
Complexity Preserving Functions
Jan LEMEIRE

Vrije Universiteit Brussel (VUB)
Brussels, Belgium

Email: jan.lemeire@vub.ac.be

Extended Abstract for Workshop Complexity and Inference, DIMACS Center, New Jersey, June 2-5, 2003

Abstract
It’s widely recognized that compression is
useful and even necessary for inductive
learning, where a short description will capture
the ‘regularities’. We introduce complexity-
preserving functions that preserve these
regularities of the concept. They are based on
the universal information distance [Bennett et
al. ‘97] and define for an instance a set of
elements sharing the same complexity type.
This corresponds to the two-part code
[Rissanen ‘89] of the MDL principle, when it
is interpreted as the first term describing the
set and the second term the element in the set
[Rissanen 99]. We investigate its importance
in inductive learning.

Introduction
The Kolmogorov complexity of a string x K(x)
is the length of a shortest program to compute
x on a universal computer. It represents the
minimal amount of information required to
generate x by an effective process
[Kolmogorov 65].

Bennett et al. studied the definition of a
universal cognitive distance [Bennett et al.
‘97], based on the observation that “the
psychological similarity between two objects x
and y is the complexity of the simplest
transformation between them” [see also Chater
2003]. They start by defining the shortest
program p to compute y from x:

KF= min{l(p) : F(p, x) = y}
Where F(p,x) is a partial recursive function,
that can be computed on a Turing machine and
l(p) denotes the (binary) length of vector p. To
attain a symmetric definition, Benett et al.
investigate reversible computations, where the
overlap between the information to convert x
into y and y into x is maximized. We try to
define functions, by using the notion of
information distance, that not only preserve
complexity, but also capture the ‘complexity
type’ or ‘regularity’ of an object.

K-preserving functions
A Kolmogorov complexity-preserving
function gx is a one-to-one reversible function
defined from (X, R) -> X: x’ = gx(x, k). Except
for a limited number of special k values, where

the K-complexity is reduced in x’, what we
call the reduction values, the following
constraints apply for all k:
1. x = gx(x’, -k).
2. K(gx,k|x) < K(gx, k), x contains

information to perform gx.
3. The program p to compute gx is both a

minimal program, for computing x’ from x
and vice versa.

This last condition means that there is no extra
information needed for either computation,
there is maximum overlap of information and
the complexity is similar in x and x’. Hence,
the difference between the complexities of x
and x’, K(x) and K(x’), depends only on k, not
on gx. The differences between the
complexities is bounded by |K(x) - K(x’)| ≤
l(k).
There is a fourth constraint on the
implementation of the k-values:
4. gx (x, a.k + b.l) = a.gx(b.gx(x, l), k)

Examples of K-preserving functions are
translations, rotations, enlargements,
repetitions, polynomials, permutations,... On a
circle, translations in each direction and
resizing preserve the complexity. An ellipse
can additionally be stretched along both its
axes, however, for a special reduction value k,
the ellipse becomes a circle, that is of lower
complexity.

Set with the same regularities
By applying all existing gx functions on x by
varying the k values, we become a set Cx of
elements with the same regularity. Each
element of this set got the same K-preserving
functions and will generate the same set
(following from constraint 4). This means that
they all share the same regularity.
There are dependencies among the K-
preserving functions. If for a certain x: gx,1(x,
k1) = gx,3(gx,2(x, k2), k3), (with all k non-
reduction values), gx,1 can be composed out of
gx,2 and gx,3 for all elements of Cx. After
elimination of the dependent gx,i, a set of
independent K-preserving functions Cg{gx,i}
remains, which represents the degrees of
freedom of the regularity. The set Cx got Πki
elements and each element in the set is
represented by its (k1, k2, …), after having

chosen a reference element (with all k’s set to
1).

Because all elements of Cx share the same
regularities and are at close (universal
cognitive) distance of each other, this set has
its importance in unsupervised concept
learning. The set can be learned from a few
examples. A random element or ‘typical
example’ x of a target concept set c generates a
set Cx, by finding a set of independent K-
preserving functions. If the example has all
regularities of the concept, c will be a subset of
Cx (see later). Only when the element would be
a reduction value, Cx won’t cover all elements
and if the target concept set c doesn’t
correspond with the concept Cx (no subset or
superset), x contains not enough information of
c\Cx and that part cannot be learned from x.

