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Preface

I RECALL quite well the first time of my life I heard about computers.
I must have been around 10 years of age, so that was in the beginning of

the 80’s. A friend of my neighborhood spoke about computers in mythical
terms, he thought a computer was some kind of oracle which could tell
things about the world and the future. Things beyond human capacities.
I was shocked that a machine could embody such capacities, but at the
same time I felt, I hope you believe me, some skepticism about that whole
thing. I went to my father to talk about it.

To my great relief, he reassured me that a computer cannot do anything
unless learned by humans. If it would be able to predict the future, it was
because somebody supplied him with this information. My worldview was
saved. As well as my conviction that it is to humans to understand the
world and not to some special god-like machines. I recall this anecdote
to illustrate that in those times for the great majority of the population
- my friend had heard the story from his parents - a computer was still a
mysterious machine. A machine whose capacities and limitations were not
yet fully understood. In those early years of computer science, the human
brain was used as a metaphor for the working of a computer. The metaphor
helped to explain a computer. However, if you think this through with
today’s experience and knowledge, this metaphor doesn’t stand a chance.
When using computers in everyday practice, we know that computers are
not at all like humans. They do not understand what we want. Unless we
provide them with the exact sequence of commands. A computer cannot
be called intelligent.

The interesting thing about computer automation is that it forces us
to make things explicit. Things that are natural to us, such as the notion
of causality or intelligence or learning.

On the other hand, nowadays the metaphor is used in the opposite
direction; we employ the internal working of the computer to illustrate
how the human brain functions. Because, in fact, it is not the computer
which is the mythical machine anymore, but the human brain! All ma-
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ii Preface

jor cognitive scientists must admit that we don’t understand everything
our brain is capable of. Examples are speech recognition (in a room full
of noise!), natural language understanding, reasoning with patterns (dis-
cussed in the last chapter), . . . And here is the point I want to make: it is
by making the computer intelligent, in the way humans are, that we will
really understand ‘intelligence’. Or ‘learning from observations’. Or ‘true
understanding’. I firmly convinced that the brain is a computer, in the
sense that all capacities of the brain can be mimicked by a computer1.

These reflections are the driving forrce of my scientific ambitions. But
I have to warn you, my research does not deal exclusively with these ques-
tions. It also includes more down-to-earth research on the performance of
computer programs, and practical work about the design and implemen-
tation of software (the joy of programming!) or theoretical developments.
I hope you will enjoy (parts of) my work.

I would like to start with thanking society for giving me the opportunity
for doing a PhD. It’s a great honor and privilege to get the time and
freedom to develop your own ideas: developing yourself scientifically and
personally.

I would like to thank and remember Erik for the faith he put in me
and for the opportunity he has given me to start an academic career, as
well as the appreciation he had for my industrial experience.

Some feel powerless to take the hurdles of life. The ones, who have
the capacities of taking them, have the pleasant obligation to enjoy and to
help others in lowering the hurdles. Never forget that the attitude towards
life greatly determines the height of the hurdles.

I also would like to thank the members of the jury. For studying my
work and the interesting private defense.

The rest of my thankword I would like to do in my mother language.

Vooreerst wil ik mijn ouders bedanken! Mijn moeder die al lang weet
dat onderzoek mijn ding is. Ze weet als de beste dat je je kinderen moet
aanmoedigen in hun creativiteit. Ik mocht afkomen met de gekste ideeën.
Mijn vader heeft me het rotsvast en soms koppig geloof in eigen intellect

1After all, Turing showed that a Universal Turing Machine can compute each effective
function. And mimic any other universal machine
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bijgebracht. Hij leerde me te streven naar het echt begrijpen van dingen.
Wat meer is dan een hoop formules.
Vera voor het geduldig nalezen van mijn teksten. Ik wil graag hetzelfde
doen voor de verwezenlijking van haar boek.
Mijn zus die ideeën omzet in engagement en niet zoals wij in een ivoren
toren blijft zitten.
Mijn broer, samen met Frank mijn belangrijkste intellectuele sparring part-
ner. Ik wens hem alle succes en moed toe om enkele van zijn vele ideeën
verder te concretiseren.
Mijn vriendin Anke die als de beste weet steun te geven op de moeilijkere
momenten. Ik wil voor haar hetzelfde te doen. En het is een hele geruststel-
lende gedachte te weten dat haar nuchtere analyse van moeilijke situaties
me voor naderend onheil zal behoeden.
Mijn meter en peter, en de hele familie, hun onvoorwaardelijke steun
(Céline!).
De mannen van TELE, de beste collega’s ever: Johan (samen hebben we de
boel toch maar op poten gezet!), Arnout (je toewijding en loyauteit bleef me
verbazen), Frederik (hoe we samen KDE hebben herontdekt!), Joris (waaw,
je begrijpt het!), Rob, Walter en David.
De collega’s van ETRO, Jacques Tiberghien en zijn vaderlijke steun, Kris
Steenhaut en haar moederlijke zorg, Irene en Karin die ons van zoveel
beslommeringen ontlasten, de kaarters. . .
Mijn thesis studenten, hun aandeel in dit werk, John + Andy = EPPA.
Mijn vrienden, zoals Roger aka Sperwer (het denken begon allemaal met
politiek), en alle anderen.

Finally, I would like to thank all people who, despite the many erro-
neous paths I walked throughout my life, believed in me, and by doing so,
supported me greatly.

And I still remember that eureka-moment on a sunny day in February.
I was sitting in Fien’s veranda, overlooking the snowy fields of Merchtem
and instantly I got the idea about introducing causal models into the world
of performance analysis. It was my former colleague, Sam Maes, who
introduced causality to me. Thanks a lot for that Sam!

Hoeilaart, December 6th, 2007
Jan Lemeire





Abstract

The work presented in this thesis - a philosophical, theoretical and practical
exploration of causal inference and its benefits for performance modeling
- consists of four parts.

First, the theory of graphical causal models is studied in the perspec-
tive of the Kolmogorov Minimal Sufficient Statistic (KMSS), according to
which inductive inference should be equated to discovering and modeling
the regularities of the data. Regularities are properties of data that al-
low compression. A Bayesian network provides the KMSS of a probability
distribution and is faithful to it when based on the minimal factorization
and resulting in a random Directed Acyclic Graph (DAG) and random
and unrelated Conditional Probability Distributions (CPDs). Faithfulness
is violated when a CPD exhibits a strict regularity, such as defining a
deterministic relation, or when a regularity among CPDs gives rise to a
conditional independence not following from the Markov condition. We
demonstrate that the causal interpretation of Bayesian networks, as de-
fined by Pearl’s interventions, corresponds to the canonical decomposition
of the model into independent CPDs. The concepts of causal model the-
ory, such as d-separation and interventions, rely on this decomposition.
However, the assumption that these submodels correspond to the under-
lying physical mechanisms of the system under study is not always valid,
as demonstrated by the many counterexamples that can be found in lit-
erature. Fortunately, unfaithfulness or the presence of regularities among
the CPDs give indications that the real structure is based on another de-
composition.

The second contribution of this work is the definition of augmented
causal models that explicitly capture information equivalences. They ap-
pear when two sets of variables contain the same information about another
variable. Under weak transitivity, faithfulness of the graph is reestab-
lished. Firstly, a generalized version of the d-separation criterion, called
Deq-separation, has to be used. Secondly, the conditional independencies
that are graphically described are limited with the simplicity condition.
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vi Abstract

Based on this, an extension to the PC learning algorithm is developed
which allows for the construction of minimal augmented Bayesian net-
works from observational data. Among information equivalent edges, the
one with the least complexity is chosen to be the direct relation.

Thirdly, the benefits of causal inference to the automation of the per-
formance analysis of computer programs is researched; more specifically,
the benefits of the dependency analysis, the Markov property and the CPD
decomposition on which causal model theory is based. In combination with
other statistical techniques - such as kernel density estimation, regression
analysis, outlier detection and probability table compression - experimen-
tal performance data, from sequential as well as parallel programs, are
analyzed qualitatively. Non-trivial models, providing insight into the role
of every performance factor, are learned. Unexpected dependencies and
potential explanations for outliers could be detected. Independency as-
sumptions and application characteristics are validated.

Finally, I analyze the feasibility to construct generic models of the per-
formance of programs and systems. I argue that a performance model and
the properties determining the performance greatly depend on the regula-
rities of program and system. This thesis is supported by the results for
the modeling of the execution time of the delivery of set of messages of a
parallel program on a parallel system. The models are constructed by the
causal learning algorithms from experimental data retrieved from simula-
tion of the communication on a model of the network. The focus lies on
the topology of the network. The runtime of random communication on
random topologies gives a simple functional relation between the commu-
nication and topology characteristics and the runtime. But when either
communication or network topology exhibit patterns, such as a one-to-
all broadcast communication on an hypercube network, the models differ
qualitatively and quantitatively. Each combination of patterns in commu-
nication and network topology may result in specific models relying on
specific performance characteristics.
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Chapter 1

Introduction

As my grandmother, Grete Drosson, used to say: “Papier ist geduldig.”

THE primary goal of my work is the injection of causal models and the
accompanying learning algorithms into the field of performance ana-

lysis. Besides this practical and applied research my work also comprises
a theoretical and philosophical study of causal inference.

In this introduction, I will try to give an outline of the text. I start
with causal inference and its utility for a performance analysis. I explain
how causal models represent qualitative information. The utility of causal
models relies on three basic properties. Next, the solutions to overcome
the limitations of the current algorithms are discussed. Then, I analyze
the validity of causal inference by the theory of Kolmogorov complexity.
Finally, the problem of the genericity of models shows that qualitative
properties cannot be ignored.

Causal Inference

Causal structure learning algorithms allow the automated learning of
causal models from experimental data. A causal model graphically des-
cribes the direct causal relations among the variables of interest. It reflects
the data-generating mechanisms of a system. The algorithms for causal
inference try to understand from observations the underlying structure of
a system under study. This learning process is depicted in Fig. 1.1. Varia-
bles constitute the observable parts of a system (a). Through experiments,
the states of the variables are observed (b). Causal analysis is thus a mul-
tivariate statistical analysis. Causal inference returns a graph showing the
direct causal relations between the variables (c). I will show that, actu-
ally, a causal model corresponds to a decomposition of the system into

1



2 Chapter 1. Introduction

Figure 1.1: Causal inference tries to reveal the causal structure among the
observable variables of a system.

independent mechanisms (d). So Fig. 1.1(c) and Fig. 1.1(d) are different
representations of the same information.

Qualitative Information

A performance analysis aims at understanding the execution of a pro-
gram on a computer system in terms of time and resource utilization. The
analysis relies on models providing insight in the variables of program and
system responsible for the performance. The contribution to the analysis
of causal inference is that it reveals the relational structure of the relevant
variables: which and how variables influence the performance.

Causal models represent qualitative information. Qualitative proper-
ties play a totally different role than mere quantitative information. They
allow for qualitative reasoning, for which precise quantitative information
is unnecessary. A representation format for qualitative information was the
explicit intention of Judea Pearl when he developed causal model theory
[Pearl, 1988, p.79].

Consider the clock frequency of a processor, the number of instructions
of a program and the average number of cycles needed for executing an in-
struction. They are denoted respectively by fclock, instr and CPI (Cycles
Per Instruction). The runtime of the application can then be approximated
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Figure 1.2: Causal model of how data size and datatype influence the cache
misses of a program execution.

by the following formula:

Tcomp = instr × CPI / fclock. (1.1)

This is a quantitative model about performance. The computation time
can be calculated from quantitative information about the other three
variables.

Qualitative information constitutes another kind of knowledge. Con-
sider the following questions. Do the cache misses affect the runtime of
a program? Which program parameters affect the cache misses? Do the
chosen data structures in the program affect the cache misses? Is the know-
ledge of the size of the data structures sufficient for predicting the cache
misses? These are qualitative questions for which no precise quantitative
information is necessary. Answers to these questions can be derived from
a causal performance model.

Causal models give away the causal structure and let us understand
which variables affect the performance. Every quantity that can be mea-
sured or derived from others can be added to the analysis. A causal analysis
will reveal the influence of each variable. On top of that, causal inference
makes a distinction between direct and indirect influences. Consider a
program which implements an algorithm around a main datastructure.
Consider that the datatype (integer, floating point, double precision, . . . )
of the datastructure is a parameter of the program. Causal analysis will
reveal that the datatype influences the number of cache misses. But it
will also reveal that this influence happens ‘through’ variable data size,
the size of the data structure, as shown in Fig. 1.2. From this model it
follows that datatype is independent from cachemisses when conditioned
on data size. This is written as:

datatype ⊥⊥ cache misses | data size. (1.2)

This is called the Markov property: from A → B → C it follows that
A⊥⊥C | B. Informally speaking, the independence means that once the
size of the data is known, the precise datatype doesn’t give any additional
information about the cache misses. Through this property, a model pro-
vides explanations for the variables influencing the performance.
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Moreover, in the context of learning, the conditional independencies
following from the Markov property constitute the key information to dif-
ferentiate between directly and indirectly related variables. When A →
B → C is the true model, A and C are related, but independency A⊥⊥C | B
indicates that it is an indirect relation via B.

Finally, causal inference aims at revealing the independent mechanisms
of a system. In this context, the mechanisms which determine the over-
all performance. These basic properties of causal models will proof their
utility in a performance analysis.

In Practice

Practical deployment of the current algorithms for causal inference re-
quired that three limitations had to be overcome. The learning algorithms
work only for data with either linearly related continuous variables or either
discrete and categorical variables. But performance data contains a mix-
ture of variable types and contains non-linear relations. Such data cannot
be handled by current algorithms. My solution is to employ the general and
form-free independency test based on the information-theoretic concept of
mutual information. The third limitation is the presence of deterministic
relations. They frequently appear in performance data. In the model of
Fig. 1.2, the size of the data is completely determined by the datatype.
It follows that besides the conditional information of Eq. 1.2, it also fol-
lows that data size⊥⊥cache misses | datatype. This is a violation of the
intersection condition, one of the necessary conditions for correct causal
inference. The violation is characterized by what I called an information
equivalence, which means that two variables contain the same information
about a third variable. Finding which one of both directly relates to the
reference variable cannot be determined by independency information only.
The solution I propose is to choose the one having the simplest relation as
adjacent to the reference variable. I studied under which assumptions an
extension of the definition of causal models lead to consistent models. The
learning algorithms could then easily be extended to learn the augmented
models.

Meaningful Information

Another part of my work is a philosophical and theoretical study of
causal inference based on the principles given by the theory of Kolmogorov
complexity. The information content of an individual object is defined by
the length of the shortest program that outputs the object, called the Kol-
mogorov complexity. It offers an objective definition of complexity. The
measure is usually expressed in bits. This formal definition of simplicity
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Figure 1.3: Description of two-dimensional data. Literal description of the
sample (a). Random (b) and linearly related data (c). The description of
the latter can be compressed (d).

enables the use of Occam’s razor, “among equivalent models choose the
simplest one”. Applied to inductive inference, one must select model that
describes the data with the minimal number of bits. Learning from ob-
servation can thus be viewed as a maximal compression of the observed
data.

Consider a sample of n two-dimensional data points. A description is
shown in Fig. 1.3(a). If the two dimensions (given by variables X and
Y) are unrelated, as in Fig. 1.3(b), the description of the data cannot
be compressed. The literal description given by (a) is also the shortest
description. If on the other hand, the X and Y dimensions are related,
as the linear relation of Fig. 1.3(c), the description of the data can be
compressed with the description of the linear function. This is shown in
Fig. 1.3(d). The values for Y can be calculated from the X value and an
error value which expresses the difference of the actual data point with the
linear relation. The errors have smaller values than the values of Y . They
can be described shorter. The description (d) is thus more compact than
the literal description (a).

