional indepen-
dence when conditioned on one type. The independence test is based on compar-
ing the delays between two successive events of the given types with the delays
that would occur in the independent situation. We define a Causal Event Model
(CEM) for modeling the event-generating mechanisms. The model is based on
the assumption that events are either spontaneous or caused by others and that
the causal mechanisms depend on the event type. The causal structure is defined
by a directed graph which may contain cycles. Based on the independence test, an
algorithm is designed to uncover the causal structure. The results show many sim-
ilarities with Bayesian network theory, except that the order of events has to be
taken into account. Experiments on simulated data show the accuracy of the test
and the correctness of the learning algorithm when assumed that the spontaneous
events are generated by a Poisson process.

1 Introduction

In this paper we consider the following problem. The data is a sequence of events E =
〈(E1, t1), (E2, t2), . . .〉whereEi represents an event type and ti, the time of occurrence
(also called timestamp) of the ith event, is a real value ∈ [0, T ], with T the end time of
the sequence. Ei take values from a finite set of event types, the event domain D. Fig. 1
shows an example event sequence withD = {A,B,C,D}. When there is no confusion
possible we denote events (Ei, ti) with lower case ei. Event types are denoted with
upper case and sets with boldface letters. The question is to infer (1) independencies
and (2) causal relations between the events.

If events of type A can cause events of type B, which we write as A → B, then
sequences 〈tA1

, tA2
. . . tAk

〉 and 〈tB1
, tB2

. . . tBl
〉 are correlated, where tAi

and tBj
are

the timestamps of the A and B events respectively. We want a test to identify such cor-
relation. We also want a test to identify conditional independencies. For causal model
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Fig. 1. Example event sequence.

A → C → B, A is independent from B when conditioned on C, which we write as
A⊥⊥B|C.

The problem has extensively been studied for series of continuous-valued dynamic
variables, see for instance Granger causality [1]. Methods for analyzing sequences of
events, on the other hand, have been studied in the data mining community. The main
technique is episode mining where an episode is defined as an ordered tuple of events.
Occurrences of episodes are counted and highly-frequent episodes are considered as
relevant.

The independence test we propose here is based on the information given by the in-
tervals between successive events of a given episode. The intervals measured from the
data will be compared with the intervals in the case in which the events would be ge-
nerated independently. If both interval arrays appear as being generated from different
distributions, the events are correlated.

Our approach for learning the causal structure is similar to the approach as used in
causal model theory in which a causal model is represented by a Bayesian network [2,
3]. In Bayesian network theory, conditional independencies are defined over the joint
probability distribution and a link is drawn between causality and dependencies through
the causal Markov condition. The conditional independencies following from the causal
structure can then be used to learn the causal structure from data.

In the next section we define a Causal Event Model for reflecting the event-generating
mechanisms. We show that it is more general than current settings. In Section 3 we de-
fine marginal and conditional independence between events. Section 4 draws the link
between causation and correlation in our framework. Section 5 defines the conditional
independence tests. Section 6 gives a causal structure learning algorithm and Section 7
provides experiments with simulated data.

2 Causal Event Model

The model for the event-generating mechanisms is based on the following assumptions.
(a) Events have exogenous causes (called spontaneous events) or are caused by other
(effect events). (b) The causal mechanisms depend on the type of event. This does not
mean that event c literally causes event e. It is possible that the mechanism responsible
for generating event c (e.g. when a variable passes a certain threshold) affects another
mechanism which triggers event e. In such case, the event related to the cause can
happen after the effect event. Here, (c) we will assume that cause events happen before
their effects. (d) The causal mechanism only generates one event (or none) of a specific
type.

The effect event counterfactually depends on the cause events; if one of the causes
would not have happened, the effect event would not have happened. The event se-
quence E can then be split up into two sequences: the spontaneous events Es and the



3

effect events Ee. Instantiations of events belong to either Es or Ee, however events of
a certain type can occur in both. Each non-spontaneous event has one or more causes:
an effect event is linked to one or more events. ∀ei ∈ Ee,∃c ⊂ E : c → ei. This is
indicated in Fig. 2. We call it the Causal Event Sequence Graph (CESG). It constitutes
a Directed Acyclic Graph (DAG).

