
Causal Models for Parallel Performance Analysis

Jan Lemeire, Erik Dirkx

Parallel Systems lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1000 Brussels, Belgium

{jlemeire, erik}@info.vub.ac.be
http://parallel.vub.ac.be

4th PA3CT Symposium, September 2004, Edegem, Belgium

Abstract

This paper proposes causal models to enhance the
performance analysis of parallel processing. Causal
models explicitly denote the relations among the
variables involved. This makes it possible to automate the
modeling task as well as to present the user a clear and
understandable performance analysis. It is a flexible
approach, since new environment variables can easily be
integrated and performance can be estimated from
incomplete knowledge. Since independency among
variables is the key information, it can help the
construction of a performance model that separates
application and system dependency.

1. Introduction

For efficient parallel processing, the developer must
master various aspects influencing the performance,
ranging from high-level software issues to low-level
hardware characteristics. The performance analysis is
nowadays supported by end-user tools as PAPI for
accessing hardware counters on microprocessors [Browne
2001], as well by various performance tools that
automatically instrument code, collect performance data
during program execution and provide a post-mortem
analysis that relates the hardware performance data to the
program code areas (SCALEA, VAMPIR, KappaPi,
Pablo, AIMS, etc.). The current challenge is to give the
software developer understandable results with a
minimum of learning overhead [APART working group:
http://www.fz-juelich.de/apart].

We believe that causal relations are closer to the
human mental model than other more traditional
mathematical or statistical models [Pearl 2000].
Moreover, we believe there is a challenge towards more
in-depth statistical analysis of experimentally retrieved
performance data. However, causality is a highly debated
topic among statisticians [Pearl 2000], since it represents
more than a statistical correlation. “A correlation being
the observational shadow of the underlying causal
process” [Shipley 2000].

2. Causal models

Causal models are expressed with Directed Acyclic
Graphs (DAG), see Figure 1, which represents a first-
order approximated performance model for the sequential
runtime Tcomp of a quicksort. #op is the number of basic
compare-swap operations, which is determined by the
array size n and the initial order of the elements. The
compare and swap statements correspond to a number of
basic instructions #instrop, that together with the
processors clock frequency fclock determine the time for 1
operation T1op.

Figure 1. Simplified Causal Performance Model of
Quicksort.

A causal model represents first of all a Bayesian

network, where the joint probability distribution P(x1, …,
xn) in which all variables are related, is reduced when
each variable depends on just a small subset of other
variables. The probability of a variable can then be
calculated by the probabilities of its parents in the model.

The d-separation criterion gives the conditions for two
vertices to be probabilistic independent upon
conditioning on some other vertices [Pearl 2000, pp. 16-
19]. In the example of Fig. 1, once we know the number
of iterations #op, Tcomp becomes independent of n or the
initial order. This is a reduction of the dependency
complexity of the model.

Probabilistic independence of X and Y upon
conditioning on Z, denoted Ind(X, Z, Y), implies that

Ind(X, Z, Y) P(X,Y|Z)=P(X|Z).P(Y|Z).

 Or, in terms of Information Theory, the mutual

information I(X,Y) of X and Y is 0 when there is no
reduction in uncertainty (entropy) of X when knowing Y
[Cover 1991]:

I(X;Y) = H(X) – H(X|Y)

For lineair dependencies among the variables, this

dependency can be measured by its correlation
coefficient.

A causal model however represents more than a
Bayesian model. It implies all relations to be of causal
nature. A causal relation is an irreflexive, transitive and
asymmetrical (rain creates mud, but mud will not create
rain) relation. It also has the properties of productivity
(the effect is ‘produced’ by the cause) [Bunge 1979, p.
48], locality, it obeys the markov condition (for model A
→ B → C, if B is blocked, than A doesn’t cause C) and
represents a stable and autonomous physical mechanism
(“which is conceivable to change one relationship without
changing the others”) [Pearl 2000]. These properties
make it possible to reason about interventions (Pearl
therefore introduced the do(x) operator) and answer
questions like “what if I increase the cache memory” or
“what if I use another sort method”.

