
Adaptive Load Balancing of Parallel Applications with Reinforcement
Learning on Heterogeneous Networks

Johan PARENT
COMO, VUB

Brussels, Belgium
Email: johan@info.vub.ac.be

Katja Verbeeck
COMO, VUB

Brussels, Belgium
Email: kaverbee@vub.ac.be

And
Jan LEMEIRE

PADX, VUB
Brussels, Belgium

Email: jlemeire@info.vub.ac.be

Published in Proc. of Int. Symposium DCABES 2002, Wuxi, China, Dec 16th – 20th, 2002

ABSTRACT
We report on the improvements that can be achieved
by applying machine learning techniques, in
particular reinforcement learning, for the dynamic
load balancing of parallel applications. The
applications being considered here are coarse grain
data intensive applications. Such applications put
high pressure on the interconnect of the hardware.
Synchronization and load balancing in complex,
heterogeneous networks need fast, flexible, adaptive
load balancing algorithms. Using reinforcement
learning it is possible to improve upon the classic job
farming approach.

Keywords: Parallel processing, Adaptive load
balancing, reinforcement learning, heterogeneous
network, intelligent agents, data intensive
applications.

1. INTRODUCTION

Load balancing is crucial for parallel applications
since it ensures a good use of the capacity of the
parallel processing units. Here we look at
applications which puts high demands on the parallel
interconnect in terms of throughput. Examples of
such applications are compression applications
which both process important amounts of data and
require a lot of computations. Data intensive
applications [2] require a lot of communication and
are therefore dreaded for most parallel architectures.
The problem is exacerbated when working with
heterogeneous parallel hardware. This is the case in
our experiment using a heterogeneous cluster of PCs
to execute parallel application with a master-slave
software architecture. Adaptive load balancing is
indispensable if system performance is unpredictable
and no prior knowledge is available [1].

In the multi-agent community, adaptive load
balancing is an interesting testbed for multi-agent
learning algorithms, likewise for multi-agent

reinforcement algorithms as in [8, 10]. However the
interpretations and models of load balancing there
are not always in the view of real parrallel
applications. We report on the results of adaptive
agents in the farming scheme.
The bottleneck for parallelizing data intensive
applications is the link to the master. The presented
results show that using reinforcement learning it is
possible to reduce the strain on the communication
hardware. This can be achieved by individually
adapting the amount of data (block size) requested by
each slave. The learning scheme proves to be better
than the relatively efficient sequential job farming
scheme.
This document is structured as follows. Section 2
introduces reinforcement learning. Section 3 gives an
overview of the existing load balancing strategies.
Section 4 presents the experimental setup and section
5 reports the experimental results. The last section
concludes with results and future work.

2. REINFORCEMENT LEARNING

Reinforcement learning is the problem faced by an

agent that learns behavior through trial-and-error

interactions with a dynamic environment. A model of

reinforcement learning consists of a discrete set of

environment states, a discrete set of agent actions

and a set of scalar reinforcement signals. On each

step of interaction the agent receives reinforcement

and some indication of the current state of the

environment, and chooses an action.

The agent's job is to find a policy, i.e. a mapping

from states to actions, which maximizes some

long-run measure of reinforcement. These rewards

can take place arbitrarily distant in the future. To

obtain a high overall reward, an agent has to prefer

actions that it has learned in the past and found to be

good, i.e. exploitation, however discovering such

actions is only possible by trying out alternative

actions, i.e. exploration. Neither exploitation, nor

exploration can be pursued exclusively.

Common reinforcement learning methods, which

can be found in [6, 12] are structured around

estimating value functions. A value of a state or

state-action1 pair, is the total amount of reward an

agent can expect to accumulate over the future,

starting from that state. One way to find the optimal

policy is to find the optimal value function. If a

perfect model of the environment as a Markov

decision process is known, the optimal value

function can be learned with an algorithm called

value iteration. An adaptive version of this algorithm

exists for situations were a model of the environment

is not known in advance.

