Complexity-Preserving Functions
Symmetry

Jan Lemeire
• Experience in programming and machine learning
 – construction of pragmatic algorithms
 – need for theory
• share my insights, but without formal justification
• different than statistical viewpoint
Symmetries

• Kolmogorov complexity $K(x)$

• Two-part code:

 “separate regularities from random part”

• Symmetry of an object:

 “transformation that leaves essential features unchanged”
 – symmetries: group theory
 – all symmetries of object: automorphism group
Transformations of x that preserve K

- Degrees of freedom of object
- But: there are ‘reductions’ \Rightarrow smaller K
 - ellipse \Rightarrow circle
Two-part code

Shortest program for circle:

\[\alpha \in [0, 2\pi] : \text{plot}(x_0 + r \cos \alpha, y_0 + r \sin \alpha) \]

- Are parameters explicit in program?
- Separation of program and parameters
- Other interpretation of two-part code (model & error)
 - parameters \(\neq \) random part?
Typical set of x

- All K-preserving transformations of x
 - form an automorphism group
 - \Rightarrow set C_x of objects with same average K
 - “orbits of x under the automorphism group”

- minimal sufficient statistic
 - $p(d)=x$
 - for all d: p generates S, the ‘most likely’ set of which x is a typical element
Concept Learning (1)

• useful in unsupervised learning:
 one example ⇒ set
 – of similar objects
 – with minimal model complexity
 – example is typical element

• “Compress while learning, to learn by compression” (again)
Concept Learning (2)

Learn concept of binary strings with boolean formulae

10101001110101010101001

0 1 0 0 1

1010=0
1001=1

⇒ easier to learn (VC dimension is reduced)
Concept Learning (3)

- Concept with symmetry g: $\forall x \in c \Rightarrow g(x) \in c$
- However, if symmetry g is not ‘present’ in concept class C, ‘induction following g cannot take place’
- eg.: x is a binary string, $g = \text{inverse}$, learn with kDNF formulae
 - split c in 2 subsets e and e^{-1}
 - learn e with f_1
 - for learning e^{-1}, an independent f_2 should be learned
 - c: f_1 or f_2
 - $f_2 = f_1^{-1}$
 - however, adding g would increase learnability
 - c: f_1 or $g(f_1)$
Conclusions

• Symmetries look promising…
 – problems do exhibit symmetries

• Choice of model class is important!
 – the model itself reflects the object
 – the model determines the induction capacities
• Each symmetry (regularity) breaking increases the complexity
• don’t misinterpret Occam’s Razor and simplicity
Concept Learning (4)

- \(x \in c \Rightarrow g(x) \in c \)
- \(x \) & \(g(x) \) not close, according to their euclidean distance
- eg: 2 circles in \(n \times n \) euclidean space
- => one cannot be learned from the other in distance-based algorithms (nearest-neighbour, case-based reasoning)