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The Forward Procedure for HSMMs based on
Expected Duration

Jan Lemeire, Francesco Cartella

Abstract—For dynamic models, the forward procedure is used
to calculate the probability of an observation sequence for
a given model. For Hidden Semi-Markov Models (HSMMs),
the calculation can be approximated by keeping track of the
expected state duration instead of the distribution. The update
equation for the expected duration proposed by Azimi et al.[1]
is, however, wrong. The experiments presented by Azimi et
al.[1] did not reveal the error, since for the presented cases
the state duration does not play a role in the probabilities. We
propose a better equation for updating the expected duration.
It nevertheless remains an approximation for calculating the
probability of observation sequences. We analyze the assumptions
to show under which conditions the approximation errors become
important. Experiments show that the approximation is only
reasonable for left-2-right HSMMs. As we focus on a specific
sub class of HSMMs we derive specialized equations from the
general form for the exact calculation of the forward variable.

Index Terms—HSMMs, semi-Markov models, forward proce-
dure.

I. INTRODUCTION

IDDEN Semi-Markov Models (HSMMs) provide a use-
ful extension to Hidden Markov Models (HMMs) by
taking into account the time the system resides in a certain
state (the sojourn time or duration) for determining whether a
state transition will take place. The main assumption on the
system changes from ‘future is independent from past given
the current state’ to ‘future is independent from past given the
current state and the state duration’. The latter defines HSMMs
in their most general form [2]. We focus on a widely-used
HSMM subclass [1], [3] which employs 3 assumptions:
1) state duration is independent from the previous state,
2) given a state change, the probability of entering a certain
state is independent from the duration of the previous
state,

3) the observation probability only depends on the current

state.

Usage of HSMMs can be done according to the same prin-
ciples as developed by Rabiner [4] for HMMs. The probability
of an observation sequence given a model (P(O|\)) is calcu-
lated by induction [4]. One defines a forward variable which
is updated for each additional time step. For HMMs, we have
to keep track of the state beliefs (o (i) 2 P(s; = 4, 01.4|\)).
For HSMMs, we have to retain the probability of being in a
state for a certain period [2, Section 2.2.1]:

(i, d) £ P(sp_gi1,4 = 1, 014|A) (1)
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S ={1,2,...,Q}, the state space

D = {1,2,..., D}, all possible state durations

v = {v1,v2,...,vK }, the observation space

s1.7 £ 51,80,...,s7, the state sequence, Sy € S

o1.7 £ 01,09, ..., 07, the observation sequence, o; € V

S[ty:t] = ¢ | state ¢ started at time ¢1 and lasts till ¢3 with duration
d =ty —t1. It implies s¢; —1 7# % and s¢,41 7 4.

Sltyitg =1 state ¢ started at time ¢1 and lasts till ¢2. It implies
S¢,—1 7 % while 54,11 may or may not be 4.

S[lgy =1 state 7 started at time t1 : s¢; —1 # % and s¢; =1

di (3) time spent in state ¢ prior to time ¢

b; (vi) observation probabilities

bi(d) duration distribution

P, (d) cumulative duration distribution, derived from ¢;(d)

ri(d) recurrent state change probabilities, derived from ¢;(d)

a? J non-recurrent state transition probabilities

TABLE T
HSMMSs: NOTATIONS AND DEFINITIONS

The notations are defined in the next section.

As this procedure becomes computationally intensive, Az-
imi et al.[1] propose to keep track of ay (i) (as with HMMs)
and the expected duration of a state dy (i) instead of v (i, d).
The forward procedure is then based on iteratively updat-
ing oy (i) and dy(i). As we will discuss, the computational
complexity decreases to a quadratic performance. However,
the equation to calculate dy (i) from Azimi et al.[1] makes
no sense. With a simple example it can be shown that it
produces large errors on the state probabilities o (7). Exactly
in those cases where the state cannot be derived from the
observations and hence state duration gives information on
state changes, Azimi’s approximative equations appeared to
be wrong. We propose an alternative equation, which is also
an approximation, but which is the best one can do given the
information. For a correct calculation of d; (i), one would need
to use Eq. 1 and the exact forward procedure.

