
Complexity-Preserving Functions
Symmetry

Jan Lemeire

• Experience in programming and machine
learning
– construction of pragmatic algorithms
– need for theory

• share my insights, but without formal
justification

• different than statistical viewpoint

Symmetries

• Kolmogorov complexity K(x)
• Two-part code:

“separate regularities from random part”
• Symmetry of an object:

“transformation that leaves essential features unchanged”

– symmetries: group theory
– all symmetries of object: automorphism group

Transformations of x that preserve K

Circle Ellipse

• Degrees of freedom of object
• But: there are ‘reductions’ ⇒ smaller K

• ellipse ⇒ circle

Two-part code

Shortest program for circle:
α ∈ [0 ,2Π [: plot(x0+r.consα, y0+r.sinα)

• Are parameters explicit in program?
• Separation of program and parameters
• Other interpretation of two-part code

(model & error)
– parameters ≠ random part?

Typical set of x
• All K-preserving transformations of x

– form an automorphism group
– ⇒ set Cx of objects with same average K
– “orbits of x under the automorphism group”

• minimal sufficient statistic
– p(d)=x
– for all d: p generates S, the ‘most likely’ set of

which x is a typical element

Concept Learning (1)

• useful in unsupervised learning:
one example ⇒ set
– of similar objects
– with minimal model complexity
– example is typical element

• “Compress while learning, to learn by
compression” (again)

Concept Learning (2)

⇒ easier to learn (VC dimension is reduced)

Learn concept of binary strings with boolean formulae

Concept Learning (3)

• Concept with symmetry g: ∀ x ∈ c ⇒ g(x) ∈c
• However, if symmetry g is not ‘present’ in concept class C,

‘induction following g cannot take place’

• eg.: x is a binary string, g = inverse, learn with kDNF formulae
– split c in 2 subsets e and e-1

– learn e with f1

– for learning e-1, an independent f2 should be learned
– c: f1 or f2

• f2 = f1
-1

– however, adding g would increase learnability
c: f1 or g(f1)

Conclusions

• Symmetries look promising…
– problems do exhibit symmetries

• Choice of model class is important!
– the model itself reflects the object
– the model determines the induction capacities

• Each symmetry (regularity) breaking
increases the complexity

• don’t misinterpret Occam’s Razor and
simplicity

Concept Learning (4)

• x ∈ c ⇒g(x) ∈c
• x & g(x) not close, according to their

euclidean distance
• eg: 2 circles in n × n euclidean space
• => one cannot be learned from the other in

distance-based algorithms (nearest-
neighbour, case-based reasoning)