Kolmogorov complexity quantifies the information content of an object,
but does not make a distinction between random and meaningful informa-
tion. In the context of learning from observations, we are only interested in
the patterns or regularities of the data. We call the properties of data that
allow for compression the patterns or regularities of the data. One should
try to separate the meaningful information - containing the regularities -
from the accidental, random information. The Kolmogorov Minimal Suf-
ficient Statistic (KMSS) formally defines the separation. Learning from
observation is equated with discovering the patterns in the observed data.
One has to look for the KMSS, which is the minimal model that exploits
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all regularities. For the linearly related data of 1.3(c), the meaningful in-
formation is the equation of the straight line, yi = m.xi + q + εi. The
accidental information constitutes the values of X and the error terms of
Y .

I will apply the concept of KMSS to causal models. The graph of a
causal model describes meaningful information of a probability distribu-
tion. In some cases the graph is the only meaningful information, hence it
is the KMSS of the distribution. This depends on the presence of regulari-
ties not modeled by a causal model. Secondly, I argue that the meaningful
information of causal models must be interpreted as a unique decomposi-
tion of the system into atomic components, the mechanisms of the system.
Both properties, the presence of non-modeled regularities and the correct-
ness of the decomposition, allow us to study the validity of causal inference.

Regularities

Qualitative properties constitute, besides causal inference, another red
thread throughout this work. I propose to define qualitative properties
as the regularities that lead to the KMSS. To underline the importance
of qualitative properties, I devoted the last chapter to a problem in which
regularities play a decisive role. A goal of performance modeling is the con-
struction of generic models. Models about the performance of programs
running on computer systems ought to be valid for a wide range of com-
binations of programs and systems. Generic models require the existence
of program and system properties that fully characterize the program and
system’s influence on the performance. I will study a similar problem:
the communication time of a set of messages - called the communication
scheme - that has to be delivered in a network. I will proof that the pat-
terns of the communication scheme and the network topology influence
the performance significantly. This depends on the match between the
patterns in communication scheme and the patterns in network topology.
The existence of generic models is thus limited to certain pattern com-
binations. Each combination possibly results in a different model. The
conclusion is that in a performance analysis the presence of regularities
cannot be neglected.

Causal inference and the performance analysis of computer pro-
grams are the two central subjects of my dissertation. Causal inference
is studied thoroughly; its interpretation and its validity in the first part,
its practical deployment and its utility for a performance analysis in the
second part.
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Scientific Contributions

The scientific contributions of my work consist of:

1. The interpretation of the theory of graphical causal models with
the theory of Kolmogorov minimal sufficient statistic (Chapter
4).

2. The extension of causal models and the learning algorithms for
the incorporation of information equivalences (Chapter 5).

3. The introduction of the causal learning algorithms in the perfor-
mance modeling process, the ulitity of causal inference is demon-
strated (Chapter 8).

4. The study of the possibility to characterize applications and sys-
tems by generic properties. The limitations of generic models is
demonstrated for the communication time of the delivery of a set
of messages through an interconnection network. It is shown that
qualitative and quantitative models become incorrect for specific
combinations of regularities in the communication and network
topology (Chapter 9).

Outline

The remains of this dissertation are organized in two parts. While the
injection of causal models into the world of performance is treated in the
second part of this work, the first part is devoted to a closer study of
causal inference. Both parts consist of 4 chapters. The first two chapters
of each part give introductions to the topics. The third and fourth chapters
contain the scientific contributions of my research.

Chapter 2: Principles of Inductive Inference.

Approaches for inductive inference try to address the problem of how one
should decide among competing explanations of data given limited obser-
vations. The principles of maximal entropy and Occam’s Razor are intro-
duced, as well as Kolmogorov Complexity and the Kolmogorov Minimal
Sufficient Statistic (KMSS). This last concept formally separates meaning-
ful information - containing the regularities of the data - from random,
accidental data.
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Chapter 3: Graphical Causal Models.

This chapter gives a comprehensible introduction into graphical causal
models and the accompanying learning algorithms. The discussion about
what causality really is, is briefly touched upon. The focus lies on the
probabilistic account of causality, as developed by Pearl. He established
the link between causality and the theory of Bayesian networks. It is based
on the effect of a causal structure on the conditional independencies the
structure it entails. The learning of causal models from observation is based
on the independencies following from Markov chains and v-structures.

Chapter 4: The Meaningful Information of Distributions.

In this chapter causal inference is interpreted as searching for the KMSS
of an observed probability distribution. Proof is given that the KMSS is
described by the Directed Acyclic Graph (DAG) of a Bayesian network
if the graph succeeds in explaining all conditional independencies. The
independencies form the regularities of the data. Next, I argue that the
causal component corresponds to a decomposition of the system in inde-
pendent submodels, which are assumed to correspond to the underlying
mechanisms of the system under study. The validity of causal models can
therefore be studied by the presence of other regularities and the validity
of the decomposition.

Chapter 5: Information Equivalence.

In this chapter I present a thorough discussion of information equivalences
and the impact on causal models and the learning algorithms. Augmented
Bayesian networks are proposed which explicitly capture information equi-
valences. The complexity of relations is taken as a criterion to select the
direct relation among information equivalent ones. Based on this criterion,
an extension of the constraint-based PC algorithm is developed which can
successfully infer augmented models from data containing deterministic
relations.

Chapter 6: Performance Analysis of Parallel Processing.

Part two of this dissertation begins with a chapter about the metrics em-
ployed in the performance analysis of parallel applications. It is based on
the lost cycle approach of Crovella et al. and the impact of overheads
on the speedup. An overview of our performance analysis tool, EPPA, is
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given. It is used for tracing experiments with parallel applications and
storing the data about their performance.

Chapter 7: Qualitative Multivariate Analysis.

This chapter explains how the causal inference algorithms fit into a mul-
tivariate analysis. The EPDA tool offers a repository for storing experi-
mental data and a set of statistical techniques for analyzing the data. The
different techniques are explained and their role in the modeling process.
For applying causal inference on performance data, a form-free indepen-
dence test based on a kernel density estimation has to be employed. Details
about the implementation and calibration are given.

Chapter 8: Causal Inference for Performance Analysis.

This chapter starts with a thorough analysis of the potential benefits of
causal models and causal inference to the analysis of the performance of
computer programs. Causal performance models are defined and the re-
sults of the analysis of experiments with sequential and parallel programs
are presented. They demonstrate the utility of integrating causal inference
in the performance modeling process.

Chapter 9: The Genericity of Performance Models.

The last chapter addresses the question as to whether generic characte-
ristics of applications and systems exist so that the performance can be
accurately estimated for any combination of application and system. A
possible explanation for the absence of a generic performance models is re-
vealed by the analysis of the execution time of a communication scheme on
a network topology. It is shown that random communication on a random
topology gives a statistical value for the runtime. However, when either
communication or topology exhibit regularities the delivery can give rise to
specific behavior which differs a lot from the random-random combination.
A considerable part of the combinations result in very specific qualitative
and quantitative models.

Publications

Chapter 2: Principles of Inductive Inference.
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2004.
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WHAT is there to study in a random world? A world in which each
thing we observe doesn’t depend on anything; in which the states of

all objects are mutually independent and independent of previous states.
In such a world, the only thing a scientist can do is to log the state of each
object at any moment in time. This would result in a substantial book
containing lots of data; but no laws or equations could be derived from it.
The historical information would not help us to understand the present
state of the world or assist us in predicting future states.

A random world is boring. The interesting part of the world consists
of the patterns or regularities that are found in observations; from which
we can make laws describing how objects depend on each other and how
previous states generate future states. This process is called inductive
inference. Inductive inference is the process of inferring general laws from
observations of particular instances. The focus of my research lies on causal
inference. On how causal models can be learned from experimental data
and how they may be beneficial to the performance analysis of computers.

Regularities are defined by their ability to compress data. Hence to
serve the quest for minimality as imposed by Occam’s Razor. One not
only has to look for the minimal model, but for a model solely capturing
the regularities. The purpose is to extract from the experimental data
the meaningful regularities, to separate them from the accidental random
information in the data. This is formalized by the concept of Kolmogorov
Minimal Sufficient Statistic (KMSS). The KMSS is the minimal model that
captures all regularities of the data. I will use these insights for studying
the validity and limitations of causal inference.

Causality occupies a central position in human cognition. It plays an
essential role in human decision-making by providing a basis for choosing
the action which is most likely to lead to the desired result. Since smoking
is one of the main causes of lung cancer, one should stop smoking for a
longer healthy life. But stopping would not help if smoking wasn’t a cause
of cancer. In case the observed correlation between smoking and cancer
would be due to a common cause, such as a gene that makes you addicted
to smoking and increases the chance of getting lung cancer. Knowledge
of the correlations between variables is not enough in decision-making.
Deciding on adequate actions must rely on the understanding of causal
relations.

Judea Pearl developed a probabilistic account to causality, which cul-
minated in the theory of graphical causal models. The theory offers an
explanation for the difference between the well-known statistical concepts
of correlation or functional relations which are symmetrical, and the asym-
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metries implied by causality. Causal models do not only describe the func-
tional or probabilistic relations among the variables, but also the mecha-
nisms of the system under study: by which variables the state of each
variable is ‘produced’. I will defend the thesis that the causal component
of graphical causal models is actually a form of reductionism.

Causal inference is the learning of causal models from experimental
data. The key is the information about the conditional independencies that
follow from a causal structure. Such conditional independencies constitute
the regularities which reveal the structure of the system and make causal
inference possible.

The conditional independencies following from the causal structure of
a system constitute only one type of regularities. Other regularities in the
system might occur. Such regularities can produce additional indepen-
dencies, which may disrupt the correct course of the learning algorithms.
Deterministic relations are such a kind of regularity. The state of a deter-
ministically related variable is completely determined by a set of variables.
Deterministic relations imply non-Markovian independencies. Data about
the performance of computer programs contain deterministic variables.
Current causal inference algorithms fail when the data contains determin-
istic variables. To overcome this limitation, I had to develop extensions to
causal models and the learning algorithms.



Chapter 2

Principles of Inductive
Inference

THE main topic of my research is causal inference, which is a kind of
inductive inference. Inductive inference is concerned with the ques-

tion “How does one decide among competing explanations of data given
limited observations”. This chapter will review and discuss some of the
basic principles that guide learning from observation. The goal is to intro-
duce kernel density estimation (Sec. 2.2.1) and the Kolmogorov Minimal
Sufficient Statistic (KMSS) (Sec. 2.5). The former will be used for the in-
dependence test in causal inference, the latter to evaluate causal inference.

Firstly, Shannon’s information theory is briefly presented. Its concepts
will be encountered several times during the rest of this work. Then, the
maximum entropy principle of traditional statistics is explored together
with kernel density estimation. Next the almost ‘holy’ scientific principle of
Occam’s Razor is discussed. To take off with my favorite topic, Kolmogorov
complexity, the implications of which are not yet fully understood and can,
in my opinion, not be over-estimated. The section introduces the theory of
the length of the shortest program and the related Minimum Description
Length approach. Even more relevant are the quite new additions about
regularities and meaningful information, formally based on the Kolmogorov
Minimal Sufficient Statistic.

2.1 Classical Information Theory

Classical information theory is based on a set of fundamental concepts,
omnipresent in computer science, relying on a robust and sound mathe-
matical treatment. A more thorough discussion can be found in Cover and

17
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Thomas [1991], the ‘bible’ of information theory.
Entropy quantifies the amount of uncertainty of a stochastic variable.

It is a concept of thermodynamics for measuring disorder. It corresponds
to the information content of a variable. For a discrete random variable
X with domain DX and probability mass function P (x), its entropy is
calculated by

H(X) = −
∑
x∈DX

P (x) logP (x). (2.1)

Note that variables are denoted by upper case letters, values or outcomes
of variables by lower case letters. All logs here and in the remainder of
text are based 2. By the choice of base 2, the unit for information is bits.

Consider that the domain of x (the set of all possible values of x)
contains 8 objects. If the probability of an outcome is equal for all, namely
1/8, the uncertainty is maximal, namely 3 bits. If on the other hand, some
outcomes are more probable than others, the uncertainty of x decreases.
It can even become 0 if the probability is one for one outcome and zero
for all others. In that case we are completely certain of the value of x.
Entropy is the inverse of knowledge.

To fully understand the impact of the concept, consider the application
of designing optimal codes. Entropy represents the average number of
bits that are necessary to communicate objects produced by a random
source. The definition of entropy must be interpreted as the expectation
of − logP (X); it is the weighted average of − logP (xi) over all values of
xi.

Example 2.1 (Optimal Communication Codes).

Shannon discovered the notion of entropy while studying the
capacity of communication channels. Consider a communica-
tion line that allows faultless transmission of bits and 8 kind
of messages (‘a’, ‘b’, . . . , ‘h’) that can be transmitted. We can
encode each message with 3 bits (‘000’, ‘001’, . . . , ‘111’). But
if the probability of sending a message is not equal for all mes-
sages, we can devise a more optimal prefix code, by attributing
shorter codes for messages with high probability and longer
codes for messages with low probability. The following table
gives an example of a non-uniform probability distribution to-
gether with the optimal code calculation.
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x P (x) − logP (x) old code new code(x) −2L(code)

a 0.420 1.25 000 0 0.5
b 0.141 2.83 001 100 0.125
c 0.142 2.82 010 101 0.125
d 0.047 4.41 011 11100 0.031
e 0.141 2.83 110 110 0.125
f 0.047 4.41 101 11101 0.031
g 0.046 4.44 110 11110 0.031
h 0.016 5.94 111 11111 0.031

The optimal prefix code utilizes − logP (x) bits for each mes-
sage. We need a prefix code, by which no code word is a prefix
of any other code word, so that we do not need commas for
separating the code words. The entropy gives the average code
size (

∑
x∈A P (x).L(code(x))) if the optimal code is used, L(.)

is the binary length function. Here, each message needs on
average 2.439 bits. The code employed in the example tries
to approximate − logP (x) by integers, and results in an ac-
tual average code size of 2.473 bits. This encoding is based on
the following property of binary prefix codes, called the Kraft
inequality: ∑

x∈DX

−2L(code(x)) ≤ 1 (2.2)

This is illustrated by the binary tree in Fig. 2.1. Note the cor-
respondence of the equation with

∑
x∈DX P (x) if the equation

becomes an equality by using all leaves of the binary tree. Short
code lengths can be formally related to high probabilities.

Two stochastic variables X and Y are conditionally independent
by conditioning on Z if P (Y | X,Z) = P (Y | Z). Independency can
be interpreted in information-theoretic terms. Two variables contain in-
formation about each other if by knowing one variable, the uncertainty -
or entropy - of the other is reduced. The information one variable con-
veys about another can be quantified by the reduction in uncertainty,
called mutual information, written as I(X;Y ) = H(X) − H(X | Y ).
Note that this concept is symmetric: I(Y ;X) = H(Y ) − H(Y | X) =
H(X) + H(Y ) − H(X,Y ), since H(X,Y ) = H(X) + H(Y | X). The
mutual information can also be written as

I(X;Y ) =
∑
x∈A

∑
y∈B

P (x, y) log
P (x, y)
P (x)P (y)

(2.3)
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Figure 2.1: Prefix code construction shown by binary trees.

This equation shows clearly that if variables are independent (P (X,Y ) =
P (X)P (Y )) the mutual information gets 0. The equation measures the
difference between P (X,Y ) and P (X)P (Y ) and is always positive.