Fig. 2. Example event sequence with the causal relations between the events.

On the other hand, a graph describing the mechanisms responsible for generating the
effect events should not be cyclic. We only assumed that the mechanism depend on the
event types, in the sense that events from a certain type are responsible for generating
events from another type in the future. So, A → B means that some events of type B
are caused by events of type A. If an A event, say ei, causes a B event, say ej , then tj
depends on ti. This is represented by P (4∗tB |A), a probability distribution over4∗tB
which is defined as the time interval between cause and effect, tj − ti in the case of ei
causing ej . The asterisk denotes that it is an interval between causally-connected events.
The probability distribution can often be described by a Weibull distribution. It should
be noted that the sum Ptotal =

∫
t
P (4∗tB = t|A)dt can be smaller than 1, indicating

that A in some cases does not generate B. By defining P over the time difference, time
invariance is incorporated into our system.

The causal structure can be represented by a directed graph which can be cyclic,
and can have bidirected edges or loops. Fig. 3 shows the causal structure responsible
for the event sequence of Fig. 2. The parameterization is that for each node X and for
all parents Pa of X , there is P (4∗tX |Pa) which specifies a distribution of the time
delay. These distributions represent the generation of X by Pa. This is shown in Fig. 4.
If X has multiple parents, they can all independently generate X or the generation of
X happens by a mutual occurrence of multiple parent events. Pa1 . . . Pak → X is
described by P (4∗tX |Pa1,4tPa2

, . . . ,4tPak
). The distribution gives the time to X

after the occurrence of Pa1 and occurrence of Pai (i = 2 . . . k) with a time difference
of4tPai .

The directed graph together we the parameterization we call a Causal Event Model
(CEM). The CEM can be considered as a generic template to produce the CESG, which
is often called the ‘rollout’.

2.1 Related work

Temporal Nodes Bayesian Networks (TNBNs) [4] are a special kind of Bayesian net-
work which are parameterized considering delays (relative times). When an initial (spon-
taneous) event occurs, its occurrence gives the reference time. The nodes represent va-
riables. Events occur when variables pass a certain threshold. This is indeed often the
case, but we do not want to make any assumption about the ‘meaning’ of the events and
use event variables as nodes.
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Fig. 3. Causal structure used for the experiments.

Fig. 4. Parameterization for some families of the causal structure of Fig. 3.

Networks of Probabilistic Events in Discrete Time (NPEDTs) [5] are also defined
over event variables with a parameterization similar to ours. NPEDTs are, however,
more restrictive: each event can happen at most once and no self-references or cycles
are allowed in the graph. By this restriction, NPEDTs are genuine Bayesian networks,
while a CEM is not.

[6] uses a dynamic Bayesian network to model the relations between the event va-
riables. The limitation of a dynamic Bayesian network is that you need to draw a link
between a node and another node in the future. This fixes the time interval between
cause and effect. [6] use the dynamic Bayesian network in combination with episode
mining, but because of this limitation, they limit themselves to fixed-delay episodes. In
our case we make no assumption about the time interval between the cause and effect
event. We even allow continuous time intervals.

Finally, it must be noted that all 3 models here discussed discretize the time.

3 Independence relationships

We define marginal and conditional independence on the distributions over the time in-
tervals between successive events. This is motivated by the following. Events generate
new events that will happen in the future. The causal mechanism defines the time inter-
val between cause C and effect E, which we denoted by 4∗tE . The knowledge of an
event happening at time t contains information on the occurrence of the causally-related
future events. We therefore consider the time to the first future occurrence of an event
of a specific type. We denote this time delay as41tE .

3.1 Interval to first occurrence (41)

We denote by Pab(41tB |A) the probability that the first event of type B after a random
time t happens at time t +41tB given that an event of type A occurred at time t. The
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subscript ab indicates that event b must happen after a. The definitions for indepen-
dency will be based on this distribution instead of causal distributions 4∗t, because it
is measurable from data. Before that, two important consequences of the model have to
be discussed.

