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Abstract 
It’s widely recognized that compression is 
useful and even necessary for inductive 
learning, where a short description will capture 
the ‘regularities’. We introduce complexity-
preserving functions that preserve these 
regularities of the concept. They are based on 
the universal information distance [Bennett et 
al. ‘97] and define for an instance a set of 
elements sharing the same complexity type. 
This corresponds to the two-part code 
[Rissanen ‘89] of the MDL principle, when it 
is interpreted as the first term describing the 
set and the second term the element in the set 
[Rissanen 99]. We investigate its importance 
in inductive learning. 
 
Introduction 
The Kolmogorov complexity of a string x K(x) 
is the length of a shortest program to compute 
x on a universal computer. It represents the 
minimal amount of information required to 
generate x by an effective process 
[Kolmogorov 65]. 
 
Bennett et al. studied the definition of a 
universal cognitive distance [Bennett et al. 
‘97], based on the observation that “the 
psychological similarity between two objects x 
and y is the complexity of the simplest 
transformation between them” [see also Chater 
2003]. They start by defining the shortest 
program p to compute y from x: 

KF= min{l(p) : F(p, x) = y} 
Where F(p,x) is a partial recursive function, 
that can be computed on a Turing machine and 
l(p) denotes the (binary) length of vector p. To 
attain a symmetric definition, Benett et al. 
investigate reversible computations, where the 
overlap between the information to convert x 
into y and y into x is maximized. We try to 
define functions, by using the notion of 
information distance, that not only preserve 
complexity, but also capture the ‘complexity 
type’ or ‘regularity’ of an object. 
 
K-preserving functions 
A Kolmogorov complexity-preserving 
function gx is a one-to-one reversible function 
defined from (X, R) -> X: x’ = gx(x, k). Except 
for a limited number of special k values, where 

the K-complexity is reduced in x’, what we 
call the reduction values, the following 
constraints apply for all k: 
1. x = gx(x’, -k).  
2. K(gx,k|x) < K(gx, k), x contains 

information to perform gx. 
3. The program p to compute gx is both a 

minimal program, for computing x’ from x 
and vice versa. 

This last condition means that there is no extra 
information needed for either computation, 
there is maximum overlap of information and 
the complexity is similar in x and x’. Hence, 
the difference between the complexities of x 
and x’, K(x) and K(x’), depends only on k, not 
on gx. The differences between the 
complexities is bounded by |K(x) - K(x’)| ≤ 
l(k). 
There is a fourth constraint on the 
implementation of the k-values: 
4. gx (x, a.k + b.l) = a.gx(b.gx(x, l), k)   
 
Examples of K-preserving functions are 
translations, rotations, enlargements, 
repetitions, polynomials, permutations,... On a 
circle, translations in each direction and 
resizing preserve the complexity. An ellipse 
can additionally be stretched along both its 
axes, however, for a special reduction value k, 
the ellipse becomes a circle, that is of lower 
complexity. 
 
Set with the same regularities 
By applying all existing gx functions on x by 
varying the k values, we become a set Cx of 
elements with the same regularity. Each 
element of this set got the same K-preserving 
functions and will generate the same set 
(following from constraint 4). This means that 
they all share the same regularity. 
There are dependencies among the K-
preserving functions. If for a certain x: gx,1(x, 
k1) = gx,3(gx,2(x, k2), k3), (with all k non-
reduction values), gx,1 can be composed out of  
gx,2 and gx,3 for all elements of Cx. After 
elimination of the dependent gx,i, a set of 
independent K-preserving functions Cg{gx,i} 
remains, which represents the degrees of 
freedom of the regularity. The set Cx got Πki 
elements and each element in the set is 
represented by its (k1, k2, …), after having 



chosen a reference element (with all k’s set to 
1). 
 
Because all elements of Cx share the same 
regularities and are at close (universal 
cognitive) distance of each other, this set has 
its importance in unsupervised concept 
learning. The set can be learned from a few 
examples. A random element or ‘typical 
example’ x of a target concept set c generates a 
set Cx, by finding a set of independent K-
preserving functions. If the example has all 
regularities of the concept, c will be a subset of 
Cx (see later). Only when the element would be 
a reduction value, Cx won’t cover all elements 
and if the target concept set c doesn’t 
correspond with the concept Cx (no subset or 
superset), x contains not enough information of 
c\Cx and that part cannot be learned from x.  
  
Components 
A minimum description of a vector x can be 
associated with a set Cx(x) of independent K-
preserving functions. The object x can then be 
associated with its k-values (k1, k2, …). This 
information is not necessarily presented 
explicitly in the minimal code of x. However, 
all elements of Cx have the same average K, 
but their must codes be different, so this 
information must be present at least implicitly. 
The minimal program p that takes (k1, k2, …) 
as input and writes the correct x of Cx, is 
smaller than K(x), because all  information on 
the k-values can be removed. This program 
corresponds with what Rissanen called ‘the 
summarizing property’ of data in its two-part 
code [Rissanen ‘99], where the first part 
describes the set A where the data belongs 
along with other instances that share the same 
property and where the second part describes 
xn in A. 
On the other hand, the two-part code can be 
interpreted as a separation of the random from 
the structural part. There is a clear distinction 
between the data that is accounted for the 
ordered part and the data that is not described, 
the apparently random part [eg. Crutchfield 
93]. Together with the here developed 
separation of the regularity p and the 
characteristics ki, we can write the minimal 
description code as a three-part code. 
 