Definition 2.2. Random variables X, Y , Z are said to form a Markov
chain in that order, denoted by X − Y − Z, if the joint probability mass
function can be written as

P (X,Y, Z) = P (X)P (Y | X)P (Z | Y ) (2.4)

Important consequences are as follows [Cover and Thomas, 1991]:

• X, Y , Z form a Markov Chain if and only if X and Z are condition-
ally independent given Y . This is called the Markov property.

• Information cannot increase along a Markov chain: I(X;Y ) > I(X;Z).
This is called the Data Processing Inequality.

• In literature, a Markov chain is denoted with arrows: X ⇒ Y ⇒ Z.
But Markov chain X ⇒ Y ⇒ Z implies that Z ⇒ Y ⇒ X is also
a Markov chain. The orientation of the relations is not necessary.
We will therefore ommit the arrows and write in a Markov chain as
X −Y −Z. This in order to avoid confusion with the oriented edges
of causal models, in which the orientations denote asymmetric causal
relations.



2.2. Maximum Entropy Principle 21

2.2 Maximum Entropy Principle

Informally stated, the principle suggests that we should adopt a maximal
cautious attitude while learning from observations, or:

The Maximum Entropy Principle

One must opt for the statistical model that explains the observations
but keeps maximal uncertainty over all phenomena.

The principle was introduced by Jaynes in 1957 [Jaynes, 1957] but
had its roots in the work of Boltzmann and Gibbs on statistical mechanics
[Jaynes, 2003]. The principle of maximum entropy provides a means to
arrive at a probabilistic model in the presence of incomplete and partially
unreliable information. Our best guess for P is realized by adopting the
P that maximizes Shannon’s entropy while remaining consistent with the
given information. Given certain constraints on a probability distribution,
it constructs a single distribution over all outcomes.

Example 2.3 (Complete ignorance).

The distribution over the domain of a variable without any
constraints (except that the sum of all probabilities must be 1)
with maximum entropy is given by P (xi) = 1/k for all xi ∈ DX

with k = |DX |. The entropy of the uniform distribution is

H(P ) =
k∑
i=1

−P (xi) logP (xi) = −k.1
k

log
1
k

= log k (2.5)

Data drawn from any other distribution will, with high proba-
bility, be more regular than data drawn according to the uni-
form distribution. The data points will appear more in certain
regions. As the kurtosis (the ‘peakedness’) of a distribution
increases the probabilities drift away from 1/k and the entropy
decreases. In the limit, P (xi) becomes 1 for 1 value of X and
zero for all others. The entropy then becomes 0.
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Example 2.4 (Normal distribution).

The importance and success of the normal (or Gaussian) dis-
tribution in statistics is based on the property that it gives
the distribution with maximum entropy under the constraints
of a given expectancy (E[X] = µ) and standard deviation
(V AR[X] = σ2). The normal distribution will have mean µ
and variance σ2. In statistical inference, the mean and devia-
tion are estimated from the sample of observed data:

µ ∼=
1
n

n∑
i=1

xi (2.6)

σ ∼=
1

n− 1

n∑
i=1

(xi − µ)2 (2.7)

Example 2.5 (Independence).

Consider two biased coins. Let p and q be the probabilities of
having ‘heads’ with respectively the first and the second coin.
The joint distribution with maximal entropy for the combina-
tion of the two coins is given by the product of the individual
probabilities:

first coin heads tails
second coin

heads p.q (1− p).q
tails p.(1− q) (1− p).(1− q)

This distribution corresponds to the model of two stochastically
independent coins, in which the outcome of one does not affect
that of the other. Without further information, the principle
says we have to assume an independency. Then, the entropy
for the combination of two coins equals the sum of the entropies
of the individual coins.

The maximum entropy principle could be applied fruitfully in these
examples because the information is in terms of statistical functions and
averages. But in order to apply the principle to a broader class of infor-
mation, it should be formally defined what is meant by ‘conform the given
information’.
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2.2.1 Kernel Density Estimation

Problem definition:
Given a sample of data points, estimate the most likely probability distri-
bution that generated the observations.

If the distribution is over discrete variables, it can be estimated by
simply counting the number of occurrences of each state and dividing them
by the number of data points.

For continuous variables, however, the application of this method would
result in a histogram. But this histogram would depend on the chosen in-
tervals. Moreover, the number of intervals is limited, since every interval
should contain multiple data points for a correct estimation of its pro-
bability. Kernel density estimation makes it possible to estimate the
distribution from limited sample sizes. The kernel estimate is constructed
by centering a scaled kernel at each observation. The value of the estimate
at point x is the average of the n kernel values at that point. This corres-
ponds to a convolution of the data points with a well-chosen kernel [Wand
and Jones, 1995]:

p(x) =
1
nb

n∑
i=1

K(
x− xi)

b
) (2.8)

with n the sample size and K(.) the multivariate kernel function, which
is symmetric and satisfies

∫
K(x)dx = 1. The factor b is the smoothing

bandwidth and determines the width of the kernel. The estimation of
multivariate distributions is based on multidimensional Gaussians and is
constructed likewise. Intuitively, a ‘probability mass’ of size 1/n associated
with each data point is spread about its neighborhood. Fig. 2.2 shows an
example over 1-dimensional data, Fig. 2.3 one over 2-dimensional data.
Consult http://parallel.vub.ac.be for interactive applets that allow
you to experiment with kernel density estimation.

Theoretic analysis and simulation have shown that the choice of the ker-
nel is not crucial. The most-chosen kernel is the Gaussian kernel function.
Recall that this is the function with maximum entropy. The bandwidth is
the determining factor for good estimates. A too large bandwidth would
flatten the distribution; a too small would generate a peak for every data
point. A good trade-off smoothens the distribution nicely. Intuitively one
can see that the bandwidth for constructing the estimate of Fig. 2.2 gives
a good result.

The choice of the kernel bandwidth should be chosen such that the
estimate has maximum entropy and that nevertheless the sample is still

http://parallel.vub.ac.be
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Figure 2.2: Data points (the 10 points on the X-axis) and kernel estimate
(thick black line) constructed by Gaussians at each point (thin black lines).
The chosen bandwidth is 0.8.

Figure 2.3: Example of a Kernel Density Estimation of Two-Dimensional
Data.
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Figure 2.4: Undersmoothed and oversmoothed kernel estimation with
bandwidths of respectively 0.25 and 1.5.

Figure 2.5: William of Ockham (1288-1349)

typical for the distribution. A sample is typical for a distribution if it is
likely to occur.

Too small bandwidths can give a rough distribution for which the sam-
ple is typical, but with low entropy. The estimate is said to be ‘under-
smoothed’. Increasing the bandwidth maximizes the entropy, but for too
large bandwidths the sample is not typical any more. The estimate is said
to be ‘oversmoothed’. Both cases are depicted in Fig. 2.4.

For applying both principles, the entropy can be calculated, but how
measure typicalness? The following section will result in a formal definition
of typicalness, but does not give a practical method that can be applied
here. The solutions I opted for and the exact calibration of the estimation
will be given in Section 7.3.3.
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2.3 Occam’s Razor

Occam’s Razor

“Among the theories that are consistent with the observed phenomena,
one should select the simplest theory.”

William of Ockham, 1320

Or as it was formulated by Bertrand Russell:

“It is vain to do with more what can be done with fewer.”

Or as Isaac Newton (1642-1727) formulated it in his famous work ‘Prin-
cipia’ [Newton, 1687]:

“We are to admit no more causes of natural things than such
as are both true and sufficient to explain the appearances. To
this purpose the philosophers say that Nature does nothing
in vain, and more is in vain when less will serve; for Nature is
pleased with simplicity, and affects not the pomp of superfluous
causes”.

The following paradox illustrates the kind of problems that Occam’s
Razor tries to solve.

Example 2.6 (The Grue Emerald Paradox.).

The paradox deals with the logical problem of inferring general
laws by specific observations. For example, as Hume phrased
the Problem of Induction in the 18th century (before the dis-
covery of Cygnus stratus in Australia) “All swans we have seen
are white, and therefore all swans are white”. Nelson Good-
man presented the paradox in the article ‘The New Problem of
Induction’ (1966) as follows.

“We seem able to justifiably infer that all emeralds are green
from the fact that all previously observed emeralds have been
green. This is, of course, not a valid deduction, but it would be
a radically skeptical position to deny that this inference confers
any likelihood at all on its conclusion. What if we try to follow
the same inferential procedure with a different predicate in the
place of ‘green’? Take Hempel’s invented predicate ‘grue’. An
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object is grue if ‘it is either observed before January 1st 2008,
and found to be green, or observed after that date, and found
to be blue’. From the fact that all previously observed emeralds
have been observed to be grue, which they have, we ought to
be able to infer that all emeralds are grue. But this means that
all emeralds discovered from next year onwards are likely to be
blue. This is patently false, but the challenge is to say how we
can uphold the first argument and fault the second, given that
they appear to exemplify the same logical machinery.”

Why can we rule out the existence of grue emeralds?

Or consider the following claim: “There are diamond pyramids
on Pluto”. One can claim that, unless we have closely observed
Pluto, this statement can not be rejected. The pyramids could
be there or could not be there, but until we haven’t been there,
there is nothing sensible we can say about it.

Occam’s Razor gives us an elegant way out of these paradoxes. The
simplest world model based on our current knowledge, excludes the exis-
tence of grue emeralds or diamond pyramids. To explain these facts our
models should be altered enormously. The color of emeralds or the size
and shape of diamonds are not mere properties of objects that can simply
be altered. The properties come from their physical constitution. Our un-
derstanding of the physics of crystals, our insight in color generation and
the growth of crystals would fall short in explaining the change of color at
a certain time, or pyramid-shaped carbon crystals.

Note that the application of Occam’s Razor on such problems coincides
with our intuition. Dealing with the above paradoxes, looks completely
unworldly, irrelevant for outsiders. Thus, consciously or just intuitively,
scientists seek simpler and simpler theories that are able to explain our
current knowledge.

The more practical problems for which Occam’s Razor provides an
answer, can best be explained by the following example.

Example 2.7 (Curve Fitting).

Consider the problem of finding the best curve that fits a data
sample. Fig. 2.6 shows a sample of 15 data points and three
types of functions that are fit on the data. The straight line is
the best linear function that minimizes the error, the dashed
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Figure 2.6: Curve fitting on 15 data points with 1st, 2nd and 3th degree
polynomials

line is a polynomial of second order and the dotted line is a
third-order polynomial. The data is generated from function
Y = 5 + 0.45X +U with randomly chosen X-values between 0
and 10, and with U random disturbances between -1 and +1.
The following table gives the fitted functions and the sum of

squared errors, defined as
n∑
i=1

(yi − f(xi))2 (‘o. pol.’ stands for

‘order polynomial’):

curve type function error
linear Y = 5.136 + 0.444X 193

2nd o. pol. Y = 4.677 + 0.676X − 0.021X2 192
3th o. pol. Y = 6.768− 1.18X + 0.392X2 − 0.026X3 184

Complex functions clearly results in better fits, but lead to
overfitting. The complexity of the functions should be included
into the analysis in order to find a good trade-off between model
complexity and goodness-of-fit.

The main motivations for Occam’s Razor are:

1. There exist fewer simple models that fit the observed data than com-
plex models. The probability of having a simple, but faulty, hypo-
thesis that coincides with the data, is smaller than having a faulty
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complex model. It is quite easy to construct complex models that
explain all individual data points, but they follow the individual data
points more than the trends in the data. A simpler model is more
likely to describe reality.

2. Simple models are more reliable. Even if the true data-generating
machinery is very complex, simple models give good predictors
[Grünwald et al., 2005]. Consider curves of different complexities fit-
ted on data as shown in Fig. 2.6. Even if the polynomial of third
degree would be the true model, the linear curve correctly reflects the
main trend of the function. Whereas the third-degree polynomial re-
flects various trends by its capricious form that are not representative
for the true linear function.

3. Simpler theories are more constraining and thus more falsifiable; they
provide the scientist with less opportunities to overfit the data “hind-
sightedly” and therefore command greater credibility if a fit is found
[Popper, 1959].

However, the preference for simpler models cannot be theoretically proved
to always provide correct models. In practice, the principle will not always
lead to correct models. It can not be proved that a simpler model is correct,
just as it can not be proved for any model learned by induction to be
correct. As Grünwald claims in his interesting and readable introduction
to MDL [Grünwald et al., 2005, p. 16] or his PhD [Grünwald, 1998],
Occam’s Razor has to be regarded as a strategy for scientific research:

Thus, MDL (and the corresponding form of Occam’s razor) is a
strategy for inferring models from data (“choose simple models
at small sample size”), not a statement about how the world
works (“simple models are more likely to be true”) - indeed, a
strategy cannot be true or false; it is “clever” or “stupid”.

The aim of modeling is not to find the ‘true’ model, but a good model.
On the other hand, there is also criticism for Occam’s Razor. As G.

Webb puts it: “What good are simple models of a complex world?”. And
some researchers report on settings in which the simpler models do not
provide good answers. But in my opinion, the absence of a decisive, con-
vincing example, undermine the criticism of these opponents.
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2.4 Kolmogorov Complexity

Algorithmic Information Theory, better known by its fundamental con-
cept Kolmogorov Complexity, deals with the quantization of information
in individual objects. Its concepts are paralleled by those of classical infor-
mation theory [Grünwald and Vitányi, 2003], where the latter deals with
relations between probabilistic ensembles and not individual objects. The
mathematical theory of Kolmogorov complexity contains deep and sophis-
ticated mathematics, discussed at length in the fundamental book of Li
and Vitányi [1997]. Yet the basic ideas are pretty intuitive, one needs
to know only a small amount of these mathematics to apply the notions
fruitfully.

2.4.1 Definition

Karl Popper challenged the utility of Occam’s razor as long as an objec-
tive criterion to measure simplicity is missing. Kolmogorov Complexity
provides an answer to it. It was introduced independently by Solomonoff
in 1964 [Solomonoff, 1964], Kolmogorov in 1965 [Kolmogorov, 1965] and
Chaitin in 1969 [Chaitin, 1969]. Solomonoff used it in his work on deduc-
tive inference, Kolmogorov aimed initially to give a satisfactory definition
for the problematic notion of random sequence in probability theory, and
Chaitin was studying just the program-size complexity of Turing machines.

Definition 2.8. The Kolmogorov Complexity of a binary string x is
defined to be the length in bits of the shortest computer program that prints
the sequence and then halts [Li and Vitányi, 1997]:

K(x) = min
p:U(p)=x

l(p) (2.9)

with U a universal computer, and l(.) the length of a binary string.

Although the length of the shortest program depends on the chosen
computer language, the Invariance Theorem guarantees that the des-
cription of the same strings by two universal languages differs by no more
than by a fixed constant c [Solomonoff, 1964]. Church’s thesis states that
all (sufficiently complex) computational models can compute the same fam-
ily of effectively computable functions [Church, 1936]. For such functions
there is a program that will lead in a finite number of mechanically spe-
cified computational steps to the desired computational result. A generic
computer, able of computing all effectively computable functions, is called
a Universal Turing Machine. A Universal Turing Machine can imitate
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the behavior of any other (Universal) Turing machine. K(x) will therefore
only differ by maximal the length of the program that imitates the other
Turing Machine, a constant that is independent of x.

Kolmogorov Complexity gives an absolute measure of the information
content of an individual finite object, whereas Shannon’s entropy measures
the information content of an object with respect to a set of objects. The
entropy of a random variable measures the information of the occurrence
of an outcome. It provides the average number of bits of the minimal
code necessary to distinguish a specific outcome among the set of possible
outcomes. However, it does not say anything about the number of bits
needed to communicate any individual message of the set. Consider all
binary strings of length 1000000. If the outcome of each string is equally
probable, by Shannon’s measure, we require 1000000 bits on the average
to communicate a string. However, the string consisting of 1000000 1’s can
be encoded with fewer bits by expressing 1000000 and adding the repeated
pattern ‘1’.