For instance the Q-learning algorithm, which is an

adaptive value iteration method [6, 12] bootstraps its
estimate for the state-action value),(1 asQt+ at time

t+1 upon its estimate for),('' asQt
with s’ the state

where the learner arrives after taking action a in state

s:

)),(max..(),().1(),(''
1 '

asQrasQasQ t
a

tt γαα ++−=+
 (1)

With α the usual step size parameter, γ a discount

factor and r the immediate reinforcement.

In our load-balancing problem setting processors are

of the receiver-initiated type and can thus be viewed

as agents, which we will give extra learning abilities.

Each processor will be an independent Q-learning

agent, which tries to learn an optimal chunk size of

data to ask the master, so that the blocking time for

others is minimized.

3. LOAD BALANCING

1 In control problems approximating action/ value
functions is more interesting because then there is no
need for knowing the environments transition
dynamics.

Load balancing is assigning to each processor work
proportional to its performance, minimizing the
execution time of the program. But processor
heterogeneity and performance fluctuations make
static load balancing insufficient [1]. We investigate
dynamic, local, distributed load balancing strategies
[13], which are based on heuristics, since finding the
optimal solution has shown to be NP-complete in
general [9]. Following the agent philosophy, the
request assignment strategy is a receiver-initiated
algorithm [5], in which the “consumers” of workload
look for producers [11]. The goal is a fast adaptive
system that optimizes computation and
synchronization.

4. EXPERIMENTS

Problem description
In situations were the communication time is not
negligible, as is the case for data intensive
applications, faster processing units can incur serious
penalties due to slower units. A data request issued
by a slow unit can stall a faster unit when using
farming. This of course results in a reduction of the
parallelism.
This phenomenon is bound to occur when slave
request identical amounts of data from the master.
And this independently of the actual amount (we
here neglect the communication delay, which is
acceptable given sufficiently big requests).
In order to improve upon the job-farming scheme
when working with heterogeneous hardware, the
slaves have to request different amount of data from
the master (server). Indeed their respective
consumption of communication bandwidth should be
proportional to their processing power. Slower
processing units should avoid obstructing faster ones
by requesting less data from the master.

Computation model
The initial computation model is sequential job
farming. In this master-slave architecture the slaves
(one per processing unit) request a chunk of a certain
size from the master. As soon as the data has been
processed the result is transferred to the master and
the slave sends a new request (figure 1).

Fig 1: Model.

This scheme has the advantage of being both simple
and efficient. Indeed, in the case of heterogeneous
hardware the load (amount of processed data) will
depend on the processing speed of the different
processing units. Faster processing units will more

frequently request data and thus be able to process
more data.
The bottleneck of data intensive applications with a
master-slave architecture is the link connecting the
slaves to the master. In the presented experiments all
the slaves share a single link to their master (through
an ethernet switch). In this scenario the applications
performance will be influenced by the efficient use
of the shared link to the master. Indeed, the fact that
the application has a coarse granularity only insures
that the computation communication ratio is positive.
But it does not preclude a low parallel efficiency
even when using job farming.

Experimental setup
To assess the presented algorithm for coarse grain
data intensive applications on heterogeneous parallel
hardware a synthetics approach has been used. An
application has been written using the PVM [3]
message-passing library to experiment with the
different dimensions of the problem. The application
has been designed not to perform any real
computation, but instead it replaces the computation
and communication phases by delays with equivalent
duration2.

Fig 2: Computation bottleneck

The advantage is the possibility of configuring all the
parameters during an experiment, both the
granularity of the hardware and the software can be
chosen. Choosing the ratio between bandwidth of the
network (MB/sec) and the execution speed of the
processors (MB/sec) can set the hardware granularity.
The software granularity is ratio of the required
communication (MB) and processing (MB) and can
thus be chosen as well. This gives more control when
running the experiments without losing the essential
behavior of such an application.

We will investigate the non-trivial case where the
total task computation time is comparable with the
total communication time through the bottleneck.

2 The experimental application can easily be turned
into a real application by replacing the delay
producing code with real code.