Learning 
Concept learning is the description of the 
concept set [Solomonoff 99]. This can be seen 
as the union set of all Cx,j of the training 
vectors xj, with additional constraints on the 
characteristics ki of the set. The first part 
describes the regularity, it serves for the 
induction, and the second part restricts this set.  

Most learning algorithms expect the learning 
process to start from a ‘good description’ of 
the observations, meaning a compressed 
description of the data. We argue that if the 
target concept indeed corresponds with a 
subset of ∪Cx,j, non-compressed descriptions 
generate difficulties in the learning process. 
The main argument is that the hamming 
distance changes drastically between elements 
of Cx, neighbors according to the information 
distance are not necessary neighbors in the 
euclidean space [Bennet ‘97]. 
Learning algorithms that use a distance metric 
(like the hamming distance), as in case-based 
reasoning or nearest-neighbor learning, expect 
instances of the concept to be ‘close’. These 
learning algorithms will thus have to find the 
description according to the K-preserving 
functions. Moreover, we believe that errors 
will have to be defined in terms of this 
description to attain a ‘universal cognitive 
distance’. 
The same problem occurs in learning 
algorithms that consist of combinations of 
constraints on the input vector, like boolean 
expressions, decision trees, neural networks or 
descriptions on attribute-value pairs. The 
elements of Cx  can be highly different input 
vectors, causing a lot of redundancy in the 
constraints to be learned. These learning 
algorithms define concepts by regions in the 
euclidian space [Blumer 89]. However, 
instances are not necessary close to each other 
in the euclidean space, so the learning can 
generate complex, redundant descriptions. 
Consider for example, the learning by a 
boolean expression of the set of the boolean 
vectors with an equal number of true and false 
values. 
To solve this problem, the learning of visual 
concepts (by neural networks, etc.) typically 
starts with translating and resizing the image to 
a reference position and size, by calculating its 
centre of gravity and size. However, this 
doesn’t work for compound objects, where the 
minimal description of the whole is the sum of 
the minimal descriptions of the objects. It is 
necessary to separate the objects, the learning 
algorithm should recognize the individual 
objects. 
 
Once the input is written by its (k1, k2, …), 
constraints on this inputvector can learn to 
recognize the target concept c out of Cx. A 
similar approach is principal component 
analysis [Hyvarinen 99] and kernel-based 
algorithms, where the input is transformed into 
components to attain a more compact 
description that better describes the relevant 
characteristics. 



 
“A fundamental problem in learning and 
reasoning is finding the right representation…  
a representation in terms of its salient features 
would greatly facilitate recognition” [Zemel 
93, also in Hyvarinen 99], and “defining those 
features for a broad class of objects is a very 
difficult problem ”.  
The here developed analysis suggests a 
concept-dependent representation, where the 
representation captures the regularities of the 
concept.  
 
References 
[Barlow 2000]  Barlow H.B.,  “Redundancy 

reduction revisited”. Network: 
Computation in Neural Systems, 2001. 

[Bennett 97]  Bennett C.H., Gacs P., Li 
M., Vitanyi B. and Zurek W.H. 
“Information Distance”. IEEE 
Transactions on Information Theory, 
Vol. 44, No. 4, july 1998. 

[Chater 2003] Chater, N.  and Vitanyi, P., 
“Simplicity: A unifying principle in 
cognitive science?” Trends in Cognitive 
Sciences, 7:1, 19--22 , 2003. 

[Crutchfield ‘93] J. P. Crutchfield, “The 
Calculi of Emergence: Computation, 
Dynamics, and Induction”, Physica D 
75, 11-54.,1994.  

[Hyvarinen ‘99] A. Hyvärinen. “Survey on 
Independent Component Analysis”. 
Neural Computing Surveys 2:94--128, 
1999.  

[Kolmogorov 65] Kolmogorov, A.N., “Three 
approaches to the definition of the 
concept ‘quantity of information’”, 
Problems in Information Transmission, 
1 (1):1-7, 1965. 

 [Rissanen 89] Rissanen, Jorma, Stochastic 
Complexity in Statistical Inquiry. 
World Scientific, 1989. 

[Rissanen 99] Rissanen, J. ”Hypothesis 
Selection and Testing by the MDL 
Principle.”, in The Computer Journal , 
Vol. 42, No, 4, 1999. 

[Solomonoff 99] Solomonoff, Ray. “Two 
Kinds of Probabilistic Induction”, in 
The Computer Journal , Vol. 42, No, 4, 
1999. 

[Zemel ‘93] Zemel, Richard S. “A Minimum 
Description Length Framework for 
Unsupervised Learning”, PhD thesis, 
University of Toronto, Canada, 1993. 


