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ABSTRACT 
We report on the improvements that can be achieved 
by applying machine learning techniques, in 
particular reinforcement learning, for the dynamic 
load balancing of parallel applications.  The 
applications being considered here are coarse grain 
data intensive applications. Such applications put 
high pressure on the interconnect of the hardware. 
Synchronization and load balancing in complex, 
heterogeneous networks need fast, flexible, adaptive 
load balancing algorithms. Using reinforcement 
learning it is possible to improve upon the classic job 
farming approach.  
 
Keywords: Parallel processing, Adaptive load 
balancing, reinforcement learning, heterogeneous 
network, intelligent agents, data intensive 
applications. 
 
 
1. INTRODUCTION 
 
Load balancing is crucial for parallel applications 
since it ensures a good use of the capacity of the 
parallel processing units. Here we look at 
applications which puts high demands on the parallel 
interconnect in terms of throughput. Examples of 
such applications are compression applications 
which both process important amounts of data and 
require a lot of computations. Data intensive 
applications [2] require a lot of communication and 
are therefore dreaded for most parallel architectures. 
The problem is exacerbated when working with 
heterogeneous parallel hardware. This is the case in 
our experiment using a heterogeneous cluster of PCs 
to execute parallel application with a master-slave 
software architecture. Adaptive load balancing is 
indispensable if system performance is unpredictable 
and no prior knowledge is available [1]. 
 
In the multi-agent community, adaptive load 
balancing is an interesting testbed for multi-agent 
learning algorithms, likewise for multi-agent 

reinforcement algorithms as in [8, 10]. However the 
interpretations and models of load balancing there 
are not always in the view of real parrallel 
applications. We report on the results of adaptive 
agents in the farming scheme. 
The bottleneck for parallelizing data intensive 
applications is the link to the master. The presented 
results show that using reinforcement learning it is 
possible to reduce the strain on the communication 
hardware. This can be achieved by individually 
adapting the amount of data (block size) requested by 
each slave. The learning scheme proves to be better 
than the relatively efficient sequential job farming 
scheme.  
This document is structured as follows. Section 2 
introduces reinforcement learning. Section 3 gives an 
overview of the existing load balancing strategies. 
Section 4 presents the experimental setup and section 
5 reports the experimental results. The last section 
concludes with results and future work. 
 
 
2. REINFORCEMENT LEARNING 
 

Reinforcement learning is the problem faced by an 

agent that learns behavior through trial-and-error 

interactions with a dynamic environment. A model of 

reinforcement learning consists of a discrete set of 

environment states, a discrete set of agent actions 

and a set of scalar reinforcement signals. On each 

step of interaction the agent receives reinforcement 

and some indication of the current state of the 

environment, and chooses an action. 

The agent's job is to find a policy, i.e. a mapping 

from states to actions, which maximizes some 

long-run measure of reinforcement. These rewards 



can take place arbitrarily distant in the future. To 

obtain a high overall reward, an agent has to prefer 

actions that it has learned in the past and found to be 

good, i.e. exploitation, however discovering such 

actions is only possible by trying out alternative 

actions, i.e. exploration. Neither exploitation, nor 

exploration can be pursued exclusively. 

Common reinforcement learning methods, which 

can be found in [6, 12] are structured around 

estimating value functions.  A value of a state or 

state-action1 pair, is the total amount of reward an 

agent can expect to accumulate over the future, 

starting from that state.  One way to find the optimal 

policy is to find the optimal value function. If a 

perfect model of the environment as a Markov 

decision process is known, the optimal value 

function can be learned with an algorithm called 

value iteration. An adaptive version of this algorithm 

exists for situations were a model of the environment 

is not known in advance. 

For instance the Q-learning algorithm, which is an 

adaptive value iteration method [6, 12] bootstraps its 
estimate for the state-action value ),(1 asQt+  at time 

t+1 upon its estimate for ),( '' asQt
with s’ the state 

where the learner arrives after taking action a in state 

s: 
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With α the usual step size parameter, γ a discount 

factor and r the immediate reinforcement. 

In our load-balancing problem setting processors are 

of the  receiver-initiated type and can thus be viewed 

as agents, which we will give extra learning abilities.  

Each processor will be an independent Q-learning 

agent, which tries to learn an optimal chunk size of 

data to ask the master, so that the blocking time for 

others is minimized. 
 
 
3. LOAD BALANCING 

                                                        
1 In control problems approximating action/ value  
functions is more interesting because then there is no 
need for knowing the environments transition 
dynamics. 