In the next section we give the definition of the HSMM sub
class we focus on. We derive the exact forward procedure and
the approximate procedure based on expected duration with
our alternative update equation. Next, the failure of Azimi’s
equation is discussed. Then we analyze the errors made by
the approximate procedure. Before concluding we compare
the runtime complexities of each approach.

II. HSMM SUBCLASS DEFINITION

We adopt the same notations and definitions as Yu [2]. They
are listed in Table I.

According to Yu’s general definition, a state and its duration
depend on the previous state and its duration (first equation of
Section 2.1). In our case, state duration is independent from
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the previous state (Assumption 1). Then Eq. 1 of Yu [2] can
be applied (in the sense that this is what we need to know
about the state change probabilities):

aidy; = P(Spg1 = JlSp—di14 = 1) 2

In contrary to Yu [2] we also define a for ¢ = j since we
will turn the HSMM into an HMM with dynamic transition
probabilities which are calculated from the expected duration.
Another simplifying assumption often employed [1], [3] is
that given a state change, the probability of entering a certain
state is independent from the duration of the previous state
(Assumption 2). As a result, the transition probabilities can
be defined by a duration distribution ¢;(d) and a base tran-
sition matrix a7 ; containing the non-recurrent state transition
probabilities. The state transition probabilities a(; 4y; are then
defined as follows (which is equivalent to Eq. 2 of [1]):

A(i,d)j = {

(1- ri(d)).a%
with 7;(d) the recurrent transition probabilities (the probability
that the system remains in the same state). They are defined
and derived from the duration distributions as follows [1,
Eq. 2]

ifi=j
if i £ j @)

>

ri(d) = P(st = i|S[—q:e—1 = 1) 4)
=(1—-®i(d))/(1 - Pi(d—1)) &)

where ®; denotes the cumulative density function of state z’s
duration distribution ¢;.

Note that this was incorrectly defined as 1 —®;(d—1) in [5,
Eq. 6] but corrected later [1]. The derivation of Eq. 5 follows
from the definition of the duration distribution.

Ti(d) £ P(St = i\s[t—d:t—l = Z) (6)
= P(S[tfd:t = i|5[t7d = i)/P(S[tfd:tfl = i|5[t7d = 1)
(7)

Nominator and denominator can be expressed as a function of
d:

¢z(d) £ P(S[tfd:tfl] = i|3[t7d =1) (3
d
Oi(d) = > Psp—ag—a) = ilsgp—a = 1) )
d'=1

:>P(S[t7d:t71 = Z’IS[t,d = Z) =1- (bl(d — 1) (10)

III. THE EXACT FORWARD PROCEDURE

We first derive from the general equations the equations
for the forward procedure under the 3 assumptions. We will
employ a forward variable which is a bit different than Eq. 11
used by [2]:

(i, d) £ P(sp—gy1: = i, 01:¢|\)

Y

For general HSMMs, one should employ P(sy_gi1:¢ =
i],01.¢|A). However, since the duration is independent from
the previous state and duration (Assumption 1), we can include
the states that will remain in the state after time ¢ (and ommit
the right bracket).

We first explicitly calculate v4(j,d) =
j,01.4—1) in the following way:

P(S[t7d+1:t =

vi(j,d) = { D ies\[j} 2oarep Uind)j—1(i,d) if d =1
’ agda—1);o(d,d —1) ifd>1
(12)
then:
(g, d) = 1(j, d) - P(ot|st = j) (13)

where the last factor is the observation likelihood b;, which
only depends on the current state (Assumption 3).