3. Causal Performance Models

Fig. 1 represents a causal model of performance
related data concerning a quicksort running on a
sequential computer. The models in the analysis of
parallel applications are similar, see [Lemeire 2004]. We
defined the parallel performance metrics using an
overhead quantification based on the lost-cycle approach
[Crovella ’94].

3.1. Flexibility

The model can always be refined [Lemeire 2004], for
example, by adding memory overheads to the quicksort
model, see Fig. 2, where Tmemory is caused by the
application’s data size, memory usage and the processor’s
memory capacity and bandwidth.

Figure 2. Extended Causal Performance Model of
Quicksort.

Furthermore, the modeler can integrate additional
information into the model, like the measured cache
misses or the processor type (Fig. 2). Through statistical
analysis, the dependencies with the other variables are
found (Eg. Between element type and processor type) and
the predictive qualities of this extra information can
enhance the performance model.
On the other hand, not all variables should be known for
performance prediction. The statistical expected value can
be used for unknown variables.

3.2. Separate application and system
performance dependency

 The ultimate goal of the performance analysis is to be
able to predict the runtime of an application on an
unknown system. This requires however that there exist
independent application and system characteristics and a
simple functional relation to calculate the resulting
performance. This is the case in the simplified example of
Fig. 1, where these characteristics are #op, #cyclesop for
the application and fcl for the system. The equation is:

 Tcomp=#op.#cyclesop.1/fcl.

This first-order approximation however only holds for
small problem sizes. When memory overheads come into
play, as in the extended model of Fig. 2, the separation is
much less trivial [Snavely 2002].

4 Utility

The construction of causal models out of experimental
data is widely investigated [Pearl 2000, Shipley 2000],
and various tools exist, like Tetrad
[http://www.phil.cmu.edu/projects/tetrad/] or PNL
[http://www.intel.com/research/mrl/pnl/]. We are

constructing a parallel performance tool (EPPA:
http://parallel.vub.ac.be/eppa) that gathers experimental
data and automatically analyzes the data as discussed in
the previous section. Such a tool envisages the support of
the modeler and the user.

A. For supporting the performance modeling

process
1. Model validation: validation of the (in)dependency

assumptions made by the modeler.
2. Reuse of autonomous relations (eg. the statistical

analysis of several experiments on a certain network
would give an overall model for the communication
time versus the data size)

3. Detection of abnormal, unexpected dependencies (eg.
non-homogeneous situations, high overheads…)

4. Flexibility: as discussed in the previous section, no
information is lost.

B. For presenting the user a clear performance

report
1. Structuring the variables: causal relations correspond

to physical mechanisms.
2. Filtering relevant information: the model will reveal

the impact of every factor, thus the most influential
factors can be highlighted.

3. Reasoning about interventions: Eg. Which part of the
application gives space for adequate optimization?
What is the most efficient upgrade of the system?

5. Conclusion

Causal modeling and the corresponding statistical
analysis make explicit what is done by the scientist when
analyzing the performance of the software – hardware
match. This makes further automation possible. However,
the limitations to the automation are yet still unclear.

6. References

Browne, S., Dongarra, J.J., Garner, N., Ho G., and Mucci,

P. A Portable Programming Interface for
Performance Evaluation on Modern Processors,
International Journal of High Performance Computing
Applications, 14:3 (Fall 2000), pp. 189-204.

Bunge, Mario. Causality and Modern Science, third
revised edition, Dover Publications, New York, 1979.

Cover, Thomas M. and Thomas, Joy A. Elements of
Information Theory, Wiley, 1991.

Crovella, M. E. and Leblanc, T.J.: Parallel Performance
Prediction using Lost Cycles Analysis. In: Proc. of
Supercomputing ’94, IEEE Computer Society (1994).

Lemeire, J. A Refinement strategy… EuroPvm, 2004.
Pearl, J. Causality. Models, Reasoning and Inference.

Cambridge University Press, Cambridge, 2000.
Shipley, Bill. Cause and Correlation in Biology,

Cambridge University Press, 2000.
Snavely, A. et all., A framework for performance

modeling and prediction. In Proc. of the 2002
ACM/IEEE conference on Supercomputing,
Baltimore, Maryland pp. 1-17, 2002.

