When are Graphical Causal Models not Good Models?

CAPITS 2008

Jan Lemeire September 12th 2008

Vrije Universiteit Brussel

— Overview

- The Kolmogorov Minimal Sufficient Statistic (KMSS).
- Bayesian Networks as Minimal Descriptions of Probability Distributions.
- When the minimal Bayesian network is the KMSS.
- When the minimal Bayesian network is NOT the KMSS.

= Overview =

The Kolmogorov Minimal Sufficient Statistic (KMSS).

- Bayesian Networks as Minimal Descriptions of Probability Distributions.
- When the minimal Bayesian network is the KMSS.
- When the minimal Bayesian network is NOT the KMSS.

Randomness versus Regularity

Regular string: compressible, low complexity

Model that minimally describes regularities (qualitative props) = Kolmogorov Minimal Sufficient Statistic (KMSS)

01100011010101010111001001101000101110

Random string: incompressible, maximal complexity

But: it is no *meaningful* information, only *accidental* information

— Overview

The Kolmogorov Minimal Sufficient Statistic (KMSS).

Bayesian Networks as Minimal Descriptions of Probability Distributions.

- When the minimal Bayesian network is the KMSS.
- When the minimal Bayesian network is NOT the KMSS.

Description of Probability Distributions with Bayesian networks

Meaningful Information of Probability Distributions

meaningful information

Regularities: Conditional Independencies

Kolmogorov Minimal Sufficient Statistic if graph and CPDs are incompressible

Representation of Independencies

- Graph (DAG) of a Bayesian network is a description of conditional independencies
- Faithfulness: All conditional independencies of the distribution are described by the graph.

Theorem: If a faithful Bayesian network exists for a distribution, it is the minimal Bayesian network.

Regularities cause unfaithfulness

Theorem: A Bayesian network for which the concatenation of the CPDs is incompressible, is faithful.

— Overview

The Kolmogorov Minimal Sufficient Statistic (KMSS).

Bayesian Networks as Minimal Descriptions of Probability Distributions.

When the minimal Bayesian network is the KMSS.

When the minimal Bayesian network is NOT the KMSS.

When the minimal Bayesian network is the KMSS.

- No other regularities than the independencies present in graph
- Model is faithful
- KMSS = DAG
- quasi-unique and minimal decomposition of the system
- CPDs are independent

The Top-Ranked Hypothesis

 Each CPD corresponds to an independent part of reality, a mechanism

- Modularity and autonomy
- possibility to predict the effect of changes to the system (interventions)

Causal component = Reductionism

Except... World can be More Complex

There is no absolute guarantee, the KMSS might be a bit too simplistic

— Overview

- The Kolmogorov Minimal Sufficient Statistic (KMSS).
- Bayesian Networks as Minimal Descriptions of Probability Distributions.
- When the minimal Bayesian network is the KMSS.
- When the minimal Bayesian network is NOT the KMSS.

When the minimal Bayesian network is NOT the KMSS...

There are non-modeled regularities, DAG+CPDs is compressible

A. Compressibility of an individual CPD

B. Compressibility of a set of CPDs

Case studies:

- True Causal Model in set of minimal Bayesian networks?
- Faithfulness?
- Modularity?

(A1) Local Structure

Α	В	С	P(D A, B, C)
0	0	0	0.4
0	0	1	0.6
0	1	0	0.7
0	1	1	0.7
1	0	0	0.3
1	0	1	0.3
1	1	0	0.3
1	1	1	0.3

A single CPD can be described shorter, without affecting the rest of the model

- Local structure [Friedman and Goldszmidt, 1996]
- Context-specific independencies [Boutilier, 1996]
- Everything OK.

(A2) Deterministic Relations

Violation of the intersection condition

Two minimal Bayesian networks. Both unfaithful

Conclusions for Compressibility of an individual CPD

- CPDs are independent
- ➡ modularity is still plausible

- True Causal Model in set of minimal Bayesian networks!
- But faithfulness may become invalid
 Constraint-based algorithms may fail

(B1) Meta-mechanism

Influence A->B->D and

A->C->D exactly balance

➡ Unfaithfulness

Learned correctly §

 We may assume a global mechanism that controls mechanisms such that they neutralize

– E.g. evolution

(B2) Markov Networks

Different model class!!

One of the minimal Bayesian Networks.

Unfaithful & non-modular 🐓

Conclusions

- Faithfulness cannot be guaranteed
- Modularity cannot be guaranteed when dependent CPDs
- Regularities/Model class under consideration must be properly chosen
 - Augmentation of Bayesian networks with other qualitative properties
- Faithfulness = ability of a model to explicitly explain all regularities of the data