IV. THE FORWARD PROCEDURE BASED ON EXPECTED
DURATION

Azimi et al. [1] proposed a faster and less cumbersome
forward procedure based on expected duration of a state:

dy (i) 2 B(dy(i)|se = i, O11) (14)

The expected duration is the expected time the system was
in state ¢ given that it is currently in state ¢. Note that
Yu [2] defines d as the Maximum A Posteriori (MAP) of the
duration (Eq. 10) for being used in the EM algorithm. The state
transition matrix is then calculated based on the expected state
durations:

o] rad@) iti=j
AT =R0d; T (1= ry(d(i)a i i A

The forward procedure will now keep track of the expected
duration and the forward variable «(i,d) is replaced with
at(i) & P(s; = i,01.¢|\) (which is the same as the one used
for HMMs). In practice we have to overcome underflows since
the forward variable exponentially goes to zero. Therefore we
employ the following forward variable [6], [2], [7]:

(jét(i) é P(St = i|01:t7)\)-

15)

(16)

This variable can easily be calculated by normalizing the
original oy after each iteration.

P(sy = 4,0|01.4—1) is calculated and normalized by di-
viding the probabilities by factor P(o;|01..—1). Note that this
factor is needed in the calculation of azt+1 (see Appendix B).

We propose the following equation to update the average
duration (although it is also an approximation):

di41(i) & P(st = ilsp41 = i, 01:041) (de (i) + 1)

The intuition behind the equation is that the current average
duration is the previous average duration plus 1 weighted with
the ‘amount’ of the current state that was already in state ¢ in
the previous step. The derivation, the approximations and the
equations for practical usage are given in the appendices.

a7

V. THE ERROR OF AZIMI’S UPDATE EQUATION

Azimi et al. proposed the following update equation [I,
Eq. 7]:

drg1(i) = 1+ P(s; = il0, 01.¢) - dy(d)

This equation is correct when P(s; = i|o1.¢) is 1 or 0, since
the duration is then incremented by 1 in the former or remains

(18)
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state | i=1 i=2 | i=3

Gauss(10, 10)
Gauss(25, 5)
TABLE 11
PARAMETERS OF EXAMPLE LEFT-TO-RIGHT HSMM. GAUSS(u, o)
REPRESENTS A GAUSSIAN DISTRIBUTION WITH MEAN g AND VARIANCE
ag.

Gauss(20, 10)
Gauss(25, 5)

Gauss(22, 10)
Gauss(25, 5)

observation distr b; (v )
duration distr ¢;(d)

1 in the latter. On the other hand, when the state is unsure, the
duration is incremented with a value smaller than 1. However,
the state uncertainty does not play a role in the expected
duration, since the duration is the time the system is in a
certain state, would the system still be in state i at time t.
By the conditional definition it is independent from the state
probability at time ¢. Assume for instance that the probability
is zero that the system changes from a state j # 4 into state
1. Then, if the system is in state ¢ at time ¢, it was already in
state 7 at time ¢ — 1, so the duration should be incremented
with 1.

That the error occurs when the current state is not exactly
known from the observations is shown in Fig. 1. It shows a
simulation of a 3-state left-to-right HSMM with the parameters
of Table II. In a left-to-right HSMM, state ¢ deterministically
changes into state 7 + 1. The final state is permanent. The
state evolution and observations are shown. Additionally, the
results of the forward procedure are shown (estimation of state
based on the observations): the state probabilities & and the
expected duration d. The state change from 1 to 2 is captured
correctly by [1]’s equations, while the change to 3 is not. The
first happens correctly because from the clear difference in
observations, it ensures there is almost no uncertainty on the
state. This is not true anymore when changing from 2 to 3: the
state is quite uncertain because the observation probabilities
of both states are very similar. We see in the lower plot that
the expected duration based on [1] starts to decrease due to
this state uncertainty. Since the probability mass of entering 2
lies almost entirely around time 25, this is clearly wrong: the
expected state duration can only increase after the transition
period. This error did not become apparent in the experiments
of [1], since the observation distributions were quite different
for each state (the distances between the mean of the Gaussians
was 10 while the variance was also 10).