It must be noted that if A→ B, this does not necessarily mean that P (4∗tB |A) and
Pab(41tB |A) are the same, since the first event B after event A might be a spontaneous
event or caused by other events, and accidently occurring right after A. The relation
between P (4∗tB |A) and Pab(41tB |A) is calculated as follows. The probability for
having the first occurrence of a B event at relative time t is the probability that B
occurs at time t multiplied with the probability that no B occurred before that. This is
expressed by the following equation. With P (4tB = t|A) we denote the probability
that a B event happens at time t after an A event.

P (41tB = t|A) = P (4tB = t|A).(1− P (41tB < t|A)) (1)

= (
∑
i

Pi(4∗tB = t|A)).(1−
∫ t′=t

t′=0

P (41tB = t′|A)dt′) (2)

The first probability of the right hand side of Eq. 1 is determined by all possible direct
causes ofB (denoted by index i), the second is an integral adding all previous probabil-
ities. It results in a recursive formula, given by Eq. 2. If the probability P (4tB = t|A)
is a constant, the result is an exponential distribution.

Next, assume the causal model is A → B and A is spontaneously generated by
a Poisson process with rate λ. The first event B after an event A can then be (1) the
event caused by that A or (2) a B event caused by another A event. For the latter holds
that P2(4tB = t|A) = P (tB = t) = λ since it is unrelated to A. P (41tB = t|A)
is a combination of both given by above equation. The resulting distribution mainly
depends on which distribution ‘comes first’. The distribution with most of its weight
for small delays greatly determines P (41tB = t|A).

3.2 Marginal independence

Marginal independence is defined as follows:

A⊥⊥
ab
B ⇔ Pab(41tB |A) = P (41tB) (3)

where P (41tB) is the probability that the first event of type B after time t happens at
time t+41tB given a random time t.

An important difference with statistical independence defined over a joint proba-
bility distribution is that the order should be taken into account: A⊥⊥

ab
B means that

knowledge about an A event has no information on the next B event, while ⊥⊥
ba

is about

information of an B event over the next A event. Hence:

A⊥⊥
ab
B 6⇔ A⊥⊥

ba
B. (4)

While it can be shown that symmetry holds for a given order:

A⊥⊥
ab
B ⇔ B⊥⊥

ab
A (5)
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A special case is autocorrelation. P (41tB |B) is the probability that the first event of
type B after a random time t happens at time t+41tB given that another event of type
B occurred at time t. To check for autocorrelation we check whether P (41tB |B) =

P (41tB). We denote B autocorrelated as
y
B.

3.3 Conditional independence

Conditional independence is also defined for a specific event ordering over its argu-
ments. The order is described by an episode.

A ⊥⊥
ep(A,B,S)

B|S⇔

Pe=ep(A,B,S)(41tB |s∗,41(S \ s∗),41tA)
= Pe\A(41tB |s∗,41(S \ s∗)) (6)

with ep(A,B,S) an episode over A, B and S, and s∗ the first element of S in the
episode, all4s are defined with respect of s∗. e \ A denotes the episode e from which
A is removed. Note that the distributions do not depend on the choice of s∗ among S; it
only sets the reference time.

4 Causation implies correlation and vice versa

In this section we draw the relation between causation and correlation as defined in the
previous sections. The relation is grounded by the assumption that causally unrelated
events are independent.

This assumption is also expressed by Reichenbach’s principle: if A and B are cor-
related, then either A causes B, either B causes A or either there is a common cause of
A and B.

In the following we will also assume that there are no unknown (latent) common
causes. Together with the independence assumption this implies that there is no cor-
relation if no causal relation in the model. Except that the spontaneous events from a
specific type will be autocorrelated when their occurrence is not random.

4.1 Correlation and the causal event sequence graph.

Consider I(cem) the conditional independencies of a causal event model, consider
CEM(G) all causal event models compatible with graph G. We are interested in the
conditional independencies that hold for all CEMs compatible with G (the intersec-
tion): I(G) = ∩CEM(G)I(cem). These independencies follow from the causal struc-
ture, independent from the parameterization. Specific parameterizations may lead to
additional independencies.

