Complexity-Preserving Functions Symmetry

Jan Lemeire

- Experience in programming and machine learning
- construction of pragmatic algorithms
- need for theory
- share my insights, but without formal justification
- different than statistical viewpoint

Symmetries

- Kolmogorov complexity $\mathrm{K}(x)$
- Two-part code:
"separate regularities from random part"
- Symmetry of an object:
"transformation that leaves essential features unchanged" - symmetries: group theory
- all symmetries of object: automorphism group

Transformations of x that preserve K

Circle

Ellipse

- Degrees of freedom of object
- But: there are 'reductions' \Rightarrow smaller K
- ellipse \Rightarrow circle

Two-part code

Shortest program for circle:

$$
\alpha \in\left[0,2 \Pi\left[: \operatorname{plot}\left(x_{0}+r \cdot \operatorname{cons} \alpha, y_{0}+r \cdot \sin \alpha\right)\right.\right.
$$

- Are parameters explicit in program?
- Separation of program and parameters
- Other interpretation of two-part code (model \& error)
- parameters \neq random part?

Typical set of x

- All K-preserving transformations of x
- form an automorphism group
$-\Rightarrow$ set C_{x} of objects with same average K
- "orbits of x under the automorphism group"
- minimal sufficient statistic
$-p(d)=x$
- for all d : p generates S, the 'most likely' set of which x is a typical element

Concept Learning (1)

- useful in unsupervised learning: one example \Rightarrow set
- of similar objects
- with minimal model complexity
- example is typical element
- "Compress while learning, to learn by compression" (again)

Concept Learning (2)

Learn concept of binary strings with boolean formulae

$1010=0$
$1001=1$
\Rightarrow easier to learn (VC dimension is reduced)

Concept Learning (3)

- Concept with symmetry $g: \forall x \in c \Rightarrow g(x) \in c$
- However, if symmetry g is not 'present' in concept class C, 'induction following g cannot take place'
- eg.: x is a binary string, $g=$ inverse, learn with kDNF formulae
$-\operatorname{split} c$ in 2 subsets e and e^{-1}
- learn e with f_{l}
- for learning e^{-1}, an independent f_{2} should be learned
- $c: f_{1}$ or f_{2}
- $f_{2}=f_{1}{ }^{-1}$
- however, adding g would increase learnability
$c: f_{l}$ or $g\left(f_{l}\right)$

Conclusions

- Symmetries look promising...
- problems do exhibit symmetries
- Choice of model class is important!
- the model itself reflects the object
- the model determines the induction capacities
- Each symmetry (regularity) breaking increases the complexity
- don't misinterpret Occam's Razor and simplicity

Concept Learning (4)

- $x \in \mathrm{c} \Rightarrow \mathrm{g}(x) \in \mathrm{c}$
- $x \& \mathrm{~g}(x)$ not close, according to their euclidean distance
- eg: 2 circles in $n \times n$ euclidean space
- $=>$ one cannot be learned from the other in distance-based algorithms (nearestneighbour, case-based reasoning)