VI. APPROXIMATION ERRORS

We start with a small example to show the errors based on
the approximation of Eq. 17. Consider a 3-state left-to-right
HSMM with duration of 2 or 3 (both have a probability of 0.5)
for states 1 and 2. Consider the same observation distribution
for the 3 states, such that the observations do not provide
information on the state probability. P(s;) is shown in Fig. 2.
The thickness of the gray rectangle indicates the probability.
The expected state duration is also shown. An important point
is that if the state flipped from 1 to 2 at time 2, then it will
flip to 3 at time 4 or 5. However, at time 4, the expected
duration is 1.5. Based on this expected duration (Eq. 15) no
state change will happen (only when the expected duration is
2 or 3).

40 - : : : - : : : : 1
— observations
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Azimi
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]

5‘0 66 76 Bb Sb 100
Fig. 1. Evolution of a 3-state left-to-right HSMM: observations and states.
Based on the observations only, the true values (dotted line) and the values
according to Azimi et al.[1] (solid line) for the state probabilities a¢(i) and
the expected duration d¢(z). The annotations show to which state the curve

belongs.

Fig. 2. State probabilities for a 3-state left-to-right HSMM with duration of
2 or 3 (both have a probability of 0.5) for states 1 and 2. The thickness of
the gray rectangle indicates the state probability. expected state duration is
indicated within the circles.

Our update equation is based on 2 approximations: Eq. 25
and Eq. 36 of the Appendix:

P(Spq1—dit—1 = 15 = St41 = 4, 01:041)

~ P(S{41-dit—1 = i[8t = 1,01:1) (19)
P(siyr =ilsy = i,014) = Y ri(de(0)).P(di]o1:1)
dy
~ 1i(dy(i)) (20)

It turns out that they have an opposite effect: the first
results in an overestimation of the non-recurrent state transition
probabilities, while the second results in an underestimation.
Both effects cancel each other out after the transition period,
as is shown in Fig. 3. It is a left-to-right HSMM with the
same observation distribution for the first three states. The
expected duration of states 1 and 2 is 100 and the variance of
the duration is 35 and 5 respectively.

The forward procedure is correct during the transition from
1 to 2, since there is no uncertainty on the duration of state
1. The approximations start to deviate from the true values
in the transition period from state 2 to 3. In the beginning,
the second approximation underestimates the state change
probability since the transition probability of the expected
duration is different from the transition probability calculated
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Fig. 3. Approximation error of left-to-right HSMM. The state probability
a¢ (i) and the expected duration d¢ (%) is plotted for Yu’s equations and for
the approximation based on expected duration.

as the sum over the products of state sojourn time distribution
and duration distribution (Eq. 36).

This is also apparent in Fig. 2: when a state was entered
early, the chance of leaving the state is greater than expected.

One clearly see that the true expected duration increases
only sub-linearly when the chance of flipping has become
non-zero. State 3 probability increases slower for the expected
duration approximation because of the first error: the low
variance of 3 applied on the expected duration gives a different
transition probability than calculating it as the integral because
for the latter, the flipping of the ‘old durations’ is taken into
account.

The first approximation has the opposite effect. In those
cases were the state is already for a long time in state ¢ (long
durations), the probability that it leaves the state is higher
than expected. Since we update the expected duration with the
previous expected duration, we do not take this early-entrance-
early-leave effect into account. As a result, the expected
duration is overestimated and therefore also the state change
probabilities. This happens more toward the end of the transi-
tion region. In Eq. 24, we consider P(s; = i|sg+1 = 4,01.441)
separately and then ignore s;+1 = ¢ from the second factor.
As such, we are considering the transitions from s; = ¢ to
s¢+1 = ¢ without taking the duration of state ¢ into account.