Example 2.9 (bit strings).

Take the following 3 sequences of 1000 bits:

• 01111000011001100111 . . . 00001111100100011101

• 00010001000100010001 . . . 00010001000100010001

• 00100010000110100000 . . . 00001001010000000000

The first string is random, the second repeats “0001”, the third
is random with the probability of having a ‘0’ 4 times that of
having a ‘1’. K(x) is maximal for the random string, namely
1000 bits. The shortest program literally encodes the string.
The second string is described by program REPEAT 250 TIMES
"0001" and needs about 28 bits (log(250)=8 + 4 + 16 bits for
REPEAT statement)1.

The third string can also be compressed. We could for example
use the code developed in example 2.1 of the introduction. The
probabilities correspond to those for having a substring of 3 bits
with probability 4

5 for having a ‘0’. The entropy was found to
be 2.473 bits. Each message of 3 bits thus needs on average
2.473 bits. The use of this code then results in a description
with 2.473*1000/3=823 + 54 (the number of bits in the table,

1For not overloading the discussion I omit details about prefix codes.
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which is the description of the code) = 877 bits. Note that this
is not the shortest program.

Unfortunately, K(x) is intractable - there is no algorithm that is able
to compute the shortest program for x nor can it be proved that a certain
program is the shortest for x. This follows from the halting problem: how
can we know which programs will eventually terminate and which go on
forever without coming to a definite conclusion. This can on its turn can
be related to Gödel’s famous incompleteness theorem of logic.

2.4.2 Minimum Description Length

Solomonoff’s paper, called “A Theory of Inductive Inference” [Solomonoff,
1964], contained the idea that the ultimate model for a sequence of data
may be identified with the shortest program that prints the data. His ideas
were later extended by several authors, leading to an ‘idealized’ version of
the Minimum Description Length methodology (Solomonoff 1978) [Li and
Vitányi, 1997] [Gács et al., 2001].

Minimum Description Length (MDL) [Rissanen, 1978] aims at pro-
viding a generic solution to the model selection problem: one has to decide
among competing theories of data given limited observations. Because of
the intractability of Kolmogorov complexity, the idea is to scale things
down in a way that it becomes computable. We should use an arbitrary
class of models M and do the encoding of the data with the help of the
model class. This results in a two-part code. The first part describing the
model and the second part describing the data with the help of the model:

description(data) = description(model) + description(data | model)
(2.10)

By minimizing the total length of both descriptions for models of M, this
approach inherently protects against overfitting and trades-off goodness-
of-fit on the observed data with complexity of the model. The former is
quantified by the first term, the latter by the second term.

Minimizing solely the training error (the second term of Eq. 2.10) leads
to overfitting. But it also leads to a variance of the hypothesis when trained
with finite data sets sampled randomly from the true distribution. When
taking different samples of a true linear relation with Gaussian errors, each
sample will lead to a different higher-degree polynomial. Since the poly-
nomial is not fitting the trend, but is fitting the random variations which
are different from sample to sample. To overcome this, the complexity of
the hypothesis should be taken into account. We have to add a penalty
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term which penalizes model complexity, the first term of Eq. 2.10. The
under-overfitting tradeoff corresponds to the bias-variance tradeoff which
arises in classical estimation theory. Typically, bias comes from not ha-
ving good hypotheses in the considered class. This generates a systematic
error. If the bias is high, the model is underfitting the data. Variance
results from the hypothesis class containing too many hypotheses. If the
variance is high, the model is overfitting the data. Hence, we are faced
with a trade-off: a more expressive class of hypotheses generates a higher
variance, a less expressive class generates a higher bias.

Formally written [Grünwald, 1998]:

Hmdl = arg minH∈M{L(H) + L(D | H)} (2.11)

and L(.) the description length. MDL says to pick out the hypothesis Hmdl

from model classM where Hmdl is the hypothesis which minimizes the sum
of the description length of hypothesis H and of the data D encoded with
the help of H. A minimal two-part code contains no redundancy, every
bit is information.

Learning can be viewed as data compression: it tells us that, for
a given set of hypotheses H and data set D, we should try to find
the hypothesis or combination of hypotheses in H that compresses D
most.

For applying MDL, there is no need to assume anything about the data
generation mechanism. Unlike in traditional statistics, it is not needed that
the data form a sample from a population with some probability law. The
objective is not to estimate an assumed but unknown distribution, but to
find good models for the data. Whether good models correspond to the
‘true’ models is a question that is left unanswered.

To formalize our ideas, one needs to decide on a description method,
that is, a formal language in which to express the models. The choice of
description method should attribute shorter description lengths for sim-
pler functions. Nevertheless, any method is somewhat arbitrary. Just as
Kolmogorov complexity, it gives an objective quantization up to a cer-
tain constant only. Refined MDL, based on the stochastic complexity of
a model, tries to counter this problem [Grünwald et al., 2005], but this
theory will not be elaborated here. I will stick to so-called crude MDL and
try to use ‘intuitively reasonable’ codes.
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Related Methods

Several other related methods, such as Minimum Message Length (MML)
[Wallace and Dowe, 1968] [Wallace, 2005] or the prequential interpretation
given by Dawid [1992], also provide generic solutions to the model selection
problem. They are based on the same principles. The MDL method can
also be given a Bayesian interpretation, which links it with traditional
statistical methods, as explained in Grünwald et al. [2005, p. 13, p. 64].

Practical Regression Analysis

The problem of curve fitting, described by Example 2.3, can be handled
by MDL. Curve fitting searches for the best trade-off between function
complexity and goodness-of-fit. The model class M is populated with
functions appropriate for the system under study. I added the polynomials
up to a certain degree, the inverse, power, square root and step function.
The description of the hypotheses then contains the values of the function’s
parameters, each needing d bits, and the function type, for which I count
1 byte for each operation (addition, subtraction, multiplication, division,
power, square root and logarithm) in the function. A floating-point value
is encoded with d bits, whereas an integer value i requires log(i) bits.

It is shown that the optimal precision d in bits for the description of
each parameter is given by d = 1/2 log2 n+ c, with n the sample size and
c some constant [Rissanen, 1989].

Thus

L(H) = #parameters.
log2(n)

2
+ 8.#operations+K (2.12)

with K a constant term that does not depend on H. Therefore it does not
play any role in finding the minimal description among all functions.

The second part of the description, L(D | H), reflects the goodness-
of-fit of the curve Y = f(X). By choosing the normal distribution as
probability distribution of the errors (the deviances of the data with respect
to the curve), L(D | H) equals the sum of squared errors:

L(D | H) =
n∑
i=1

(yi − f(xi))2 (2.13)

The regression analysis has to minimize the sum of Eq. 2.12 and Eq. 2.13.
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Example 2.10 (Curve Fitting II).

Reconsider the problem of finding the best curve that fits the
data sample, shown in Fig. 2.6. The following table gives the
curves and the complexities (in bits, ‘o. pol.’ stands for ‘order
polynomial’):

curve type function L(D | H) L(H) total
linear Y = 5.136 + 0.444X 193 17 210

2nd o. pol. Y = 4.677 + 0.676X 192 49 241
−0.021X2

3th o. pol. Y = 6.768− 1.18X 184 72 256
+0.392X2 − 0.026X3

The results show clearly that the linear function is the best
trade-off between complexity and goodness-of-fit.

2.5 Kolmogorov Minimal Sufficient Statistic

This concept enables the separation of regularities from accidental, random
information.

2.5.1 Regularities as Meaningful Information

Inferring models aims at explaining observed data and predicting future
data. Explanation and prediction are based on patterns or regularities.
What is there to learn from random data? Take the example (2.4.1) of
random and regular strings. The random string has the highest complexity,
but its bits cannot be regarded as meaningful information. We cannot
predict the continuation of the string. The repetitive pattern of ‘0001’ by
the second string, on the contrary, provides the necessary knowledge for
successful prediction of the continuation of the string.

The meaningful information consists of the regularities that allow the
compression of the data, i.e. to describe the data using fewer symbols
than the number of symbols needed to describe the data literally [Vitányi,
2002]. Meaningful information is defined as the bits of a description
that are responsible for compression.
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Figure 2.7: 3 examples of an observed sample of figures.

Although regularities represent an intuitive concept, no formal defi-
nition exists. A proposal for a definition might be that regularities are
properties that correspond to a part p′ of a description p, such that all ob-
jects sharing the property can use p′ in a description that is shorter than
the literal encoding of the object. Regularities enable compression.

In the context of learning, not all bits of the shortest description of data
can be regarded as meaningful information. We will seek a description in
2 parts, one containing the meaningful information, which we put in the
model, and one the remaining random ‘noise’, which put in the data-to-
model code. This will result in a two-part code, as explained in the previous
section on MDL. The model part should capture all significant regularities
present in the data. The more regularities there are, the more the data
can be compressed.

Learning has to be viewed as a process of building a model by
squeezing out all regularities from the data.

Example 2.11 (Observing Figures).

Consider the three samples containing figures, Fig. 2.7. The
questions we would like to get answered comprise the following.
What is the best model for each of the samples? What other
objects can we expect to be member of the best model? What
are the regularities?

In the case of polygons, their structure determines the regula-
rities. A rectangle can be described shorter than an irregular
quadrilateral. A rectangle has fewer degrees of freedom. The
straight edges are the regularities.

On the other hand is an image with a polygon highly regular
compared with a random image of n×m black or white pixels.
The latter requires n × m bits for its description, while the
former can be described with about e × (log n + logm) bits.
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Where e is the number of edges of the polygon. The coordinates
of each vertex require log n+ logm bits.

2.5.2 Typicality

For sake of simplicity and clarity, I limit this discussion to models that can
be related to a finite set of objects. The theory can be generalized to the
model class of computable probability distributions [Gács et al., 2001]. An
object is called typical for a set, when it shares its regularities with the
other elements of the set [Li and Vitányi, 1997, Section 1.9]. Atypicalness
of an object is measured by its randomness deficiency with respect to
the set, which is defined as [Vitányi, 2005]

δ(x | S) = log |S| −K(x | S∗) (2.14)

The lack of typicality of x with respect to a finite set S containing it, is
the amount by which the complexity of x as an element of S falls short of
the maximal possible complexity (log |S|). Typical elements, having zero
randomness deficiency, cannot be described shorter, given the description
of the set, then by a code of log |S| bits, which corresponds to its index in
the set.

Example 2.12 (Bit strings II).

Consider the set of the strings containing 1000 bits. This set
contains 21000 elements. The great majority of its elements is
random and can not be described with less than 1000 bits. A
string 250 times repeating a substring of ‘0001’ is not consid-
ered as a random outcome of this set. Although the probabi-
lity of both strings is equal, the regular one is not perceived
as random [Li and Vitányi, 1997]. It is not typical, it can be
described with fewer bits. This string is a typical element of
the set containing the 250-repetition of 4-bit substrings, con-
taining 24 = 16 substrings. The string is also typical for the
set containing the m-repetition of n-bit substring, with n of the
same complexity as 4.

By simple counting arguments it follows that most elements of a set
are typical. There can only be a few elements with lower complexity. The
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large majority of the elements of a model set are incompressible, while only
a few exhibit additional regularities that allow further compression. When
choosing an element at random, the probability of picking a regular string
is very low. Most strings are random. So the outcome of a random pick
will be a typical element with high probability. Thus, if the observed data
is typical, the minimal model corresponds to the correct model. This is a
necessary condition for the correctness of the learning methods.

For correct model learning, observed data must be typical for the
system under study.

2.5.3 Sufficient Statistics

A statistic is a well-known concept of traditional statistics. Every func-
tion T (D) of a data sample D is called a statistic of D. A statistic is
called a sufficient statistic if the information it has about the probabi-
lity distribution equals the information the data has about the probability
distribution[Gács et al., 2001]:

I(D; p) = I(T (D); p) (2.15)

where I(.; .) is the mutual information (see Introductory Chapter). A
sufficient statistic contains all information in D about p, where p indicates
the family of probability mass functions that is put into consideration. As
Fisher [1922] puts it: “the statistic chosen should summarize the whole of
the relevant information supplied by the sample. This may be called the
Criterion of Sufficiency.”

Note that for every statistic the Data Processing Inequality holds (de-
fined in the introductory chapter):

I(p;D) ≥ I(p;T (D)), (2.16)

because p→ D → T (D) is a Markov chain.

Example 2.13 (Coin tosses).

Take a biased coin with unknown parameter P (head) = θ. The
outcomes of the coin tosses are expected to be independent of
each other. Given n coin tosses, it can be proved that the num-
ber of 1’s is a sufficient statistic for θ, see [Cover and Thomas,
1991, p. 37].
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The minimal sufficient statistic is defined as the smallest sufficient
statistic [Cover and Thomas, 1991]:

p→ T (D)→ U(D)→ D (2.17)

It maximally compresses the information about p in the sample. It contains
no irrelevant information, it is a function of every other sufficient statistic
U .

Example 2.14 (Minimal sufficient statistic of a Normal distribution).

Consider a random variable X which is normally distributed
with parameters µ and σ:

P (X) =
1√
2π
e−

(x−µ)2

2σ2 (2.18)

and a sample xn (the set of observations x1, x2, . . . , xn) which
is drawn independently according to this distribution. p is
then the family of Normal distributions. The minimal suffi-

cient statistic of the data is then the mean xn = 1/n
n∑
i=1

xi and

the variance V ar(xn) = 1/n
n∑
i=1

(xi − xn)2. It can be verified

that the conditional distribution of xn conditioned on n, xn

and V ar(xn) does not depend on µ and σ.

2.5.4 Algorithmic Sufficient Statistics

The corresponding algorithmic variant of minimal sufficient statistic ex-
hibits the interesting properties we are looking for.

The goal is to find a model set S that contains x and the objects that
share x’s regularities. The Kolmogorov structure function Kk(x | n)
of x is defined as the log-size of the smallest set including x which can be
described with no more than k bits [Cover and Thomas, 1991]:

Kk(x | n) = min
p:l(p)≤k
U(p,n)=S
x∈S

log |S| (2.19)
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Figure 2.8: Kolmogorov structure function for n-bit string x, k∗ is the
Kolmogorov minimal sufficient statistic of x.

with |S| the size of set S. By U(p, n) = S, we mean that running the
program p with data n on the universal computer U2 will print out all
elements of S.

A typical graph of the structure function is illustrated in Figure 2.8.
By taking k = 0, the only set that can be described is the entire set {0, 1}n
containing 2n elements, so that the corresponding log set size is n. By
increasing k, the model can take advantage of the regularities of x in such
way that each bit reduces the set’s size more than halving it. The slope of
the curve is smaller than -1.

When k reaches k∗, all regularities are exploited. There are no more
patterns in the data that allow further compression. From then on each
additional bit of k reduces the set by half. We proceed along the line of
slope -1 until k = K(x) and the smallest set that can be described is the
singleton {x}. The curve K(S | n) + log |S| is also shown on the graph.
It represents the descriptive complexity of x by using the two-part code.
With k = k∗ it reaches its minimal and equals to K(x). When k < k∗, S
is too general and is not a typical set for x. Only for higher values than
k∗ is x typical for S.

For random strings the curve starts at log |S| = n for k=0 and drops
with a slope of -1 until reaching the x-axis at k = n. Each bit reveals one
of the bits of x, and halves the model set.

2The concatenated string of p and n is given to the Turing machine.
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Figure 2.9: Model sets for the observation of a rectangle.

Example 2.15 (Learning Figures II).