Components
A minimum description of a vector x can be
associated with a set Cx(x) of independent K-
preserving functions. The object x can then be
associated with its k-values (k1, k2, …). This
information is not necessarily presented
explicitly in the minimal code of x. However,
all elements of Cx have the same average K,
but their must codes be different, so this
information must be present at least implicitly.
The minimal program p that takes (k1, k2, …)
as input and writes the correct x of Cx, is
smaller than K(x), because all information on
the k-values can be removed. This program
corresponds with what Rissanen called ‘the
summarizing property’ of data in its two-part
code [Rissanen ‘99], where the first part
describes the set A where the data belongs
along with other instances that share the same
property and where the second part describes
xn in A.
On the other hand, the two-part code can be
interpreted as a separation of the random from
the structural part. There is a clear distinction
between the data that is accounted for the
ordered part and the data that is not described,
the apparently random part [eg. Crutchfield
93]. Together with the here developed
separation of the regularity p and the
characteristics ki, we can write the minimal
description code as a three-part code.

Learning
Concept learning is the description of the
concept set [Solomonoff 99]. This can be seen
as the union set of all Cx,j of the training
vectors xj, with additional constraints on the
characteristics ki of the set. The first part
describes the regularity, it serves for the
induction, and the second part restricts this set.

Most learning algorithms expect the learning
process to start from a ‘good description’ of
the observations, meaning a compressed
description of the data. We argue that if the
target concept indeed corresponds with a
subset of ∪Cx,j, non-compressed descriptions
generate difficulties in the learning process.
The main argument is that the hamming
distance changes drastically between elements
of Cx, neighbors according to the information
distance are not necessary neighbors in the
euclidean space [Bennet ‘97].
Learning algorithms that use a distance metric
(like the hamming distance), as in case-based
reasoning or nearest-neighbor learning, expect
instances of the concept to be ‘close’. These
learning algorithms will thus have to find the
description according to the K-preserving
functions. Moreover, we believe that errors
will have to be defined in terms of this
description to attain a ‘universal cognitive
distance’.
The same problem occurs in learning
algorithms that consist of combinations of
constraints on the input vector, like boolean
expressions, decision trees, neural networks or
descriptions on attribute-value pairs. The
elements of Cx can be highly different input
vectors, causing a lot of redundancy in the
constraints to be learned. These learning
algorithms define concepts by regions in the
euclidian space [Blumer 89]. However,
instances are not necessary close to each other
in the euclidean space, so the learning can
generate complex, redundant descriptions.
Consider for example, the learning by a
boolean expression of the set of the boolean
vectors with an equal number of true and false
values.
To solve this problem, the learning of visual
concepts (by neural networks, etc.) typically
starts with translating and resizing the image to
a reference position and size, by calculating its
centre of gravity and size. However, this
doesn’t work for compound objects, where the
minimal description of the whole is the sum of
the minimal descriptions of the objects. It is
necessary to separate the objects, the learning
algorithm should recognize the individual
objects.

Once the input is written by its (k1, k2, …),
constraints on this inputvector can learn to
recognize the target concept c out of Cx. A
similar approach is principal component
analysis [Hyvarinen 99] and kernel-based
algorithms, where the input is transformed into
components to attain a more compact
description that better describes the relevant
characteristics.

“A fundamental problem in learning and
reasoning is finding the right representation…
a representation in terms of its salient features
would greatly facilitate recognition” [Zemel
93, also in Hyvarinen 99], and “defining those
features for a broad class of objects is a very
difficult problem ”.
The here developed analysis suggests a
concept-dependent representation, where the
representation captures the regularities of the
concept.

References
[Barlow 2000] Barlow H.B., “Redundancy

reduction revisited”. Network:
Computation in Neural Systems, 2001.

[Bennett 97] Bennett C.H., Gacs P., Li
M., Vitanyi B. and Zurek W.H.
“Information Distance”. IEEE
Transactions on Information Theory,
Vol. 44, No. 4, july 1998.

[Chater 2003] Chater, N. and Vitanyi, P.,
“Simplicity: A unifying principle in
cognitive science?” Trends in Cognitive
Sciences, 7:1, 19--22 , 2003.

[Crutchfield ‘93] J. P. Crutchfield, “The
Calculi of Emergence: Computation,
Dynamics, and Induction”, Physica D
75, 11-54.,1994.

[Hyvarinen ‘99] A. Hyvärinen. “Survey on
Independent Component Analysis”.
Neural Computing Surveys 2:94--128,
1999.

[Kolmogorov 65] Kolmogorov, A.N., “Three
approaches to the definition of the
concept ‘quantity of information’”,
Problems in Information Transmission,
1 (1):1-7, 1965.

 [Rissanen 89] Rissanen, Jorma, Stochastic
Complexity in Statistical Inquiry.
World Scientific, 1989.

[Rissanen 99] Rissanen, J. ”Hypothesis
Selection and Testing by the MDL
Principle.”, in The Computer Journal ,
Vol. 42, No, 4, 1999.

[Solomonoff 99] Solomonoff, Ray. “Two
Kinds of Probabilistic Induction”, in
The Computer Journal , Vol. 42, No, 4,
1999.

[Zemel ‘93] Zemel, Richard S. “A Minimum
Description Length Framework for
Unsupervised Learning”, PhD thesis,
University of Toronto, Canada, 1993.