We observed empirically that after the transition region,
the approximation converges to the true value. Both approx-
imations seem to cancel each other out. Because it is hard
to prove in an analytical way that the error is bounded, we
will rely on experiments. Table III shows the results. The
approximation error of @;(i) and d,(i) is measured during
the run of a randomly-generated HSMM. The table shows
the ranges from which the HSMM parameters are randomly
chosen. Then, based on a random sample of 500 time steps
generated from the HSMM, the average difference is measured
between the true and approximated state distribution and
expected duration of all states at all time steps. We also
report the maximal difference. The error on the expected

Forward procedure | complexity | order

Yu’s general equations Q.Q.D.D O(D?%2.Q?)

Equations with the 3 assumptions | Q.(D + Q.D) O(D.Q?%)

Our update equation for d Q.Q+6Q 0(Q?)

Azimi’s update equation for d Q.Q +3Q 0(Q?)
TABLE IV

RUNTIME COMPLEXITY OF THE DIFFERENT VERSIONS OF THE FORWARD
PROCEDURE WITH ORDER OF THE FUNCTION (BIG O NOTATION).

duration was only calculated when the state probability was
larger than 0.001. The error can become very large when the
state probability is low, but in those cases the expected state
duration is irrelevant. The table shows the average over 100
experiments. We compare general HSMMs with left-2-right
HSMMs. As was expected, the approximation errors become
more significant when the observation distributions of the
different states are very similar. For left-2-right HSMMs the
errors remain within bounds due to the cancellation effect. In
general, however, the approximation cannot be trusted.

VII. COMPUTATIONAL COMPLEXITY OF THE FORWARD
PROCEDURE

Table IV gives the computational complexity of the 4
versions of the forward procedure that are discussed in this
paper. We denote the number of states with () and the maximal
length of the duration vectors (describing the state’s duration
distribution) with D. Azimi’s and our approximation give
a similar runtime performance as HMMs, while with our
assumptions, Yu’s equations can be sped up with a factor D.

VIII. CONCLUSION

We showed that simplifying the forward procedure for
HSMMs by only considering the expected state duration only
gives a satisfiable approximation for left-2-right HSMMs.
HSMMs relax the assumption that the hidden state variable
captures all state information by also considering state du-
ration. State changes are also determined by state durations.
They help to predict state changes in cases that observations
do not provide all information. State duration is therefore
added to the forward procedure. But this makes the procedure
even more compute intensive. The simplification of only
considering expected state duration showed, however, to be
problematic. The update equation proposed by Azimi et al. [1]
was showed to be wrong. But even an improved update
equation only produces a reasonable approximation for left-
2-right HSMMs.

APPENDIX A
PROOF OF THE EXPECTED DURATION EQUATION

The expectation of the definition of d; (i) (Eq. 14) is given by the
following weighted average:

¢
di(i) = Zd~P(5[t—d:t—1 =i|sy = 4,01.1)

d=1

2n
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HSMM parameter ranges Errors General HSMM Errors left-2-right HSMM
T | Q b; bi a?; Ady; Ad; A& Ad;

I o I o avg max avg | max avg max avg | max

500 [ 5 | [0, 100] | [10,50] | [50, 200] | [10, 50] [0,1] [ 0.0017 | 0.094 | 0.59 | 3.07 | 0.00028 | 0.064 | 0.29 | 1.38

500 [ 5 | [45,55] | [10,50] | [50, 200] | [10, 50] [0,1] [ 0.0073 | 0.25 1.86 | 24.8 [ 0.0033 024 | 097 | 545

500 [ 5 | [48,52] | [10,50] | [50, 200] | [10, 50] [0,1] 0.013 0.30 | 3.86 | 38.0 [ 0.0049 029 | 1.26 | 6.81

500 [ 5 | [48,52] | [10,50] | [50, 200] | [50, 200] | [0,1] 0.016 030 | 447 | 41.1 0.007 0237 | 2.04 | 12,5