Consider the observation of a rectangle of 200× 125 in a black
and white image of 1000 × 1000 pixels. I will try to draw the
Kolmogorov structure function of this observation. Fig. 2.9
shows sets of increasing complexity. The second column gives
the approximated Kolmogorov complexity of the sets. I omit
the details about the shortest programs. The third column
gives the number of elements in the set, the fourth column the
minimal size of an index which can enumerate all elements. The
last column gives the total description length of the observed
rectangle when using the description of the set (second column)
and its index in the set (fourth column).

The color of each pixel can be described with one bit. The lit-
eral description of the image thus requires 1000×1000 bits. The
Kolmogorov structure function is constructed by increasing k
and exploiting more and more of the figure’s structure. The
set’s description becomes more complex, but the index length
decreases faster so that the total description length decreases.
This continues until a more detailed description of the set does
not lead anymore to a compression of the total description.
Such as the set of all rectangles with width of 200 (indicated
as ‘rect. w200’) or all rectangles with width 200 and height
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125 (indicated as ‘rect. 200x125’) or the singleton of only the
observed rectangle. All regularities of the observation are des-
cribed, the remaining information that is added to the model
is random information. In this example, k∗ of Fig. 2.8 is 30.
The corresponding model - the set of all rectangles - is called
the Kolmogorov Minimal Sufficient Statistic.

The Kolmogorov minimal sufficient statistic of x is defined as
the program p∗ that describes the smallest set S∗ such that x is a typical
element of S∗ and the two-stage description of x is as good as the best
single-stage description of x [Gács et al., 2001]:

p∗ = min{l(p) | U(p) = S, x ∈ S, K(S∗ | n) + log |S∗| ≤ K(x)} (2.20)

The descriptive complexity of S∗ is then k∗. Program p∗ thus describes
the meaningful information, and nothing else, present in x.

Example 2.16 (Rain).

Consider that we want to transmit a picture of rain through a
channel with limited capacity [Vereshchagin and Vitányi, 2002,
p.4]. One can opt for lossy compression as follows: only send
the meaningful information and let the receiver choose the ran-
dom information to construct a movie which has the same re-
gularities. One transmits background, a description of a drop
(the characteristics of its form, its average and variance of the
size) and the regularities of the falling drops (frequency, direc-
tion, . . . ). The receiver has all sufficient information to repro-
duce a picture of rain which has the same characteristics but
in which the particular drops are chosen randomly. With a
random deficiency of almost zero, the created picture will be
indistinguishable from the original.

2.6 Conclusions of Chapter

Is it rational to form inductive concepts?
Does it make sense to generalize from limited experience?
For the simple fact that knowledge conceived from inductive inference can-
not be proved to be invariably true. As opposed to deduction in logic which
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relies on ‘absolute’ proofs: if B follows from A and C from B, then we know
as a fact that C follows from A.

This chapter addressed the problem of inductive inference. Some of the
approaches were outlined which try to answer the above questions. The
maximum entropy principle states that, among the models conform the
given information, the one with maximal uncertainty should be chosen.
For broadening the class of problems for which this principle can be em-
ployed, the constraint ‘conform the given information’ was translated into
the constraint that the observations must form a ‘typical outcome’ of the
model.

Occam’s razor or the quest for minimal-sized explanations is formal-
ized through the concept of Kolmogorov complexity. The complexity of
an individual object is the length of the shortest program that computes
the object and then halts. The success of Kolmogorov complexity for
inductive inference is determined by its application in approaches such as
Minimum Description Lenght (MDL). The derived concepts of Kolmogorov
complexity offer formal definitions for typicality and the separation of regu-
larities from noise by respectively randomness deficiency and Kolmogorov
Minimal Sufficient Statistic (KMSS).

After having formally defined typicalness, we can employ the maximum
entropy principle:

In order to learn from observations, choose the model which has the
maximal entropy and for which the data is typical.

This result relates to the KMSS. If we assume that each element of
the model set is equally probable, the entropy of the model is log |S|. The
KMSS then corresponds to the best model given by the maximum entropy
principle: the data is typical and the entropy is maximal because the set
is of maximal size. The data not typical for a smaller model set, in which
case some regularities are left out. A larger model would add accidental
information about the data, in which case the data is still typical, but the
model is not minimal anymore.

The next chapter will explain causal inference, about how one can
understand the causal structure of a system by observations. In the sub-
sequent chapter, the principles and the validity of causal inference will be
evaluated with the here introduced concept of KMSS.





Chapter 3

Graphical Causal Models

WHAT value does a concept have that cannot be formally defined?
Some people might answer none. Causality is such a concept. We

all intuitively understand it, use it in every day language, can immediately
indicate what the causes of phenomena are. . . But scientists have long im-
mersed themselves in it without coming up with a definite conclusion about
the formal meaning of causality. Even worse, at the start of modern statis-
tics, with the invention of correlation by Pearson, causality was completely
banned from the realm of science. The discussion about the exact defini-
tion of causality and its impact on science still continues, but has not yet
attained a decisive conclusion. Just as the concept intelligence, a colloquial
word which is not yet completely understood.

Of what help can computer science be? Intelligent computers are a
long-living promise still waiting to be realized. In order to be able to mimic
intelligence with computer programs, a complete and thorough understan-
ding of intelligence is required. Computer science thus forces us to get to
the bottom of such still ‘obscure’ concepts as causality and intelligence.

One approach to understand causality is given by the theory of graph-
ical causal models. Graphical causal models describe the relations among
entities with the intention to reveal the underlying physical mechanisms
that govern the system under study. Together with the learning algo-
rithms they provide an interesting, yet controversial discussion of what
we can learn about the world. This chapter presents current theory on
graphical causal models or more specifically, causally interpreted Bayesian
networks, as developed by Pearl et al.

This chapter is organized as follows. After an in depth analysis of
conditional independencies, on which causal theory is based, Bayesian net-
works are introduced as representing probability distributions as well as

45
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the independencies of a distribution. In the following section graphical
causal models are defined. It begins by touching on the fierce debate of
what causality actually is. Next the definition proposed by Pearl, based
on interventions, is given. This is followed by the link which is established
between graphical causal models and Bayesian networks. The section is
concluded with demonstrating why Markov networks fail as a good des-
cription method of probability distributions. The last section presents the
basic constraint-based causal structure learning algorithm, the PC algo-
rithm, and the assumptions under which the correct model will be learned.

3.1 Independencies

Dawid, Spohn, Pearl, Verma, and others started, in the 1970’s, to consider
the probabilistic independencies as important properties of a system under
study. They started to interpret the graph (DAG) of a Bayesian network
as a representation of the conditional independencies of a joint distribution
[Pearl, 1988]. This will be the key for the formalization of causal models
and the construction of learning algorithms.

Definition 3.1. Conditional independence of X and Y given Z, writ-
ten as X⊥⊥Y | Z, is defined as

P (X,Y | Z) = P (X | Z).P (Y | Z) (3.1)

The joint distribution is simply the multiplication of the distributions
of the single variables solely. Unconditional independence of X and Y
appears when P (X,Y ) = P (X).P (Y ). Since in general P (X,Y | Z) =
P (X | Z).P (Y | X,Z) holds by the chain rule, an independency implies
that

X⊥⊥Y | Z ⇔ P (Y | X,Z) = P (Y | Z) (3.2)

Furthermore, by an independency, the conditional distribution can also be
rewritten as:

U⊥⊥W | V ⇔ P (U | w) =
∑
v∈V

P (U | v).P (v | w) whenever P (v, w) > 0

(3.3)
The information shared by U and W is also present in V . The knowledge
of W does not provide additional information about U once V is known.
Note that variables are denoted by upper case letters, values or outcomes
of variables by lower case letters.
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Figure 3.1: Example of Conditional Independence.

Example 3.2 (Conditional Independencies).

The data shown in Fig. 3.1 is an example of a conditional in-
dependency, namely A⊥⊥C | B. B is a discrete variable chosen
randomly between 1 and 5. The values of A and C are gener-
ated by A = B + ε and C = B + ε respectively, with ε a small
random disturbance. The last plot of the figure shows that A
and C are dependent (A 2C), but get independent when con-
ditioned on B (A⊥⊥C | B). When you fix B to a certain value,
the relation between A and C is clearly unrelated.

3.1.1 Correlation

Traditional statistics are founded on the concept of correlation, invented by
Galton and Pearson. Its ‘discovery’ created a revolution in the beginning
of the 20th century. It indicates a probabilistic association between random
variables. In the narrow sense, correlation, also called correlation coeffi-
cient, indicates the strength and direction of a linear relationship between
two random variables. In the broad sense correlation or co-relation refers
to the departure of two variables from independence, irrespective of the na-
ture of the relation, be it linear or not. To avoid confusion, one better talks
about association.

It is quantified by the Pearson product moment correlation coefficient
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of two variables X and Y , defined as

rxy =
cov(x, y)√

var(x)var(y)
=

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2.
n∑
i=1

(yi − y)2

(3.4)

where x and y indicate the mean value of the x and y values respectively,
var(.) the variance of a continuous variable and cov(., .) the covariance
between two variables.

Form-free dependence can be measured with the mutual information
I(X;Y ), as defined by classical information theory (discussed in Section
2.1). To estimate it from data, I will rely on a Kernel Density Estimation
(KDE, see section 2.2.1) to determine the underlying probability distribu-
tion on which the definition of mutual information can be applied. The
mutual information measures the decrease in uncertainty of one variable
when the state of the other is known. If the uncertainty becomes zero,
the state of the variable can be predicted from the state of the other. We
say that X is determined by Y . Pearson’s correlation coefficient does not
distinguish the closeness to linearity and the certainty on the dependence,
it is a sum of both.

Example 3.3 (Examples of related data).

Fig. 3.2 shows some examples of two-dimensional data. Pear-
son correlation coefficient and the mutual information is calcu-
lated. Pearson gives a value of 1 for perfect linearity. If linearly
related, high positive values for xi−x consequently correspond
to high, either positive or negative values of yi − y, and vice
versa. The denominator of the definition scales the values, so
that the coefficient lies between 0 and 1, and is maximal for a
perfect linear relationship. When not perfect linear, the prod-
uct of the nominator is not maximal, resulting in lower values.
In absence of a positive or negative trend of Y with increasing
X values, the coefficient reaches 0. If X and Y behave indepen-
dently of each other, then large positive deviations of X from
its mean, will be just as likely to be paired with large or small,
negative or positive, deviations of Y from its mean. These will
cancel each other out in the long run and the expectations of
these two deviations will be zero.



3.1. Independencies 49

Figure 3.2: Two-dimensional data with Pearson correlation coefficient and
mutual information.
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The bottom row data shows an example of non-linear related
variables with a nearly 0 correlation coefficient.

3.1.2 Qualitative Property and Qualitative Reasoning

Despite the quantitative definition of conditional independence, indepen-
dencies are qualitative properties. As Pearl puts it in [Pearl, 1988, p.79]:

“ The traditional definition of independence uses equality of
numerical quantities, as in P (x, y) = P (x).P (y), suggesting
that one must test whether the joint distribution of X and Y
is equal to the product of their marginals in order to determine
whether X and Y are independent. By contrast, people can
easily and confidently detect dependencies, even though they
may not be able to provide precise numerical estimates of the
probabilities.”

And he continues further on the same page:

“ Evidently, the notions of relevance and dependence are far
more basic to human reasoning than the numerical values at-
tached to probability judgments. In a commonsense reasoning
system, therefore, the language used for representing proba-
bilistic information should allow assertions about dependency
relationships to be expressed qualitatively, directly, and ex-
plicitly. The verification of dependencies should not require
lengthy numerical manipulations but should be accomplished
swiftly with a few primitive operations on the salient features
of the representation scheme. Once asserted, these depen-
dency relationships should remain a part of the representation
scheme, impervious to variations in numerical inputs.”

So, what we are looking for is a representation scheme that allows
explicit modeling of conditional independencies, regardless of the probabi-
lity distribution, which allows us to perform qualitative reasoning. When
making a diagnosis, a doctor knows which symptoms occur with which
diseases, without being able to put precise numerical quantities on the
probabilities. At best he uses approximations for the probabilities, he
knows that one disease is more probable than another. Most of the diag-
nosis is based on qualitative information. A doctor knows what effect a
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disease has on the body and uses this information to reason qualitatively
about the possible mechanisms that put the human body in its current
state.

Qualitative information also triggers decisions. Take the fact that for
certain laws it makes no sense to implement them without public consent
or a general information campaign for the public. The knowledge of this
guides a government when taking decisions.

3.1.3 The Occurence of Independencies

Recall that P (X | Y, Z) = P (X | Z) is equivalent to

∀x ∈ Xdom, y ∈ Ydom, z ∈ Zdom : P (x | y, z) = P (x | z) (3.5)

The existence of one value of x, one value of y and one value of z for which
the above equation is false is sufficient to make X and Y dependent. Most
distributions will not exhibit the above regularity and result in dependence
of X and Y . At least the most elements of the set of all joint distributions
over X, Y and Z. These are the typical elements.

But consider the generation mechanism T → U → V , in which U is
generated by a mechanism that only depends on the value of T , and V by a
mechanism only depending on U . For this T⊥⊥V | U holds, irrespective of
the ‘nature’ of both mechanisms, irrespective of the exact parameterization
of P (U | T ) and P (V | U). The attentive reader remembers the discussion
of the previous section, discussing the ‘modeling of regularities’. He un-
derstands that this is an example that shows the relevance of regularities.
Thus:

Conditional independencies are not to be expected unless the gen-
erating mechanisms exhibit a specific structure.

This property will be exploited by the causal structure learning algo-
rithms to reveal the structure of the underlying mechanisms.

Example 3.4 (Examples of related data II).

Unfortunately, making distinctions between dependencies and
independencies in experimental data is not a ‘black and white’
issue. On the data of Fig. 3.2 we see that the estimated cor-
relation coefficient or mutual information is not exactly 0 for
independent variables (row 1). We have to choose a thresh-
old that determines dependency. In the independency test of
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the TETRAD tool for causal analysis, this threshold is set to
0.5 when using Pearson’s correlation coefficient. It can be seen
that then Pearson fails to detect the non-linear relations of
the bottom row. They have a correlation coefficient of almost
0. On the other hand, the mutual information estimated with
KDE, give positive values. By calibration of our KDE-based
test, the threshold was set to 0.35 (Section 7.3.3). The data
of the bottom row is then correctly classified as dependent.
The test however fails to recognize the linear relation with 60%
errors such as example (2D), for which the estimated mutual
information of 0.34 is below the threshold.

3.1.4 Graphoid Properties

The analysis of conditional independencies is based on the Graphoid Pro-
perties [Pearl, 1988]. They are given below, the intuitive interpretations
added to the equations are taken literally from Pearl’s book. For all disjoint
subsets X , Y and Z holds (sets of stochastic variables are represented by
boldface capital letters):

1. Symmetry
X⊥⊥Y | Z ⇔ Y⊥⊥X | Z (3.6)

In any state of knowledge Z , if Y tells us nothing new about X ,
then X tells us nothing new about Y .

2. Contraction, Decomposition and Weak Union

X⊥⊥Y | Z & X⊥⊥W | Z, Y ⇔ X⊥⊥Y, W | Z (3.7)

The left-to-right arrow tells that if we judge W irrelevant to X
after learning some irrelevant information Y , then W must have
been irrelevant before we learned Y . From right-to-left, the property
means that irrelevant information should not alter the relevance of
other propositions in the system; what is relevant remains relevant,
and what is irrelevant remains irrelevant. The right-to-left equation
incorporates the decomposition and weak union properties. Decom-
position says that if two combined items are judged irrelevant to X ,
then each separate item is irrelevant as well:

X⊥⊥Y, W | Z ⇒ X⊥⊥Y | Z & X⊥⊥W | Z (3.8)
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Weak union says that learning irrelevant information W cannot help
the irrelevant information Y become relevant to X :

X⊥⊥Y, W | Z ⇒ X⊥⊥Y | Z, W (3.9)

3. Intersection
If P is strictly positive:

X⊥⊥Z | Y, W & Y⊥⊥Z | X, W ⇒ X, Y⊥⊥Z |W (3.10)

When X does not affect Z when Y is held constant nor Y affects
Z when X is held constant, neither X nor Y nor their combination
can affect Z .

