Complexity-Preserving Functions Symmetry

Jan Lemeire

- Experience in programming and machine learning
 - construction of pragmatic algorithms
 - need for theory
- share my insights, but without formal justification
- different than statistical viewpoint

Symmetries

- Kolmogorov complexity K(*x*)
- Two-part code:

"separate regularities from random part"

- Symmetry of an object:
 - "transformation that leaves essential features unchanged"
 - symmetries: group theory
 - all symmetries of object: automorphism group

- Degrees of freedom of object
- But: there are 'reductions' \Rightarrow smaller K
 - ellipse \Rightarrow circle

Two-part code

Shortest program for circle:

 $\alpha \in [0,2\Pi[:plot(x_0+r.cons\alpha, y_0+r.sin\alpha)$

- Are parameters explicit in program?
- Separation of program and parameters
- Other interpretation of two-part code (model & error)

- parameters \neq random part?

Typical set of *x*

• All K-preserving transformations of *x*

– form an automorphism group

- \Rightarrow set C_x of objects with same average K
- "orbits of *x* under the automorphism group"
- *minimal sufficient statistic*

-p(d)=x

for all d: p generates S, the 'most likely' set of which x is a typical element

Concept Learning (1)

- useful in unsupervised learning:
 one example ⇒ set
 - of similar objects
 - with minimal model complexity
 - example is typical element
- "Compress while learning, to learn by compression" (again)

Concept Learning (2)

Learn concept of binary strings with boolean formulae

10101001101010101001 0 1 0 0 1 1010=0 1001=1

 \Rightarrow easier to learn (VC dimension is reduced)

Concept Learning (3)

- Concept with symmetry $g: \forall x \in c \Rightarrow g(x) \in c$
- However, if symmetry g is not 'present' in concept class C, 'induction following g cannot take place'
- eg.: x is a binary string, g = inverse, learn with kDNF formulae
 - split c in 2 subsets e and e^{-1}
 - learn e with f_1
 - for learning e^{-1} , an independent f_2 should be learned
 - $c: f_1 \text{ or } f_2$
 - $f_2 = f_1^{-1}$
 - however, adding g would increase learnability
 - c: f_l or $g(f_l)$

Conclusions

- Symmetries look promising...
 problems do exhibit symmetries
- Choice of model class is important!
 - the model itself reflects the object
 - the model determines the induction capacities

- Each symmetry (regularity) breaking increases the complexity
- don't misinterpret Occam's Razor and simplicity

Concept Learning (4)

- $x \in c \Rightarrow g(x) \in c$
- *x* & g(*x*) not close, according to their euclidean distance
- eg: 2 circles in $n \times n$ euclidean space
- => one cannot be learned from the other in distance-based algorithms (nearestneighbour, case-based reasoning)