
Parallel@RMA 1

Practical Parallel Processing

Jan Lemeire
Parallel Systems lab

Vrije Universiteit Brussel (VUB)

/21

Talk at Royal Military Academy, Brussels, May 2004

Parallel@RMA 2

Example: Matrix Multiplication

A11 A12 A13 A1n
A21 A22 A2n
...
Ai1 Ai2 Ai3 Ain
...
...
...
An1 An2 An3 Ann

B11 B12 .. B1j B1n
B21 B22 .. B2j .. B2n
...
...
...
...
...
Bn1 Bn2 .. Bnj .. Bnn

Cij

A

B

C

3
1

.

)..1:,(.

nT

njiBAC

BAC

mmncomputatio

n

k
kjikij

δ=

=

×=

∑
=

Sequential algorithm

/21

Parallel@RMA 3

A11 A12 A13 A1n
A21 A22 A2n
...
Ai1 Ai2 Ai3 Ain
...
...
...
An1 An2 An3 Ann

B11 B12 .. B1j B1n
B21 B22 .. B2j .. B2n
...
...
...
...
...
Bn1 Bn2 .. Bnj .. Bnn

Cij

A

B

C

Parallel Matrix Multiplication

• Parallel System

∑
=

=

p

k
jkcolumkrowiji BAC

1
,,, .

• Submatrix Ci,j:

• Communication

p blocks of p
n2

 elements

• Partitioning

/21

Parallel@RMA 4

Parallel Matrix Multiplication

Extra work = overhead

Execution profile
n=150

/21

Parallel@RMA 5

Memory usage ~ n2

Parallel Matrix Multiplication

/21

Parallel@RMA 6

Why Parallel Processing?

• Speedup (time)
– for long runs
– realtime (eg. Simulations)
– as much as possible (eg. weather forecasting)

• Memory Usage (space)

/21

Parallel@RMA 7

Parallel Systems

– fast communication
– dedicated machines

Collection of
- Processors
- Memory
- Interconnection Network

1. Shared-Memory Architecture

2. Message-Passing Architecture

- slower communicatio
- simple, cheap
general-purpose PC’s

/21

Parallel@RMA 8

How? Communication Layer

• Pvm (Parallel Virtual Machine)
or MPI (Message Passing
Interface)
– transparant
– platform-independent

• Functions
– create processes on other

machines
– send & receive messages

/21

Parallel@RMA 9

Aspects of Practical Parallelization

1. System-dependency
2. Inherent Parallelism
3. Software Engineering
4. Performance Analysis

/21

Parallel@RMA 10

1. System-dependency

• Network Topology

• Heterogeneous Systems
- different processing powers

- different communication speeds
- combinations of shared memory & message passing

architectures

Mesh network Star network

/21

Parallel@RMA 11

2. Inherent Parallelism

• Trivial parallelizable
– replicated trials (multiple experiments)

=> script

– multiple jobs
=> job management

/21

Parallel@RMA 12

• Difficult to Parallelize
– Simulations

• Synchronization protocol
• Model dependent

– Virtual 3D world
• Tessalation, lighting calculations, rendering…

> Performance depends on various aspects, like data structures
> Optimizations are possible, but strongly depend on problem/algorithm

2. Inherent Parallelism II

/21

Parallel@RMA 13

Example: Parallel Simulation

Detailed IP-switch
Execution profile

/21

Parallel@RMA 14

3. Software Engineering

• Understandable, Maintainable
– tangled code!

• Flexible
– separate parallel code
– Eg.: reuse sequential algorithm, so it can be

adapted
• Reusable

– trade-off generic program <> performance

/21

Parallel@RMA 15

4. Performance Analysis

• Detection of performance bottlenecks
– For example

• communication-computation ratio
• load imbalances

• Scalability analysis
– bigger problem => more computers

• Calculation of optimal number of processors

/21

Parallel@RMA 16

Performance Analysis Tools

• Automated analysis
– Simple: XPvm
– Complex

• However:
Userfriendliness

=> EPPA

/21

Parallel@RMA 17

Our Performance Analysis Tool

1. Causal Models
to structure the relations between the variables

/21

Parallel@RMA 18

Our Performance Analysis Tool II

2. Refinement Strategy

..#operationsT compncomputatio ∂=

Start: First-order approximation

Refine when necessary

/21

Parallel@RMA 19

Theoretical Conclusions

Sequential world
• Separation hardware – program (3GL)

With abstract model for architecture: Von Neuman
• Java: platform-independence
• .net: language-independence

Parallel world
Ultimate goal: match software - hardware
No universal abstract model for parallel architectures!
Conflict generality <> efficiency

Performance is program- and hardware dependent
Efficient programs should be developed specifically …

/21

Parallel@RMA 20

Practical Conclusions

• Successful parallel processing is a
complex issue
– But not ….

• Thus:
– Is it worth it?
– Is it possible?
– Is it easy?

• Effort ~ Benefit

/21