 
Load balancing is assigning to each processor work 
proportional to its performance, minimizing the 
execution time of the program. But processor 
heterogeneity and performance fluctuations make 
static load balancing insufficient [1]. We investigate 
dynamic, local, distributed load balancing strategies 
[13], which are based on heuristics, since finding the 
optimal solution has shown to be NP-complete in 
general [9]. Following the agent philosophy, the 
request assignment strategy is a receiver-initiated 
algorithm [5], in which the “consumers” of workload 
look for producers [11]. The goal is a fast adaptive 
system that optimizes computation and 
synchronization. 
 
4. EXPERIMENTS 
 
Problem description 
In situations were the communication time is not 
negligible, as is the case for data intensive 
applications, faster processing units can incur serious 
penalties due to slower units. A data request issued 
by a slow unit can stall a faster unit when using 
farming. This of course results in a reduction of the 
parallelism. 
This phenomenon is bound to occur when slave 
request identical amounts of data from the master. 
And this independently of the actual amount (we 
here neglect the communication delay, which is 
acceptable given sufficiently big requests).  
In order to improve upon the job-farming scheme 
when working with heterogeneous hardware, the 
slaves have to request different amount of data from 
the master (server). Indeed their respective 
consumption of communication bandwidth should be 
proportional to their processing power. Slower 
processing units should avoid obstructing faster ones 
by requesting less data from the master. 
 
Computation model 
The initial computation model is sequential job 
farming. In this master-slave architecture the slaves 
(one per processing unit) request a chunk of a certain 
size from the master. As soon as the data has been 
processed the result is transferred to the master and 
the slave sends a new request (figure 1). 
 

 
Fig 1: Model. 

 
This scheme has the advantage of being both simple 
and efficient. Indeed, in the case of heterogeneous 
hardware the load (amount of processed data) will 
depend on the processing speed of the different 
processing units. Faster processing units will more 



frequently request data and thus be able to process 
more data. 
The bottleneck of data intensive applications with a 
master-slave architecture is the link connecting the 
slaves to the master. In the presented experiments all 
the slaves share a single link to their master (through 
an ethernet switch). In this scenario the applications 
performance will be influenced by the efficient use 
of the shared link to the master. Indeed, the fact that 
the application has a coarse granularity only insures 
that the computation communication ratio is positive. 
But it does not preclude a low parallel efficiency 
even when using job farming. 
 
Experimental setup 
To assess the presented algorithm for coarse grain 
data intensive applications on heterogeneous parallel 
hardware a synthetics approach has been used. An 
application has been written using the PVM [3] 
message-passing library to experiment with the 
different dimensions of the problem. The application 
has been designed not to perform any real 
computation, but instead it replaces the computation 
and communication phases by delays with equivalent 
duration2. 

 
 

 
 

 
Fig 2: Computation bottleneck 

 
 
 
The advantage is the possibility of configuring all the 
parameters during an experiment, both the 
granularity of the hardware and the software can be 
chosen. Choosing the ratio between bandwidth of the 
network (MB/sec) and the execution speed of the 
processors (MB/sec) can set the hardware granularity. 
The software granularity is ratio of the required 
communication (MB) and processing (MB) and can 
thus be chosen as well. This gives more control when 
running the experiments without losing the essential 
behavior of such an application. 
 
We will investigate the non-trivial case where the 
total task computation time is comparable with the 
total communication time through the bottleneck. 

                                                        
2 The experimental application can easily be turned 
into a real application by replacing the delay 
producing code with real code. 

This is achieved by setting the average granularity 
equal to the number of processors. 
When the total computation power is lower than the 
master’s communication bandwidth, there is no 
bottleneck, the master will be able to serve the slaves 
constantly and these will work at 100% efficiency. 
This can be seen in the experiment of figure 2, where 
the total computation power is 0.45 of the total 
communication bandwidth. But for data intensive 
application, this won’t be the case; moreover, more 
processors can be added. On the other hand, when 
the total computation power is higher, the 
communication at the master will serve as the 
bottleneck, reaching 100% efficiency. But the 
efficiency of the slaves will drop, so the surplus of 
slave processors should better be used for other 
computations (as in the Grid philosophy). This can 
be seen in figure 3, where the total computation 
power is 2.45 of the total communication bandwidth. 
 
Learning to request data 
The algorithm is based upon the concept of a 
Stochastic Learning Automaton, such an automaton 
serves the purpose of finding optimal actions out of a 
set of allowable actions [7]. Unlike a reinforcemtent 
learner model, a stochastic learning automaton only 
considers one state and uses a γ = 0. 