This is achieved by setting the average granularity
equal to the number of processors.
When the total computation power is lower than the
master’s communication bandwidth, there is no
bottleneck, the master will be able to serve the slaves
constantly and these will work at 100% efficiency.
This can be seen in the experiment of figure 2, where
the total computation power is 0.45 of the total
communication bandwidth. But for data intensive
application, this won’t be the case; moreover, more
processors can be added. On the other hand, when
the total computation power is higher, the
communication at the master will serve as the
bottleneck, reaching 100% efficiency. But the
efficiency of the slaves will drop, so the surplus of
slave processors should better be used for other
computations (as in the Grid philosophy). This can
be seen in figure 3, where the total computation
power is 2.45 of the total communication bandwidth.

Learning to request data
The algorithm is based upon the concept of a
Stochastic Learning Automaton, such an automaton
serves the purpose of finding optimal actions out of a
set of allowable actions [7]. Unlike a reinforcemtent
learner model, a stochastic learning automaton only
considers one state and uses a γ = 0.

Fig 3: Communication bottleneck

In our experiment, the slaves will learn to request a

chunk size that minimizes its blocking time. To that

end each slave has a stochastic learning automaton

which uses Eq.(1), as shown in Fig 4. In the

presented results the block size is a multiple of a

given initial block size. Here the multiples are 1, 2

and 3 times the initial block size

The feedback r provided to the learner is the waiting

time, which is the time a slave has to wait before the

master acknowledges its request for data. The

inverse of the waiting time (1/ waiting time) is used

to update the Q-values using Eq(1). Less interesting

actions (i.e. multiples of initial block size) will incure

higher waiting times and thus will have lower

Q-values associated with them.

The stochastic learning automaton choses an action

probabilistically using the Q-values. Which means

the actions with a low Q-value have a lower chance

of being chosen. In order to get reliable Q-values the

stochastic learning automaton present in each of the

slaves does not choose a new actions for each request.

Instead, each action is performed T times (T=5

during the experiments).

Fig 4: The Reinforcement Learner.

We will compare our adaptive algorithm with a static
load-balancing scheme where fixed amounts of data
are requested.

5. EXPERIMENTS

Figure 5 shows the time course of a typical
experiment, with the computation, communication
and blocking phases (data size = 800MB,
communication speed = 40MB/s, average chunk size
= 1MB, processors=4, average granularity =
#processors).

Fig 5: experiment.

Performance results
The global goal is minimizing the total computation
time, as shown in table 1 (same parameter values as
in the previous experiments, we vary the number of
processors and keep the average granularity =
#processors). In these first experiments, we get an
improvement of about 40% of the learner upon the
static load balancer.

#Slaves Static LB Adaptive
LB

Perf.
Gain

4 32.1s 22.6s -42%
8 32.0s 23.0s -39%
10 32.2s 23.1s -39%

Table 1: Total Computation Time.

Overhead Analysis
Three overheads are responsible for the total
computation time (table 2, same experiment as for
Fig 5):
• The masters blocking time, which stands for

inefficient use of the communication bottleneck
at the master.

• The total blocking time of the slaves, due to
inefficient synchronization (since the total
computation time equals the communication
time).

• The total computation time of the slaves, which
decreases with better load distribution (better
use of the faster processors of the heterogeneous
network).

 Static

LB
Adaptive

LB
Perf
Gain

Total Computation
time

32.1s 22.6s -42%

Master blocking
time

8.2s 5.3s -35%

Total slave
blocking time

80.1s 49.5s -62%

Total slave
computation time

63.1s 54.0s -16%

Table 2: Overhead Analysis.

The results show that the 3 overheads have decreased,
due to better load balancing.
In the next section we will investigate which
parameters influence the performance.

Performance Analysis
As can be seen in table 1, the number of slaves
doesn’t influence the performance gain. On the other
hand, the learning algorithm needs a training period.
We investigated this by varying the number of
requests of the experiments. The results can be seen
in figure 6, where we plot the performance gain in
function of the number of requests. This parameter
was set by varying the blocksize and the number of
processors.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

requests

pe
rf

or
m

an
ce

 g
ai

n

Fig 6: Training Period.

