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Abstract 
 

This paper proposes causal models to enhance the 
performance analysis of parallel processing. Causal 
models explicitly denote the relations among the 
variables involved. This makes it possible to automate the 
modeling task as well as to present the user a clear and 
understandable performance analysis.  It is a flexible 
approach, since new environment variables can easily be 
integrated and performance can be estimated from 
incomplete knowledge. Since independency among 
variables is the key information, it can help the 
construction of a performance model that separates 
application and system dependency. 
 
1. Introduction 
 

For efficient parallel processing, the developer must 
master various aspects influencing the performance, 
ranging from high-level software issues to low-level 
hardware characteristics. The performance analysis is 
nowadays supported by end-user tools as PAPI for 
accessing hardware counters on microprocessors [Browne 
2001], as well by various performance tools that 
automatically instrument code, collect performance data 
during program execution and provide a post-mortem 
analysis that relates the hardware performance data to the 
program code areas (SCALEA, VAMPIR, KappaPi, 
Pablo, AIMS, etc.). The current challenge is to give the 
software developer understandable results with a 
minimum of learning overhead [APART working group: 
http://www.fz-juelich.de/apart]. 

We believe that causal relations are closer to the 
human mental model than other more traditional 
mathematical or statistical models [Pearl 2000]. 
Moreover, we believe there is a challenge towards more 
in-depth statistical analysis of experimentally retrieved 
performance data. However, causality is a highly debated 
topic among statisticians [Pearl 2000], since it represents 
more than a statistical correlation. “A correlation being 
the observational shadow of the underlying causal 
process” [Shipley 2000]. 
 

 
2. Causal models 
 

Causal models are expressed with Directed Acyclic 
Graphs (DAG), see Figure 1, which represents a first-
order approximated performance model for the sequential 
runtime Tcomp of a quicksort. #op is the number of basic 
compare-swap operations, which is determined by the 
array size n and the initial order of the elements. The 
compare and swap statements correspond to a number of 
basic instructions #instrop, that together with the 
processors clock frequency fclock determine the time for 1 
operation T1op. 

 

 
 

Figure 1. Simplified Causal Performance Model of 
Quicksort. 

 
A causal model represents first of all a Bayesian 

network, where the joint probability distribution P(x1, …, 
xn) in which all variables are related, is reduced when 
each variable depends on just a small subset of other 
variables. The probability of a variable can then be 
calculated by the probabilities of its parents in the model. 

The d-separation criterion gives the conditions for two 
vertices to be probabilistic independent upon 
conditioning on some other vertices [Pearl 2000, pp. 16-
19]. In the example of Fig. 1, once we know the number 
of iterations #op, Tcomp becomes independent of n or the 
initial order. This is a reduction of the dependency 
complexity of the model. 



Probabilistic independence of X and Y upon 
conditioning on Z, denoted Ind(X, Z, Y), implies that  

 
Ind(X, Z, Y)  P(X,Y|Z)=P(X|Z).P(Y|Z). 
 
 Or, in terms of Information Theory, the mutual 

information I(X,Y) of X and Y is 0 when there is no 
reduction in uncertainty (entropy) of X when knowing Y 
[Cover 1991]:  

 
I(X;Y) = H(X) – H(X|Y)  
 
For lineair dependencies among the variables, this 

dependency can be measured by its correlation 
coefficient. 

A causal model however represents more than a 
Bayesian model. It implies all relations to be of causal 
nature. A causal relation is an irreflexive, transitive and 
asymmetrical (rain creates mud, but mud will not create 
rain) relation. It also has the properties of productivity 
(the effect is ‘produced’ by the cause) [Bunge 1979, p. 
48], locality, it obeys the markov condition (for model A 
→ B → C, if B is blocked, than A doesn’t cause C) and 
represents a stable and autonomous physical mechanism 
(“which is conceivable to change one relationship without 
changing the others”) [Pearl 2000]. These properties 
make it possible to reason about interventions (Pearl 
therefore introduced the do(x) operator) and answer 
questions like “what if I increase the cache memory” or 
“what if I use another sort method”. 

 
3. Causal Performance Models 
 

Fig. 1 represents a causal model of performance 
related data concerning a quicksort running on a 
sequential computer. The models in the analysis of 
parallel applications are similar, see [Lemeire 2004]. We 
defined the parallel performance metrics using an 
overhead quantification based on the lost-cycle approach 
[Crovella ’94]. 

 
3.1. Flexibility 
 
The model can always be refined [Lemeire 2004], for 
example, by adding memory overheads to the quicksort 
model, see Fig. 2, where Tmemory is caused by the 
application’s data size, memory usage and the processor’s 
memory capacity and bandwidth.  
 

 
 

Figure 2. Extended Causal Performance Model of 
Quicksort. 

 
Furthermore, the modeler can integrate additional 
information into the model, like the measured cache 
misses or the processor type (Fig. 2). Through statistical 
analysis, the dependencies with the other variables are 
found (Eg. Between element type and processor type) and 
the predictive qualities of this extra information can 
enhance the performance model. 
On the other hand, not all variables should be known for 
performance prediction. The statistical expected value can 
be used for unknown variables. 
 
3.2. Separate application and system 
performance dependency 
 
 The ultimate goal of the performance analysis is to be 
able to predict the runtime of an application on an 
unknown system. This requires however that there exist 
independent application and system characteristics and a 
simple functional relation to calculate the resulting 
performance. This is the case in the simplified example of 
Fig. 1, where these characteristics are #op, #cyclesop for 
the application and fcl for the system. The equation is: 
 
  Tcomp=#op.#cyclesop.1/fcl.  
 
This first-order approximation however only holds for 
small problem sizes. When memory overheads come into 
play, as in the extended model of Fig. 2, the separation is 
much less trivial [Snavely 2002]. 
 
4 Utility 
 

The construction of causal models out of experimental 
data is widely investigated [Pearl 2000, Shipley 2000], 
and various tools exist, like Tetrad 
[http://www.phil.cmu.edu/projects/tetrad/] or PNL 
[http://www.intel.com/research/mrl/pnl/]. We are 



constructing a parallel performance tool (EPPA: 
http://parallel.vub.ac.be/eppa) that gathers experimental 
data and automatically analyzes the data as discussed in 
the previous section. Such a tool envisages the support of 
the modeler and the user. 

 
A. For supporting the performance modeling 

process 
1. Model validation: validation of the (in)dependency 

assumptions made by the modeler. 
2. Reuse of autonomous relations (eg. the statistical 

analysis of several experiments on a certain network 
would give an overall model for the communication 
time versus the data size) 

3. Detection of abnormal, unexpected dependencies (eg. 
non-homogeneous situations,  high overheads…) 

4. Flexibility: as discussed in the previous section, no 
information is lost. 

 
B. For presenting the user a clear performance 

report 
1. Structuring the variables: causal relations correspond 

to physical mechanisms. 
2. Filtering relevant information: the model will reveal 

the impact of every factor, thus the most influential 
factors can be highlighted. 

3. Reasoning about interventions: Eg. Which part of the 
application gives space for adequate optimization? 
What is the most efficient upgrade of the system? 

 
5. Conclusion 
 

Causal modeling and the corresponding statistical 
analysis make explicit what is done by the scientist when 
analyzing the performance of the software – hardware 
match. This makes further automation possible. However, 
the limitations to the automation are yet still unclear. 
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