The following theorem proves that the conditional independence statements from
I(G) can be extracted from the Causal Event Sequence Graphs (CESG) compatible
with G by d-separation. We recall the definition. X and Y are d-separated by Z if every
path between X and Y is blocked by Z. An (undirected) path is said to be blocked by Z
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if it contains a collider→ · ← whose descendants are not in Z or a non-collider→ · →
or← · → or← · ← that is in Z [2].

Theorem 1. A ⊥⊥
ep(A,B,S)

B|S is not in I(G) if and only if there is a subset of nodes in

a Causal Event Sequence Graph compatible with G which forms an occurrence of the
episode ep(A,B,S) in the event sequence such that a 0b|s.

Proof. If there is an active path between a and b in the sequence graph, we prove that
ta and tb are bounded by the causal delay distributions of the network. Then there
exists at least one parameterization which bounds the occurrence of b to the time of
occurrence of a, such that the independence does not hold. For any triple x → y → z
along the path, tz is bounded by ty and also by tx. The same applies for x ← y ← z.
For any triple x ← y → z along the path, both tz and tx are bounded by ty which
makes them also depend on each other. For any triple x → y ← z, ty is bounded
by tx and tz but this does not imply that tx and tz are dependent unless y or one of
its descendants is conditioned on. In that case, ty is known and together with tx this
gives information about tz . Combining these bounds proves that an active path implies
a conditional dependency. If, on the other hand, there is no path, then a and b events are
assumed to be independent. If there is a path, but blocked by an event, say c, then tc
constrains tb, but ta does not further bounds tc.

4.2 Correlation and the causal event model.

d-separation is not readily usable to identify conditional independencies from the Causal
Event Model. A related criterion will be established here.

Definition 1 (d-separation in CEM). A path p between two nodes A and B is said to be
blocked by a set S = {S1,S2,S3}, with S1,S3 ⊂ E and S2 ⊂ E\{A,B}, corresponding
to an ordered episode (s1, a, s2, b, s3) if:

– on p there is a fork X ← Y → Z and Y ∈ S1

– on p there is a chain X → Y → Z and Y ∈ S2

and

– on p there is no collider X → Y ← Z for which either Y or any of its descendants
∈ S3

When all paths between A and B are blocked by S = {S1,S2,S3} we say that A is
d-separated from B given S denoted as A ⊥

s1as2bs3
B|S1S2S3, otherwise we call them d-

connected denoted as A 0

s1as2bs3
B|S1S2S3.

Theorem 2. A ⊥⊥
s1as2bs3

B|S1S2S3 ⇔ A ⊥
s1as2bs3

B|S1S2S3, with S1,S2,S3 ⊂ E.

Proof. ⇐
Assume A ⊥

s1as2bs3
B|S1S2S3. Conditioning on events in S3 cannot block a path between

A and B in the CEM. For each e ∈ S1, in the corresponding CESG e will appear before
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Algorithm 1 Marginal independence test for A⊥⊥
ab
B.

Given: Set of possible event types D and event sequence E = 〈(E1, t1), . . . , (En, tn)〉

1. Count the number of occurrences of B in S = n.
2. Generate a new sequence S′ with the same A events as in S, and add n events of type B

with random timestamp ∈ [0, T ]. If A and B are the same (self-correlation test), sequence
S′ should only contain the randomly generated events.

3. For both sequences S and S′, generate the sequence of intervals I and I ′ between each
occurrence of A and the first occurrence of B after that of A.

4. If the Kolmogorov-Smirnov test applied on I and I ′ returns ‘equal’, the test returns true
(meaning independence).

a and b. If in the CESG there is a causally directed path from e to both a and b then
conditioning on e closes the path a ← . . . ← e → . . . → b. If there is no directed
path from e to both a and b in the CESG then a is trivially d-separated from b. Similar
observations can be made for e ∈ S2, where there either is a causally directed path
a→ . . .→ e→ . . .→ b or a is again trivially d-separated from b in the corresponding
CESG. Therefore⇐ follows from Theorem 1.
⇒
AssumeA ⊥⊥

s1as2bs3
B|S1S2S3 andA 0

s1as2bs3
B|S1S2S3. This implies thatA ⊥

s1as2bs3
B|S1S2S3

in the corresponding CESG (Theorem 1). Conditioning on events in S1 and S2 cannot
d-connect A and B in the CEM, so A 0

abs3
B|S3. This means that there is a E ∈ S3 such

that there is a causally directed path from both A and B to E, or an edge A → B in
the CEM. This however is contradicted by the lack of such paths in the corresponding
CESG.