These properties tell us how independencies imply other independencies.
For the intersection property, strict positiveness is put forward as a ne-
cessary condition. This condition is, however, far too strict, weaker forms
exist that guarantee that the intersection property holds [Mart́ın et al.,
2005]. The violation of the property will be treated thoroughly in chap-
ter 5. The property is mainly broken by deterministic relations. When
Y = f(X), P (Y | X) is 1 for exactly one value of Y and zero for the
others.

3.1.5 Markov networks

Because of the symmetry of correlations, an undirected graph is the most
intuitive and obvious choice while looking for a structured representation
of the relations among the variables, . Such a graph is called a Markov
network [Pearl, 1988]. Pairs of variables that are directly related are con-
nected by an unoriented edge. Markov networks follow directly from clas-
sical information theory (discussed in Section 2.1). Recall that a Markov
chain is written as X − Y − Z, and implies X⊥⊥Z | Y . Retrieving
(in)dependencies from the graph is straight forward. Two variables are
dependent if they are connected by at least one unblocked path in the
graph. A path between two nodes is a sequence of edges connecting both
nodes. A path is a blocked path as soon as one of the variables along
the path is a member of the conditioning set.

Example 3.5 (Markov network).

Fig. 3.3 shows an example Markov network over 6 variables.
The independencies that follow from the graph include the fol-
lowing:
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Figure 3.3: Example Markov Network.

• A⊥⊥C,D,E, F | B; but A 2F | D
• B⊥⊥E,F | C,D; but B 2E,F | C
• C⊥⊥F | D,E; but C 2F | E.

• . . .

Note that independencies are transitive and that two (conditionally)
independent variables never become dependent by conditioning on some
additional variables. At first sight, Markov networks correctly represent
the relational structure among variables. But this is not true.

Consider the system in which Y is caused by two unrelated, random
variables X and Z: X → Y ← Z. The arrows have a causal meaning. The
interpretation is that X and Z exert influence on Y . The mechanism that
generates the state of Y is affected by the values of X and Z. Then, X and
Z are marginally independent, but become dependent when conditioned
on Y . In general, two marginally independent variables will be correlated
if one conditions on any of their common effects.

Example 3.6 (Counter-intuitive dependence).

Consider a student who did not pass an exam. Let us assume
that he didn’t study hard enough or either he didn’t under-
stand the subject matter. This is represented by causal model
hard work → pass exam← understanding matter. Consider
that understanding matter and hard work are not related.
Some students can study very hard without ever getting to
understand the material properly. But if we know a student
worked hard without passing the exam, we can deduce that
the failing of the exam is probably due to a bad understan-
ding. Accordingly:

• understanding matter ⊥⊥ hard work
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• understanding matter 2 hard work | pass exam

Causal model X → Y ← Z is called a v-structure. V-structures play
a major role in causal model theory. They will turn out to be the key
for detecting causal relations from observations. Their properties require
a representation by directed graphs. In contrast with v-structures, are the
Markov chains present in causal models X → Y → Z, X ← Y ← Z or
X ← Y → Z. Here, the Markov property applies, thus:

Markov chain X 2Y Y 2Z X 2Z X⊥⊥Z | Y

v-structure X 2Y Y 2Z X⊥⊥Z X 2Z | Y

The v-structure is due to the asymmetry of causality. Variable Y is
called a collider along the path from X to Z. I will write a Markov chain
for which X and Z are dependent as X − Y − Z.

3.2 Bayesian Networks

Bayesian networks are mainly concerned with offering a dense and manage-
able representation of probability density distributions, called probability
distribution for short1. They have become a popular representation for en-
coding uncertain expert knowledge in expert systems [Cowell et al., 1999].
A Bayesian network records a state of probabilistic knowledge, provides
means for updating the knowledge as new information accumulates and
facilitates query answering mechanisms for knowledge retrieval. The nov-
elty that Pearl et al. introduced was to see the graph of the network also
as a representation of conditional independencies.

3.2.1 Representation of Distributions

A joint probability distribution is defined over a set of stochastic variables
X1 . . . Xn and defines a probability (P ∈ [0, 1]) for each possible state
(x1 . . . xn) ∈ X1,dom× · · · ×Xn,dom, where Xi,dom stands for the domain of
variable Xi. A joint distribution can be factorized relative to a variable

1Also it must be noted that I limit the discussion to finite distributions. This avoids
some theoretical problems with infinite distributions. In the context of learning, in
which we have to rely on limited information and uncertainty, this is a valid assumption.
Discretized distributions will be learned.
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ordering (X1, . . . , Xn) as follows:

P (X1, . . . , Xn) = P (X1).
n∏
i=2

P (Xi | X1, . . . , Xi−1) (3.11)

Each variable is represented by a factor, namely its probability distribution
given the previous variables in the ordering. But, variables from the condi-
tioning set can be removed from the set if they do not provide information
on the variable under consideration. Formally, Xj is obsolete in the factor
of Xi if Xj becomes conditionally independent from Xi by conditioning on
the rest of the set:

P (Xi | X1 . . . Xi−1) = P (Xi | X1 . . . Xj−1, Xj+1 . . . Xi−1) (3.12)

or
Xi⊥⊥Xj | X1 . . . Xj−1, Xj+1 . . . Xi−1 (3.13)

Conditional independencies of this form can be exploited to reduce the
complexity of the factors in the factorization. The more of such indepen-
dencies, the simpler the description of the joint distribution will be.

The conditioning sets of the factors can be described by a Directed
Acyclic Graph (DAG), in which each node represents a variable and has
incoming edges from all variables of the conditioning set of its factor. The
joint distribution is then described by the DAG and the Conditional Pro-
bability Distributions (CPDs) of all variables conditioned on its parents,
P (Xi | parents(Xi)). A Bayesian network is a factorization that is edge-
minimal, in the sense that no edge can be deleted without destroying the
correctness of the factorization. It maximally exploits independencies of
the form of Eq. 3.13. Accordingly, a Bayesian network defined over a set of
variables consists of a DAG in which each node represents a variable and a
CPD of each variable, expressing the conditional probability distribution
of a variable conditional on its parents in the graph.

Although a Bayesian network is edge-minimal, it depends on the chosen
variable ordering. Some orderings lead to the same networks, but others
result in different topologies. As shown in the following example.

Example 3.7 (Different factorizations).

Consider 5 stochastic variables A,B,C,D and E and a joint
probability distribution defined over them. Fig. 3.4 shows
the graph that was constructed by simplifying the factorization
based on variable ordering (A, B, C, D, E) by the three given
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Figure 3.4: Factorization based on variable ordering (A, B, C, D, E) and
reduction by three independencies.

Figure 3.5: Bayesian network based on variable ordering (A, B, C, E, D)
and five independencies.

conditional independencies. Assume also that the factorization
of the same distribution but based on variable ordering (A, B,
C, E, D) leads to the Bayesian network depicted in Fig. 3.5.
In that case, both models represent the same distribution, but
one contains 2 edges less.

3.2.2 Representation of Independencies

The Markov condition gives the conditional independencies that come
from the factorization reduction (Eq. 3.12): any node is independent of
all its non-descendants by conditioning on its parents. Take care not to
mix this condition with the Markov property. Combinations of the basic
independencies imply other independencies, following from the graphoid
properties. Pearl and Verma constructed a graphical criterion, called d-
separation, for retrieving all independencies from the graph of a Bayesian
network that follow from the Markov condition.
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Definition 3.8. (d-separation) Let p be a path between a node X and
a node Y of a DAG G. (By a path we mean any succession of edges,
regardless of their directions.) Path p is called unblocked given subset Z of
nodes in G if every node w on p satisfies:

1. if w has two converging arrows along p, w or any of its descendants
is in Z.

2. and if w has no converging arrows, it is not an element of Z.

X and Y are called d-connected given Z, if there is an unblocked path
between them in G. Conversely, Z is said to d-separate X from Y in G,
denoted X⊥Y | Z, iff Z blocks every path from X to Y . Z blocks a path if
the above condition is not valid for one of the nodes on the path.

Example 3.9 (d-separation).

Take the Bayesian network of Fig. 3.5. The d-separation cri-
terion tells us that variable B separates A from E, since B
blocks the path A → B → E. On the other hand, the path
A → C → D ← E is blocked by C → D ← E, which is called
a v− structure. This path gets unblocked given D. Now, with
the definition of d-separation, one can verify that the Bayesian
network of Fig. 3.4 is indeed edge-minimal when considering
the conditional independencies present in the network of Fig.
3.5. In the factorization of Fig. 3.4, A must for example be
connected with D because A 2D | C, unless A⊥⊥D. Both inde-
pendencies can be read from the graph of Fig. 3.5.

A graph is an Independence Map, or I-map for short, of a joint
distribution if every independency found in the graph appears in the dis-
tribution. The DAG of a Bayesian network is a minimal I-map, removing
an edge from the graph destroys its I-mapness. A graph is called faithful
if it is an I-map and the independencies that follow from Markov are the
only independencies of the distribution.

Definition 3.10. (Faithfulness) A DAG is called faithful for a distribu-
tion if for all disjoint subsets A, B and C:

A⊥⊥B | C⇔ A⊥B | C (3.14)



3.3. Graphical Causal Models 59

In other words:

Faithfulness requires that each conditional independency in the dis-
tribution corresponds to a d-separation in the graph.

The non-minimal factorization of Fig. 3.4 is not faithful. For exam-
ple, the graph does not represent independency C⊥⊥E | B. Although the
oriented edges intuitively let us think of causal relations, or at least of
an asymmetrical relation, they shouldn’t be interpreted as such. Bayesian
networks make no statements about causality. The theory of Bayesian
networks is not contradicted.

3.3 Graphical Causal Models

This section introduces graphical causal models. The reader may consult
references [Pearl, 2000][Spirtes et al., 1993][Tian and Pearl, 2002][Ship-
ley, 2000] for a complete theoretic elaboration. Causal models intend to
graphically describe the structure of the underlying physical mechanisms
governing a system under study. A physical mechanism is a process that
determines the state of a variable. All variables that influence the outcome
of the process are called causes of the outcome variable. An indirect
cause produces the state of the effect indirectly, through another varia-
ble. If there is no intermediate variable among the known variables, the
cause is said to be a direct cause. A direct cause is a relative concept.
It is relative to the set of variables under consideration, the context. A
direct cause of A becomes an indirect cause of A if a more direct cause is
added. Once the outcomes of the direct causes of A are determined, then
whether or not A = a occurs no longer has anything to do with whether
the events that are indirect causes of A occur. The direct causes screen
off the indirect causes from the effect. The direct causes can be regarded
as input variables of the effect’s generation mechanism. The effect is than
the output of the mechanism. In this interpretation, causality deals with
‘mechanisms’.

In its most general form, the mechanism of Xi can be described by the
Conditional Probability Distribution (CPD) P (Xi | direct causes(Xi)). It
mathematically describes the outcome of the stochastic process by which
the values of Xi are chosen in response to the values of its direct causes.
The mechanism is regarded as a black box, it is described as the output
versus the input.

The description of the direct causes over a set of variable of interest
can be given by a Directed Acyclic Graph (DAG). Each node of the graph
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Figure 3.6: Example Causal Model from the field of Medicin.

represents one of the variables and has incoming edges from all its direct
causes. Together with the CPDs, the model describes a joint probability
distribution:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi | parents(Xi)) (3.15)

This is the ground for the probabilistic account of causality.

Example 3.11 (Medical Causal Model).

Fig. 3.6 shows an example of a causal model in the medical
field. Environmental factors are shown at the top row, dis-
eases at the middle and symptoms at the bottom. The causal
relations among the variables are shown with directed edges.
The occurrence of a disease is influenced by environmental and
other factors. A disease disrupts the normal functioning of
the human body. A disease will usually not be observed di-
rectly, but through observable effects, called symptoms. For
instance, having cancer is more likely when living in a polluted
area or being a regular smoker. The relation is described by
P (cancer | pollution, smoker). The probability of having can-
cer is then calculated as follows:

P (cancer) = P (cancer | pollution, smoker).P (pollution).P (smoker)
(3.16)
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3.3.1 Defining Causality: The Shadow’s Cause

Without formally having defined ‘causality’, everyone intuitively under-
stands the concept of cause and effect. Also in the previous example, it is
clear that environmental factors are direct causes of disease, but only indi-
rect causes of symptoms. Despite our intuitive understanding of causality
and our daily usage of the concept, the formalization of causality has given
rise to a lot of intellectual contention. Since the beginning of science, all
major philosophers, from Aristotle, via Galileo and Newton, to Leibniz and
Descartes, and scientists from different fields, such as Physics, Biology, So-
ciology, Economy to Computer Science, have pondered the open question.
A wide diversity of solutions has been given, but until now no satisfactory
answer has emerged. Read the interesting appendix of [Pearl, 2000] for
an historical overview of the discussions relating to the concept causality.
Williamson [2005] gives an overview and dicussion of the different views
circulating today: be it mechanistic, probabilistic, counterfactual, agency,
manipulability or epistemic.

Not only is there no consensus about the definition of causality, since
the invention of the concept of correlation, the scientific validity and value
of the concept itself was questioned. Causation has to do with production
(the effect happens to be produced by the cause), but, as Hume pointed
out, it is not empirically verifiable that the cause actually produces or en-
genders the effect. It is only verifiable that the (experienced) event called
‘cause’ is invariably associated with or followed by the (experienced) event
called ‘effect’. We only observe events and the stochastic co-occurrence of
events, we do not actually observe which one is responsible for the other.
Pearson concluded that causality was an outdated and useless concept.
The proper goal of science was to simply measure direct experiences (phe-
nomena) and to economically describe them in the form of mathematical
functions; and not try to explain phenomena. If a scientist could predict
the likely values of variable Y after observing the values of variable X,
then he would have done his job. The ‘why’ question is irrelevant, only the
‘how’ question is relevant. Also Bertrand Russell insisted that causality
did not belong to modern science:

“the law of causality . . . like much that passes muster among
philosophers, is a relic of a bygone age, surviving, like the
monarchy, only because it is erroneously supposed to do no
harm.”

It must admitted that he later retreated from this extreme view, recog-
nizing the fundamental role of causality in physics [Druzdzel and Simon,
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1993].
The aim of this work is not to dig deeper into the discussion of what

causality really is. But the reader may surely consider me as a believer
of the concept of ‘causality’. This belief is based on the observations that
causality is part of our everyday language, ànd of our scientific language,
ànd the fact that there is a assymetric component to association. I will
try to understand what causal model theory, as built by Pearl, has to say
about causality.

I just want to add some more flavor to this topic, about how Shipley
paints the problem. According to him, we are unwitting participants in
the nature’s Shadow Play [Shipley, 2000]. These shadows are cast when
the causal processes in nature are intercepted by our measurements. All
that can be directly observed are the consequences of these processes in the
form of complicated patterns of association and independence in the data.
Non-observable causal relations can only be observed through its ‘shadow’:
the correlations it entails. As with shadows, these correlation patterns
are incomplete - and potentially ambiguous - projections of the original
causal processes. We try to infer the underlying causal processes from their
shadow (observational data). Correlations are the way of experimentally
validating hypothesized causal relations.