6. CONCLUSIONS

Complex, heterogeneous system controlled for
optimal use by learning automata is promising. We
implemented a reinforcement learner for distributed
load balancing of data intensive applications. The
first performance results show considerable
improvements upon a static load balancer. The

algorithm works locally on the slaves
(receiver-initiated), thus acting like intelligent
agents.
Until now the learning automaton is only fed by local
information, which we believe, is too less for fast,
highly efficient parallel processing. We will have to
extend the feedback by exchanging information
between the agents, as explained in the next section.

7. FURTHER WORK

Feeding the reinforcement learner with only local

information leads to egoistic behavior or

non-cooperative load balancing [4]. Improved

performance will be reached by exchanging

information between the slaves (or agents), i.e.

feedback needed for better synchronization and load

distribution.
Another important aspect in heterogeneous networks
is the computational contribution of the fast
processors, where computation time is of higher
value than equal time on slower processors. To take
this into account, we first express the processor
power relative to a base one [12], which we
expressed in our setup by the hardware granularity.
Then the processor waiting time, used as feedback
for the reinforcement learner, has to be multiplied by
this factor. This scales local time with respect to the
processor power and will result in a better tuning.

8. REFERENCES

[1] I. Banicescu and V. Velusamy, “Load
Balancing Highly Irregular Computations with
the Adaptive Factoring”, Proceedings of the
16th International Parallel & Distributed
Processing Symposium, IEEE, Los Alamitos,
California, 2002.

[2] M. D. Beynon, T. Kurc et al. “Efficient
Manipulation of Large Datasets on
Heterogeneous Storage Systems”,
Proceedings of the 16th International Parallel
& Distributed Processing Symposium, IEEE,
Los Alamitos, California, 2002.

[3] A. Geist, A. Beguelin et al., “PVM: Parallel
Virtual Machine”, the MIT press, 1994.
www.netlib.org/pvm3/book/pvm-book.html
www.epm.ornl.gov/pvm/ (pvm homepage)

[4] D. Grosu and A.T. Chronopoulos, “A
Game-Theoretic Model and Algorithm for
Load Balancing in Distributed Systems”,
Proceedings of the 16th International Parallel
& Distributed Processing Symposium, IEEE,
Los Alamitos, California, 2002.

[5] D. Gupta and P. Bepari, "Load sharing in
distributed systems", In Proceedings of the
National Workshop on Distributed Computing,
January 1999.

[6] Kaelbling L.P., Litmann M.L., Moore A.W.,:
Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research 4 (1996) p

237-285.
[7] T. Kunz, “The Influence of Different

Workload Descriptions on a Heuristic Load
Balancing Scheme”, IEEE Transactions on
Software Engineering, Vol. 17, No. 7, July
1991, pp. 725-730.

[8] Nowé, A., Verbeeck, K., “Distributed
Reinforcement learning, Loadbased Routing a
case study”, Proceedings of the Neural,
Symbolic and Reinforcement Methods for
sequence Learning Workshop at ijcai99, 1999.

[9] C.C. Price and S. Krishnaprasad, “Software
allocation models for distributed systems”, in
Proceedings of the 5th International
Conference on Distributed Computing, pages
40-47, 1984.

[10] Schaerf A., Shoham Y., Tennenholtz M.,
“Adaptive Load Balancing: A Study in
Multi-Agent Learning”, Journal of Artificial
Intelligence Research (1995) 475-500.

[11] T. Schnekenburger and G. Rackl,
“Implementing Dynamic Load Distribution
Strategies with Orbix”, International
Conference on Parallel and Distributed
Processing Techniques and Applications
(PDPTA'97), Las Vegas, Nevada, 1997.

[12] Sutton, R.S., Barto, A.G., “Reinforcement
Learning: An introduction”, Cambridge, MA:
MIT Press (1998).

[13] M.J. Zaki, Wei Li; S. Parthasarathy,
“Customized dynamic load balancing for a
network of workstations”, Proceedings of the
High Performance Distributed Computing
(HPDC'96), IEEE, 1996.