5 Independence test

The goal is to define a test which identifies .⊥⊥
ep
.|. such that in the generic case:⊥ ⇔ ⊥⊥

ep
.

For testing X⊥⊥
..
Y |Z, we have to compare the distribution Pep(Y,Z)(41tY |Z) reflect-

ing the independence situation, with the actual distribution Pep(X,Y,Z)(41tY |Z, X) esti-
mated from the data. We will use the Kolmogorov-Smirnov test which works on the data
directly. The test identifies whether two samples are drawn from the same distribution,
without making any assumption about the distribution of data. The exact significance
probability is calculated using the method of [7].

Note that all tests have linear complexity with respect to the sequence size.

5.1 Marginal independence

The algorithm is described by Alg. 1. The algorithm measures the distribution over
41, which is different from that of 4∗ but as discussed in Sec. 3.1, 4∗ comes close to
41 if the average delta is smaller than that of the other causes.
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Algorithm 2 Conditional independence test for A ⊥⊥
ep(abc)

B|C.

Given: Set of possible event types D and event sequence E = 〈(E1, t1), . . . , (En, tn)〉

1. For each occurrence of episode ep(abc), add interval tb − ta to sequence I , add interval
tc − ta to sequence I1 and tb − tc to I2.

2. Now shuffle sequence I1 randomly such that the order of the elements gets completely
different from that of I2.

3. Construct sequence I ′ by adding the elements of I1 to those of I2 (interval i of I1 is
summed with interval i of I2 ).

4. If the Kolmogorov-Smirnov test applied on I and I ′ returns ‘equal’, the test returns true
(meaning conditional independence).

5.2 Conditional independence

Next, we give an algorithm to test for independence when conditioned on one variable.
The test is based on randomization of the intervals with respect to the time of occurrence
of the conditioning variable. This creates the reference distribution. Alg. 2 describes
the test procedure. If the occurrence of an A event is irrelevant for the occurrence of B
when C is known, the time interval between A and B is irrelevant with respect of C.
The distribution for the null hypothesis is then constructed by randomizing (swapping)
the intervals between A and B.

6 Causal structure learning

Here we present a modified version of the PC algorithm to detect the causal structure
called EPC: Algorithm 3. We define a complete directed CEM as a complete graph with
all bi-directed edges and self-references for each variable. The description of the algo-
rithm simplifies as each bi-directed edge A ↔ B is considered as two edges A → B
and A ← B. Since we can directly make a difference between these edges by look-
ing at ab and ba episodes (through the asymmetry, see Section 2), we do not have to
add an orientation phase or end up with a class of equivalent models under the given
independencies such as the PC algorithm.

All CIs discovered in the data are following from the causal structure.

Theorem 3. Under faithfulness, the EPC algorithm returns the correct CEM given an
oracle for the independence tests.

Proof. By faithfulness, no adjacent nodes can become independent when conditioned
on any subset of other nodes. Non-adjacent nodes are either marginally independent or
become independent when conditioned on one of the nodes along each path.

7 Experiments and Evaluation

In this section we experimentally analyze the accuracy of the independence test and the
learning algorithm. It is then compared with the results obtained by episode mining.
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Algorithm 3 EPC
Given: Set of possible event types D and event sequence E = 〈(E1, t1), . . . , (En, tn)〉

1. Initialization with complete directed CEM G over D
2. For each edge A→ B in G (including

y
A, i.e. B=A),

(Consider each bi-directed edge A↔ B as two edges A→ B and A← B)
∀S1 ⊂ D and ∀S2 ⊂ D\{B}:
If A ⊥⊥

s1as2b
B|S1, S2, remove A→ B from G

7.1 Influence of causal delay and sample size

As discussed in Sec. 3.1, the delay between cause and effect plays an important role
in identifying 4∗ from 41. We experimentally studied this with data generated from
model X → Y → Z with the following parameterization. X is generated by a Poisson
process with rate 0.01 (meaning that on average every 100 time units an event occurs).
The parameterization of both causal relations,X → Y and Y → Z, is given by a Gaus-
sian distribution with given mean and the standard deviation is set to the square root of
the mean (a mean of 100 thus gives the same average delay as that of the Poisson pro-
cesses). There is a probability of 0.2 that no effect event is generated. Table 1 shows the
minimum episode occurrences necessary to correctly identify the given dependencies
in 10 experiments. A dash means that the minimum count exceeded 4000.