This points out another discussion: causation clearly implies correla-
tion, but does correlation always imply causation? To Shipley [2000, p. 3]
the answer is invariably yes, barring a few exceptions (“Tuesday follows
Monday”). Any simple correlation between two variables implies an unre-
solved causal structure: one of both variables is the cause of the other or
a third, possibly hidden, variable is the common cause of both. Bunge on
the other hand, sees causation as only one category of general determinism
[Bunge, 1979, p. 17, p. 29].

3.3.2 Interventions

Pearl defines causality formally through interventions, which relies on the
modularity assumption [Pearl, 2000]. A causal model over n variables re-
presents n different physical mechanisms, each responsible for generating
the state of one variable. Hence, a causal model breaks up, for all variables
Xi, into independent components of the form P (Xi | parents(Xi)). Each
component corresponds to a specific physical mechanism. ‘Physical’ im-
plies that the mechanisms are physically separated, besides the variables
there is no physical connection between them. Each component goes to
the ‘heart’ of the data generation mechanism. Thus, mechanisms can vary
independently of one another, a property which implies modularity : ‘Each



3.3. Graphical Causal Models 63

Figure 3.7: Example causal model showing the decomposition (a) and the
effect of an intervention (b).

assignment process remains invariant to possible changes in assignment
processes that govern other variables in the system’.

Modularity results in autonomy : a part of the model can be altered
without affecting the rest of the model. Pearl introduced the do(.) operator
to formally define autonomy. This new mathematical operator describes
the effect of interventions to the model. Interventions are defined as specific
modifications of some factors in the product of the factorization (Eq. 3.15).
An intervention forces a variable to a given state and eliminates the
corresponding factor from the factorization.

Example 3.12 (Interventions).

Modularity is shown in Fig. 3.7(a). Fig. 3.7(b) shows how
setting X3 through an intervention results in a new model with
a fixed state of X3.

This results in the following definition [Pearl, 2000, p. 23]:

Definition 3.13 (Graphical Causal Model). Let P (v) be a probability dis-
tribution on a set V of variables, and let P (v | do(x)) denote the distri-
bution resulting from the intervention do(X = x) that sets a subset X of
variables to constants x. A DAG G is said to be a graphical causal model
compatible with P (v | do(x)) if and only if the following three conditions
hold for every X ⊆ V:

1. G is an independence map of P (v | do(x));
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Figure 3.8: Digital Circuit, a causal model used in engineering.

2. P (xi | do(x))=1 for all Xi ∈ X whenever xi is consistent with X = x;

3. P (vi | do(x), pai) = P (xi | pai) for all Vi /∈ X whenever pai is
consistent with X = x.

A causal model not only enables the prediction of a state of unknown
variables (like Bayesian networks), but also the prediction of the effect
of local changes made to the system. Causality inherently provides au-
tonomous components that can be reused when parts of the systems are
used in different contexts. They are therefore extremely useful in enginee-
ring or decision-making, as in politics or economics. In fact, models used
in engineering are implicitly based on the properties of causality. This is
shown by the following example.

Example 3.14 (Digital Circuit).

Consider the model of a digital circuit shown in Fig. 3.8, the
scheme makes it possible to predict the output when the input
nodes are set to a certain value. But it also allows reasoning
on how parts of the component should be changed to attain a
certain desired transfer function.

We can conclude:

Understanding the causal structure enables the prediction of the
effects of changes to the system.
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3.3.3 Causally Interpreted Bayesian Networks

Pearl links causality with probability theory by showing its correspondence
to Bayesian networks. The clue is that a causal model by its structure
implies conditional independencies, which are independent of the precise
parameterization of the CPDs. These independencies allow us to learn the
causal structure of a system from observation. The Causal Markov Con-
dition describes the independencies that follow from a causal structure:
each variable is probabilistically independent from all its non-descendants
conditional on its direct causes. The condition has two aspects: a proba-
bilistic and a causal one.

The probabilistic aspect of the Causal Markov condition is similar to
the Markov condition. A causal model can therefore be regarded a Baye-
sian network in which all edges are interpreted as representing causal in-
fluences between the corresponding variables. It combines components
P (Xi | parents(Xi)) of all variables Xi. A causal model therefore implies
a joint distribution:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi | parents(Xi)) (3.17)

The correspondence to a joint distribution and the validity of the Markov
condition results in a close connection between causal and probabilistic de-
pendence [Spohn, 2001]. The theory can thus be regarded as an extension
to the theory of Bayesian networks.

The extension is based on the causal interpretation of the edges of a
Bayesian network. A graphical causal model is therefore also referred to as
a ‘causally interpreted Bayesian network’. The causal interpretation repre-
sents the second aspect of the Causal Markov Condition: every probabilistic
dependence has a causal explanation. This is known as the Principle of the
Common Cause [Williamson, 2005].

Difference between Bayesian Networks and Causal Models

The basic difference between both is that Bayesian networks offer dense
descriptions of probability distributions, while causal models intend to
say something about the system under study. Everything that holds for
Bayesian networks holds for graphical causal models. Yet, causal model
add the following:

1. A causal model is a unique model describing the mechanisms of the
system. Multiple Bayesian networks exists though, modeling the
same system, but based on a different variable ordering.
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2. Through the knowledge of the underlying mechanisms, one under-
stands how a system is built. This makes it possible to predict the
effect of changes to the system.

3. Predicting the probabilities of unknown variables in the light of the
available information is possible with both. Bayesian networks cor-
rectly model systems quantitatively, but not qualitatively. Causal
models describe all conditional independencies that follow from the
system’s structure.

3.3.4 Invalidity of the Markov Network Representation

As we have seen in Section 3.1.5, Markov networks cannot represent v-
structures. If we want a model to be an I-map, i.e. represent only
conditional independencies that are present in distribution, edges have
to be added for any v-structure. Causal model X → Z ← Y implies
the dependency of X 2Y | Z and X⊥⊥Y . Markov network X − Z − Y ,
however, implies X⊥⊥Y | Z (and X 2Y ). To prevent this false indepen-
dency, we should connect X and Y . The medical model of Fig. 3.6 can
only be represented by a Markov network that is an I-map by adding
edges, as shown in Fig. 3.9. The causal relations are shown by thicker
lines. The problem is that the relations in this model do not correspond
to any real direct relation. Consider the edge between V isited Asia
and Pollution. This edge had to be added to prevent independency
V isited Asia⊥⊥Pollution | Positive X − ray results. Thus the relation
between both stems from variable Positive X − ray results. The resulted
Markov network is then an I-map, but can never be faithful.

The moral is that a wrong modeling framework, which wrongly models
the regularities (here: the conditional independencies), results in models
far from reality.

3.4 Causal Structure Learning Algorithms

The goal of causal inference algorithms is to learn the causal structure
of a system based on observational data. Basically, there are two types:
constraint-based and scoring-based. An overview is given by Korb and
Nicholson [2003].

Scoring-based algorithms [Korb and Nicholson, 2003] are an optimized
search through the set of all possible models, which tries to find the minimal
model that best describes the data. Each model is given a score that is
a trade-off between model complexity and goodness-of-fit. An objective



3.4. Causal Structure Learning Algorithms 67

Figure 3.9: Medical model represented by a Markov network that is an
I-map.

score is attained by using the MDL or MML approach [Comley and Dowe,
2003][Comley and Dowe, 2005][Lam and Bacchus, 1994].

The constraint-based learning algorithms are based on the pioneering
work of Spirtes, Glymour and Scheines [Spirtes et al., 1993]. The standard
algorithm is the PC algorithm. It is implemented and integrated in the
TETRAD tool for causal analysis, developed by the Dept. of Philosophy
of Carnegie Mellon University and freely available [Spirtes et al.].

3.4.1 The PC Algorithm

The graph is constructed in two steps. The first step, called adjacency
search, learns the undirected graph. The second step tries to orient the
edges. The result of the algorithm is a set of observationally indistinguish-
able models, the so-called Markov-equivalence class, and is proved to be
correct for distributions that are faithful to some directed acyclic graph.

The algorithm takes background knowledge into account, prior belief
about whether one variable directly influences another. The user can spe-
cify edges that are required or forbidden and can put constraints on ori-
entations. If prior belief forbids adjacency, the algorithm need not bother
to test for that adjacency. If prior belief requires that there be a direct
influence of one variable on another, the corresponding directed edge is
imposed. During the algorithm, prior belief is assumed to override the
results of unconstrained search.

The construction of the undirected graph, the first step, is based on the
property that two nodes are adjacent if they remain dependent by conditio-
ning on every set of nodes that does not include both nodes. The algorithm
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Algorithm 3.1 Steps of the PC causal structure learning algorithm
Input: data set, independence test, background knowledge
Output: partially oriented, acyclic graph

1. Part 1: determining adjacency

(a) remove edges from knowledge

(b) correlation search

(c) conditional independencies: gradually increase the size of the
conditioning set

2. Part 2: determining orientation of the edges

(a) orientation from knowledge

(b) look for v-structures

(c) orient for non-v-structures

starts with a completely connected, undirected graph. There is an edge
between every pair of nodes. It removes edges for each independency that
is found. The number of nodes in the conditioning set is gradually in-
creased up to a certain maximal number, called the depth of the search.
If for every pair A, B, one should test on all subsets of V \ {X,Y }, this
results in an exponential number of tests to perform. One can however
limit the number of subsets to be tested. For detecting adjacency, it is
sufficient to test for conditional independencies of A and B given subsets
of variables adjacent to A and subsets of variables adjacent to B that are
on undirected paths between A and B. It relies on the following property
[Spirtes et al., 1993].

Lemma 3.15. If a distribution P over variables V is faithful to a Bayesian
network with DAG G, and X,Y ∈ V , then:
If X and Y are d-separated by any subset of V \ X,Y , then they are d-
separated either by Parents(X) or Parents(Y )

The orientation step is based on the identification of v-structures, for
which two nodes are independent, but become dependent conditional on
a third node. In that case, both nodes are causes of the third node and
are oriented towards it. Recall that for all three other possible orienta-
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Figure 3.10: A simple causal model.

Figure 3.11: Execution of the PC algorithm when learning the model of
Fig. 3.10.

tions of the three nodes the opposite is true, the two nodes are initially
dependent, but become independent by conditioning on the third node.
Next, when all v-structures are identified, some edges may be directed if
an opposite orientation would result in a v-structure. In absence of enough
v-structures, it might be that there is not enough information to direct all
edges. The orientations of these edges are left undecided. This results in
a partially oriented, acyclic graph, representing the Markov equivalence
class of graphs that are representative for the data.

Example 3.16 (Learning the causal structure).
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Take data that is representative for the model of Fig. 3.10. The
results of the different steps while executing the PC algorithm
are depicted in Fig. 3.11. The algorithm starts with a com-
pletely connected undirected graph (a). At first it will remove
edge A−D since both variables appear to be marginally inde-
pendent (b). In the next step, one conditions on one variable
for all pairs of variables that are still adjacent. Two indepen-
dencies imply the removal of edges A−C and A−D (c). The
first part of the algorithms ends with an undirected graph in
which all adjacent variables are directly related (d). During
the orientation step, v-structure A→ B ← D is detected. This
results in the orientation of A−B and A−D, both towards B
(e). Finally, the B−C relation can be oriented as B → C, since
an opposite orientation would lead to v-structure A→ B ← C
which is not confirmed by the independencies (f). The result
corresponds to the expected model.

3.4.2 Assumptions

The validity of the PC algorithm is based on the minimality principle,
the causal Markov condition and the faithfulness property [Spirtes et al.,
1993]. The first principle guarantees minimality of the model, the sec-
ond that correlation implies causation and the third that all conditional
independencies follow from the causal structure. Spirtes, Glymour and
Scheines rely in their work on causal models on an axiomatization of these
3 conditions.

The TETRAD manual states that under 7 assumptions the algorithm
will find the correct equivalence class of indistinguishable causal models
[Scheines et al., 1996] (see also [Spirtes et al., 1993, p. 80]):

1. The correctness of the background knowledge input to the algorithm.

2. Whether the Markov Condition holds. E.g., it is violated in mixtures
of populations in which causal connections are in opposite directions
for different subpopulations.

3. Whether the Faithfulness Condition holds.

4. Whether the distributional assumptions made by the statistical tests
hold. One assumption is that the experiment should be typical, i.e.
random. We will choose the input parameters randomly from a uni-
form distribution.
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5. The power of the statistical tests against alternatives.

6. The significance level used in the statistical tests.

7. The PC algorithm requires causal sufficiency, ie. that all common
causes should be known: variables that are the direct cause of at least
two variables. It must be noted that more sophisticated learning
algorithms exist that are capable of detecting latent common causes.

TETRAD does not offer a formal mechanism for combining these factors
into a score for the reliability of the output. It also does not detect whether
one of the assumptions, such as faithfulness, is not valid.

3.4.3 Complexity

When analyzing n variables and a depth of two the worst-case complexity
of the algorithm is O(ndepth). In practice, the complexity will be limited to
O(n3). The first step of the algorithm, the construction of the undirected
graph is clearly the most computation-intensive part. First, when checking
the associations, n × (n − 1) independencies have to be checked. When
conditioning on one variable, n× e0× 2e0 independencies have to checked,
where e0 is the average number of remaining edges of a node. e0 will in
most cases be proportional to n. When conditioning on two variables,
n × e1 × 2(e1 × (e1 − 1)) independencies have to be checked, where e1 is
the average number of remaining edges after the previous independency
tests. This value can be proportional to n, but in practice this will be a
constant quasi-independent from n. If we assume that the average number
of edges of a node of the faithful graph is independent from n. In that case
the independency tests when conditioned on 1 variable will have removed
most of the edges between indirectly related nodes. Only the ones remain
that are between nodes that are related through at least two different causal
paths. The number of such nodes can be assumed to be independent of n
in most cases.

The algorithm is thus not very scalable. An increase of n leads to a
polynomial increase of the algorithm’s runtime. A solution for this problem
is the insertion of background knowledge or the use of constraint-based
algorithms.

3.5 Summary of Chapter

The intent of this chapter was to offer insight into the principles that form
the basis for the graphical causal model theory as conceived by Pearl et al.,
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and the accompanying learning algorithms, developed by Spirtes, Glymour
and Scheines. In the second part of this work causal models will be used
as a representation scheme for modeling performance and causal inference
to learn them from experimental data.

The fundamental idea of the theory is that a system’s causal struc-
ture implies conditional independencies and that these, when detected in
experimental data, allow us to infer the causal structure. The learning of
causal models is based on the independencies following from Markov chains
(through the Markov property) and v-structures. The Markov property
tells us how to make the difference between direct and indirect relations,
whereas v-structures let us determine the causal orientation of the rela-
tions. Causal models are closely related to Bayesian networks, since they
offer, besides a dense description of a joint probability distribution, an
explicit representation of conditional independencies. The independencies
that follow from a Bayesian network are given by the Markov condition.
D-separation offers a graphical criterion for retrieving these independen-
cies from the graph of the Bayesian network. Multiple Bayesian networks
can exist though, based on a different factorization variable ordering. Only
those with the least number of edges can come into consideration for the
correct causal model. This will be further explained in the next chapter.

But what does the knowledge of causal relations learn us? What makes
the difference between A→ B and B → A? Nothing when simply observ-
ing both variables. Asymmetrical causal relations result in symmetrical
correlations. The answer lies in the effect of changes to the system. Pearl
defined changes by interventions: forcing variable A to state a is denoted
as do(A = a) with the do operator. Here the asymmetry comes into play,
an intervention on A will only influence the state of B in case that A is
a cause of B. These considerations underline Shipley’s metaphor of the
shadow’s cause; causality only becomes tangible through its consequences.