 
 

 
Fig 3: Communication bottleneck 

 
 
In our experiment, the slaves will learn to request a 

chunk size that minimizes its blocking time. To that 

end each slave has a stochastic learning automaton 

which uses Eq.(1), as shown in Fig 4.  In the 

presented results the block size is a multiple of a 

given initial block size. Here the multiples are 1, 2 

and 3 times the initial block size 

The feedback r provided to the learner is the waiting 

time, which is the time a slave has to wait before the 

master acknowledges its request for data. The 

inverse of the waiting time (1/ waiting time) is used 

to update the Q-values using Eq(1).  Less interesting 



actions (i.e. multiples of initial block size) will incure 

higher waiting times and thus will have lower 

Q-values associated with them. 

The stochastic learning automaton choses an action 

probabilistically using the Q-values. Which means 

the actions with a low Q-value have a lower chance 

of being chosen. In order to get reliable Q-values the 

stochastic learning automaton present in each of the 

slaves does not choose a new actions for each request. 

Instead, each action is performed T times (T=5 

during the experiments). 
 
 

 
Fig 4: The Reinforcement Learner. 

 
We will compare our adaptive algorithm with a static 
load-balancing scheme where fixed amounts of data 
are requested. 
 
5. EXPERIMENTS 
 
Figure 5 shows the time course of a typical 
experiment, with the computation, communication 
and blocking phases (data size = 800MB, 
communication speed = 40MB/s, average chunk size 
= 1MB, processors=4, average granularity = 
#processors). 
 

 
Fig 5: experiment. 

 
Performance results 
The global goal is minimizing the total computation 
time, as shown in table 1 (same parameter values as 
in the previous experiments, we vary the number of 
processors and keep the average granularity = 
#processors). In these first experiments, we get an 
improvement of about 40% of the learner upon the 
static load balancer. 
 

#Slaves Static     LB Adaptive 
LB 

Perf. 
Gain 

4 32.1s 22.6s -42% 
8 32.0s 23.0s -39% 
10 32.2s 23.1s -39% 

Table 1: Total Computation Time. 

 
Overhead Analysis 
Three overheads are responsible for the total 
computation time (table 2, same experiment as for 
Fig 5): 
• The masters blocking time, which stands for 

inefficient use of the communication bottleneck 
at the master. 

• The total blocking time of the slaves, due to 
inefficient synchronization (since the total 
computation time equals the communication 
time). 

• The total computation time of the slaves, which 
decreases with better load distribution (better 
use of the faster processors of the heterogeneous 
network). 

 
 Static     

LB 
Adaptive 

LB 
Perf 
Gain 

Total Computation 
time 

32.1s 22.6s -42% 

Master blocking 
time 

8.2s 5.3s -35% 

Total slave 
blocking time 

80.1s 49.5s -62% 

Total slave 
computation time 

63.1s 54.0s -16% 

Table 2: Overhead Analysis. 
 

The results show that the 3 overheads have decreased, 
due to better load balancing. 
In the next section we will investigate which 
parameters influence the performance. 
 
Performance Analysis 
As can be seen in table 1, the number of slaves 
doesn’t influence the performance gain. On the other 
hand, the learning algorithm needs a training period. 
We investigated this by varying the number of 
requests of the experiments. The results can be seen 
in figure 6, where we plot the performance gain in 
function of the number of requests. This parameter 
was set by varying the blocksize and the number of 
processors. 
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Fig 6: Training Period. 
 
 
6. CONCLUSIONS 
 
Complex, heterogeneous system controlled for 
optimal use by learning automata is promising. We 
implemented a reinforcement learner for distributed 
load balancing of data intensive applications. The 
first performance results show considerable 
improvements upon a static load balancer. The 



algorithm works locally on the slaves 
(receiver-initiated), thus acting like intelligent 
agents.  
Until now the learning automaton is only fed by local 
information, which we believe, is too less for fast, 
highly efficient parallel processing. We will have to 
extend the feedback by exchanging information 
between the agents, as explained in the next section.  
 
 
7. FURTHER WORK 
 

Feeding the reinforcement learner with only local 

information leads to egoistic behavior or 

non-cooperative load balancing [4]. Improved 

performance will be reached by exchanging 

information between the slaves (or agents), i.e. 

feedback needed for better synchronization and load 

distribution.  
Another important aspect in heterogeneous networks 
is the computational contribution of the fast 
processors, where computation time is of higher 
value than equal time on slower processors. To take 
this into account, we first express the processor 
power relative to a base one [12], which we 
expressed in our setup by the hardware granularity. 
Then the processor waiting time, used as feedback 
for the reinforcement learner, has to be multiplied by 
this factor. This scales local time with respect to the 
processor power and will result in a better tuning. 
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