Fig. 5. Causal structure of the example event sequence.

Secondly, data was generated from the model of Fig. 5. The parameterization was
set as follow. Spontaneous events are generated for A, B and D by a Poisson process
with rate 0.01. The parameterization of each causal relation (each edge), P (4∗E|C), is
given by a Gaussian distribution with given mean and the standard deviation set to be
the square root of the mean. For all causal relations there is a probability of 0.2 that no
effect event is generated, except for A → A and D → C for which the probability of
no effect is set to 0.8 to avoid cascading effects due to the cycles. The results are also
shown in Table 1.

The results show clearly that the detection of dependencies is accurate for small
sample sizes for simple models but becomes harder when multiple causes are into play,
such as for detecting the dependency betweenA andD. The self-correlation ofA is also
hard to detect since the causal relation is only fired with low probability (0.2). Finally, it
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must be noted that the test rarely makes errors on detecting conditional independencies.
For model X → Y → Z and over all experiments, testing X⊥⊥

xyz
Z|Y gave an accuracy

of 99.3%. The same accuracy was obtained when testingA⊥⊥
acd
D|C in the second model.

Table 1. Number of episodes necessary to correctly identify the following (in)dependencies that
hold for the given models with varying Gaussian mean. The lowest row shows the minimal se-
quence size to correctly learn model X → Y → Z.

mean 20 40 60 80 100 120
X 2

xy
Y 19 20 58 59 56 138

X 2
xz
Z 59 135 137 297 303 1242

X 2

xyz
Y |Z 185 186 185 89 90 87

A 2

ac
C 25 75 378 790 3181 -

A 2

ad
D 53 941 2341 - - -

A 2

abc
B|C 127 159 126 129 128 121

A 2

acd
C|D 583 565 267 260 263 257

A 2

aa
A 375 1223 3695 - - -

learning 3068 686 685 677 668 690

7.2 Causal structure Learning

The lowest row of Table 1 shows the minimal sequence size (number of events) to
correctly learn model X → Y → Z with the parameterization specified in the previous
section. It shows that only a relatively small sample size is needed to learn simple
models. The high sample size needed to learn the model with mean 20 is needed since
the delays come close to being deterministic (small standard deviation) which results in
violations of faithfulness.

The accuracy of the learning algorithm depends on the correctness of the indepen-
dence test and the validity of faithfulness. This was confirmed by our experiments with
randomly-generated models and different sample sizes. The following causes of failure
were detected:

1. Large causal delays and small sample sizes increase the number of test errors, as
discussed in the previous section. When for a single event multiple causes come
into play, it’s harder to detect the dependencies.

2. Exact violations of faithfulness or near-to-unfaithful situations. For example, when
the causal delay is nearly deterministic. These cases are similar to the problems in
learning causally-interpreted Bayesian networks. See for instance [8] for discussion
of the problems and modifications of the PC algorithm to handle such violations.

3. Finally, our conditional independence test is limited to one conditioning variable.
This means that if two variables are related by two difference causal paths, they
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are dependent and will not become independent when conditioned on only one
variable. It introduces a false positive edge.

8 Conclusions

We created a procedure with linear complexity for testing marginal and conditional in-
dependence between events in event sequences. The test is accurate in detecting depen-
dencies coming from causal relations if the average interval between cause and effects
is smaller than that of spontaneous events or other causes. We defined a very general
model, the Causal Event Model (CEM), to describe the underlying event-generating
mechanisms. As opposed to other event models, it is not a Bayesian network since it al-
lows cycles. Based on the conditional independencies an algorithm could be constructed
to learn the correct causal structure under faithfulness and causal sufficiency.
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