TABLE TII

EXPERIMENTAL RESULTS ON THE APPROXIMATION ERRORS WITH RANDOMLY-GENERATED HSMMs

We start with writing the definition for CitJrl(i):

41
dey1(i) = Zd-P(S[tHﬂz:t =i|sir1 = 4,01:441)  (22)
d=1
t+1
= Zd-P(S[H»l—d:t = i|St41 = 4, 01:441)
d=2
+ P(st =14,8t—1 # i|St+1 = 1, 01:041) (23)
Now, for the probability in the sum we get:
P(sp41—dt = i|st41 = 4, 01:041)
=P(st = i|St41 = %, 01:¢4+1)
- P(S[t41-dit—1 = ©|5t = St41 = 4, 01:041) (24)

In the second factor we ommit the information about the current state
and the current observation:

P(sp41—dit—1 = i[5t = St41 =1, 01:041)
R P(Sj1—ait—1 = i|st =1, 01:¢) (25)
An approximation which holds under the following independencies
(26)
27

St+1dL8[e11—qie—1]5t, 011

0t+1i|-5[t+1—d:t—1 ‘St, O1:t

where ALl B|C indicates that A and B are independent when
conditioned on C. These independencies hold for HMMs (even
without conditioning on 01:¢+), but they do not hold for HSMMs since
the state duration (expressed by s[;41_4:¢—1) determines the system
evolution. On the other hand, state duration is partially known by the
observations, o1:+. Thus, the approximation is reasonable as long as
the uncertainty on the states is within limits.

When applying the approximation on Eq. 23 (also on the second
term) we find a practical induction step by replacing d with d’ + 1:

dt+1(i) = P(st = i|St41 = %, 01:¢41) (28)
t+1
. (Zd - P(Sjq1—ait—1 = 4|5t =14, 01:t) + P(st—1 # i|ss = 1,01:))
d—2
(29)

= P(st = i|St41 = 4, 01:¢41)
t

: (Z (d + D) P(sp—arie—1 = i|se = 4,01:4) + P(st—1 # i|se =i, Ol:tBA)]

d' =1

(30)

= P(s¢ = ilsiy1 = 0, 01:041)(de(3) + 1) (31)

Note that the last derivation is based on 221:1 P(sp—arii—1 =
i|st = i,01:4) + P(st—1 # i|se = 1,01.4) =1

APPENDIX B
PRACTICAL CALCULATION OF THE INDUCTION EQUATION

The induction equation for the expected duration (Eq. 17) is based
on P(s: = i|st41 = ,01:441). We now derive the equation to

calculate this probability based on the forward variable and model
parameters.
P(sy = i|s¢41 = 1, 01:041)

= P(s¢ = st41 = #|o1:¢41)/P(st41 = i|01:441) (32)

Then, due to ory1llo1:¢|s: = Se+1! and, next, ot+1L s¢|st41, We
can write:

P(St = St41 = i|01:t+1)
=P(st = S¢41 = i|o1:¢)

- P(ot11]st = st41 = 14)/P(otv1]01:t) (33)
=P(st = i]o1:¢) P(St+1 = i|st = 1, 01:¢)

- P(0t41]8t41 = 1) P(01:t)/P(01:¢41) (34)

Then, we approximated the state transition calculation by consid-
ering the expected duration (Eq. 15):

P(ser1 = ilsi =i,014) = > au(d)P(dilor)  (39)
dg
~ a;;(de (i) (36)

Based on the HSMM parameters, Eq. 32 becomes

P(s; =i|st11 = 4,01:041)
_ P(sty1 =1|s¢ =14,01:4) P(st = i|01:t) P(01:t) P(0t 1|5t 41 = 1)
- P(SH_l = i‘Ol;H_l)P(Ol:H—l)
bi(OtJrl)
. P(oy1lo1:t)

G (i)asi (de ()
ay1(1)
where P(0¢+1|01:¢) is the normalization factor that comes from
calculating @ (Sec. IV).
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