As a young, curious, passionate scientist, when getting to know Pearl’s
work, I became intrigued by the highly debated, yet controversial concept
of causality. Especially given the absence of a satisfactory scientific treat-
ment of such an intuitive, deep concept. I was completely swept away by
the brightness and beauty of Pearl’s theory. Yet it must be admitted, the
theory receives a lot of criticism. Is it all there is to causality? Do causal
models really describe mechanisms? Even more suspicion exists about the
possibility of learning causal models from data, about the plausibility of the
assumptions. So despite my enormous sympathy for the theory, I should
prove my critical attitude. The next chapter is devoted to my analysis of
the subject with the principles discussed in the previous chapter.



Chapter 4

The Meaningful Information
of Probability Distributions

BEFORE extending the causal learning algorithms and putting them
into practice, I will analyze the interpretation and validity of causal

inference with the general principles of inductive inference discussed in
Chapter 2. Kolmogorov complexity’s approach to inference must be un-
derstood as finding the regularities of the data. The most common ap-
plication of Kolmogorov complexity is to look for the minimum model in
a set of models, such as employed by MDL and MML (Section 2.4.2). I
propose to use a slightly different approach. For analyzing the validity of
causal inference I propose to not stick to an a priori chosen model class,
but rather to search actively for the regularities appearing in the data. The
choice of a model class implies that only a limited number of regularities
are put into consideration. But what if some regularities of the data are
overlooked? What if the real minimal model does not belong to the chosen
set?

Causal inference searches the minimal Bayesian network in the set of
all possible Bayesian networks. The conditional independencies are the re-
gularities at hand, they constitute the meaningful information. The causal
interpretation relies on the fact that the minimal model tells us something
about the causal structure of the system under study. The thesis advo-
cated in this chapter is that the existence of other regularities strongly
indicates that this interpretation might be incorrect.

The validity of causal inference is fiercely criticized, especially the
causal interpretation of the Directed Acyclic Graph (DAG) and the va-
lidity of faithfulness [Freedman and Humphreys, 1999, Cartwright, 2001,
Williamson, 2005]. It is questioned whether the causal model indeed des-
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Figure 4.1: Causal model in which A is independent from D.

cribes the mechanisms of the system. And if this can be learned from
observational data alone. The counterexamples suggest that we cannot
rely on faithfulness. Pearl uses stability as the main motivation for the
faithfulness of causal models [Pearl, 2000, p. 48]. Consider the model of
Fig. 4.1. In general, one expects A to depend upon D. A and D are inde-
pendent only if the stochastic parameterization is such that the influences
via paths A → B → D and A → C → D cancel out exactly. This system
is called unstable because a small change in the parameterization results
in a dependency. The unhappy balancing act is a measure zero event, the
probability of such a coincidence can therefore be regarded as nearly zero.

This chapter attempts to contribute to the discussion about these ob-
jections by applying the theory of Kolmogorov Minimal Sufficient Statistic
(KMSS), discussed in Chapter 2. The first section shows how conditional
independencies compress the description of a probability distribution and
that the DAG of a causal model is the KMSS in absence of additional
regularities. The graph is then faithful, it explains all independencies.
Next, I argue that the causal interpretation of a Bayesian network relies
on a decomposition of the model into smaller, independent components,
one for each Conditional Probability Distribution (CPD). The validity of
causal inference can then be studied by (a) the presence of regularities
or independencies not described by the causal model and (b) whether the
decomposition of the model corresponds with the mechanisms of the sys-
tem. Several counterexamples are analyzed based on the answers to both
questions. The chapter concludes with a survey of the different aspects of
the faithfulness property.

4.1 Minimal Description of Distributions

This section investigates the Kolmogorov Minimal Sufficient Statistic of
probability distributions and, more specifically, in which cases the Directed
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Acyclic Graph (DAG) of a Bayesian network contains all meaningful in-
formation. The conditional independencies are the regularities that allow
compression of distributions and the construction of minimal models.

4.1.1 Compression of Distributions

Recall that a joint distribution can be factorized relative to a variable
ordering (X1, . . . , Xn) as follows:

P (X1, . . . , Xn) = P (X1).
n∏
i=2

P (Xi | X1, . . . , Xi−1) (4.1)

From the theory of Bayesian networks (Section 3.2), we know that a fac-
torization is reduced by conditional independencies of the following form:

P (Xi | X1 . . . Xi−1) = P (Xi | X1 . . . Xj−1, Xj+1 . . . Xi−1) (4.2)

Formally, Xj is obsolete in the factor of Xi if Xj becomes conditionally in-
dependent from Xi by conditioning on the rest of the set. The factorization
leads to P (X1 . . . Xn) =

∏
CPDi, with CPDi the conditional probability

distribution of variable Xi. The descriptive size of the CPDs is determined
by the number of variables in the conditioning sets. The total number of
conditioning variables thus defines the shortest factorization. A two-part
description is then:

descr(P (X1 . . . Xn)) = {parents(X1) . . . parents(Xn)}+ {CPD1 . . . CPDn}
(4.3)

Note that the parents’ lists can be described very compact and correspond
to the description of a DAG. The description of a random DAG defined
over n nodes requires n/2.(n− 1) bits.

The following theorems show that the first part offers the minimal
model if the CPDs are random and unrelated.

Theorem 4.1. The parents’ lists, {parents(X1) . . . parents(Xn)}, in the
two-part code given by Eq. 4.3 contain meaningful information of a proba-
bility distribution.

Proof. The description of a non-reduced CPDi requires
(|Xi,dom| − 1). |X1,dom| . |Xi−1,dom| .d bits with |Xk,dom| the size of the do-
main of Xk and d the precision in bits to which each probability is descri-
bed1. Every variable Xj that can be eliminated from the conditioning set

1The proof is given for a uniform prior over the parameterization of the distribution.
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of Xi results in a reduction of the descriptive complexity by

(|Xi,dom| − 1). |X1,dom| . . . |Xj−1,dom|
.(|Xj,dom| − 1). |Xj+1,dom| . . . |Xi−1,dom| .d (4.4)

The information that variable Xj can be eliminated takes no more than
log n bits. This is almost always lower than the above complexity re-
duction, except when d is taken absurdly small. It is therefore useful to
describe the variables taking part in the CPDs, the parents’ lists. Every
bit of the parents’ lists reduces the descriptive complexity by more than
one bit and, hence, contains meaningful information.

Theorem 4.2. If the two-part code description of a probability distribu-
tion, given by Eq. 4.3, results in an incompressible string, the first part is
the Kolmogorov minimal sufficient statistic.

Proof. If a more compact description of the distribution would exist, the
two-part description would contain redundant bits. Theorem 4.1 showed
that the first part contains meaningful information. By hypothesizing in-
compressibility of the whole description, the second part of the description,
consisting of the CPDs, is assumed to be incompressible. The CPDs thus
do not contain meaningful information. Hence, the first part, described
minimally, is the Kolmogorov minimal sufficient statistic.

The distribution decomposes quasi-uniquely2 and minimally into the
CPDs, which, in absence of further knowledge, may be assumed to be
atomic and independent. The decomposition thus offers a canonical repre-
sentation. The system under study is decomposed into independent com-
ponents that are only connected via the variables.

4.1.2 Minimality of Causal Models

The following two theorems show that the causal model corresponding
to the minimal factorization is the KMSS and faithful if its DAG and
CPDs are random and unrelated. Then, minimality, faithfulness and the
Markov Condition are fulfilled. They make up the three conditions for
causal inference (Section 3.4.2), except for the causal interpretation of the
Causal Markov Condition, which is discussed in the next section.

2There can be multiple minimal factorizations, which are closely related though. I
come back to this in the next section.
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Theorem 4.3. If a faithful Bayesian network exists for a distribution, it
is the minimal factorization.

Proof. Oliver and Smith defined the conditions for sound transformations
of Bayesian networks, where sound means that the transformation does
not introduce extraneous independencies [Oliver and Smith, 1990]. No
edge removal is permitted, only reorientation and addition of edges. Ad-
ditionally, if a reorientation destroys a v-structure or creates a new one,
an edge should be added connecting the common parents in the former or
in the newly created v-structure. Such transformations however eliminate
some independencies represented by the original graph. Assume the exis-
tence of a Bayesian network A based on a different variable ordering that
has fewer edges than the faithful network. It must be possible to transform
A into the faithful one. A has fewer edges, so edges must be added by the
transformation, and this destroys independencies. But network A cannot
represent more independencies, because the faithful network represents all
independencies. The assumption leads to a contradiction.

Note that the inverse is not true, the minimal factorization is not always
faithful. The constraint-based learning algorithms assume the existence of
a faithful Bayesian network. The theorem showed that this is then the
minimal factorization. So, the learning algorithms are assumed to return
the minimal Bayesian networks.

Theorem 4.4. A Bayesian network is faithful if the set of conditional
probability distributions (CPDs) is incompressible (the CPDs are random
and unrelated).

Proof. Recall that a Bayesian network is a factorization that is edge-
minimal. This means that for each parent pai,j of variable Xi:

P (Xi | pai,1, . . . pai,j , . . . pai,k)
6=P (Xi | pai,1, . . . pai,j−1, pai,j+1, . . . pai,k) (4.5)

Variables cannot be eliminated from the CPDs of a Bayesian network. The
proof will show that any two variables that are d-connected are dependent,
unless the probabilities of the CPDs are related. We have to consider the
following possibilities. The two variables can be adjacent (a), related by a
Markov chain (b) 3, a v-structure (c), a combination of both or connected
by multiple paths (d).

3Recall that a Markov chain is a path not containing v-structures.



78 Chapter 4. The Meaningful Information of Probability Distributions

Figure 4.2: Bayesian network based on variable ordering (A, B, C, E, D)
and five independencies.

First I prove that a variable marginally depends on each of its adjacent
variables (a). Consider nodes D and E of the Bayesian network of Fig. 4.2.
To avoid overloading the proof, I will demonstrate that P (D | E) 6= P (D),
but the proof can easily be generalized. The first term can be written as:

P (D | E) = P (D | E, c1).P (c1)
+ P (D | E, c2).P (c2) + . . . (4.6)

with c1 and c2 ∈ Cdom. C is also a parent of D, thus, by Eq. 4.5, there
are at least two values of Cdom for which P (D | E, ci) 6= P (D | E) 4. Take
c1 and c2 being such values, thus P (D | E, c1) 6= P (D | E, c2). There are
also at least 2 such values of Edom, take e1 and e2. Eq. 4.6 should hold for
all values of E and equal to P (D) to get an independency. This results in
the following relation among the probabilities:

P (D | e1, c1).P (c1) + P (D | e1, c2).P (c2)
= P (D | e2, c1).P (c1) + P (D | e2, c2).P (c2) (4.7)

Note that the equation can not be reduced, the conditional probabilities
are not equal to P (D) nor to each other.

Next, by the same arguments it can be proven that variables connected
by a Markov chain are by default dependent (b). Take A → B → E in
Fig. 4.2, independence of A and E requires that

P (E | a) =
∑
b∈B

P (E | b).P (b | a) = P (E) ∀a ∈ A. (4.8)

and this also results in a regularity among the CPDs.
4P (D | E) is a weighted average of P (D | E, C). If one probability P (D | E, c1) is

different than this average, let’s say higher, than there must be at least one value lower
than the average, thus different.
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Figure 4.3: Factorization based on variable ordering (A, B, C, D, E) and
reduction by three independencies.

In a v-structure, both causes are dependent when conditioned on their
common effect (c), for C → D ← E, P (D | C,E) 6= P (D | E) is true
by Eq. 4.5. Finally, if there are multiple unblocked paths connecting two
variables, then independence of both variables implies a regularity, too (d).
Take A and D in Fig. 4.2:

P (D | A)

=
∑
b∈B

∑
c∈C

∑
e∈E

P (D | c, e).P (c | A).P (e | b).P (b | A). (4.9)

Note that P (c, e | A) = P (c | A).P (e | A) follows from the independence
of C and E given A. All factors from the equation satisfy Eq. 4.5, so that,
again, the equation only equals to P (D) if there is a relation among the
CPDs.

Table 4.1 gives an example parameterization of P (D | E,C) in the
model of Fig. 4.2 for which D and E become independent, assuming that
P (C = 0) = P (C = 1) = 0.5. The regularity of Eq. 4.7 applies for the
distribution.

E C P (D | C,E)
0 0 0.4
0 1 0.3
1 0 0.2
1 1 0.5

Table 4.1: Example of a CPD for which P (D | E) = P (D), assuming that
P (C = 0) = P (C = 1) = 0.5.

A distribution can be described by several distinct Bayesian networks,
which are based on different variable orderings (see subsection 3.2.2). The
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networks build with a non-optimal variable ordering are however not mini-
mal, the CPDs are related. Take the distribution described by the Bayesian
network of Fig. 4.2, E⊥⊥C|B holds. But this independency does not follow
from the graph of Fig. 4.3. The graph is constructed by simplifying the
factorization based on variable ordering (A, B, C, D, E) by the three given
conditional independencies. It follows from the exact cancellation of the
influences through the paths C → E and C → D → E, given by equation:

P (E | B,C) =
∑
d∈D

P (E | B,C, d).P (d | B,C) = P (E | B). (4.10)

Bayesian networks not based on a minimal factorization are always com-
pressible, by the regularities among the CPDs that follow from the inde-
pendencies not represented by the graph.

The existence of a unique faithful Bayesian network is not always cer-
tain, though. Multiple faithful models can exist for a distribution. These
models represent the same set of independencies and are therefore statis-
tically indistinguishable. They define a Markov-equivalence class. It is
proved that they share the same v-structures and only differ in the orien-
tation of some edges [Pearl, 2000]. The corresponding factorizations have
the same number of conditioning variables, thus all have the same com-
plexity. The observations do not give us information to decide on the cor-
rect model, but we have demarcated a set of closely related models which
contains the correct model. The class can be described by a Partially Di-
rected Acyclic Graph (PDAG), in which some edges are left unoriented.
The constraint-based learning algorithms are able to learn this equivalence
class, which can be represented by a graph in which some edges are not
oriented. Thus, although the model is not unique, we know exactly which
parts of the model are undecided.

On the other hand, we want to know the conditions under which a
joint probability distribution can be represented by a faithful model. In
[Pearl, 1988, p. 128], Pearl developed a set of necessary, but not sufficient,
conditions. But he doubts that there exists an exhaustive list of conditions
that can guarantee faithfulness [Pearl, 1988, p. 131]. The non-existence
of such a list is approved by the theorem. Any dependency among non-
adjacent variables that follows from the Markov condition can be turned
into an independency by properly chosen parameterization the CPDs.
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Figure 4.4: Decomposition of the causal model of Fig. 4.2 into independent
components.

4.2 Correspondence of Causal Component to De-
composition

The causal interpretation of Pearl is defined by the capacity to predict
from the causal model the effect of changes to the system. Where changes
are defined as interventions, atomic operations that remove the CPD of
a specific variable and set its state to a given value. The correctness of
the mutilated model relies on the modularity assumption, a subsystem can
be replaced by another without affecting the rest of the system. Theorem
4.2 showed that if the minimal factorization results in an incompressible
description, the description corresponds to a unique decomposition of the
distribution into independent components, the CPDs. Fig. 4.4 shows
the decomposition for the model of Fig. 4.2. Each variable gets a CPD
attributed, except input variable A. The canonical decomposition suggests
modularity and makes it plausible that mechanisms may be replaced. Then
- in absence of other regularities, background knowledge, experiments with
interventions or other information - the most obvious hypothesis is that
each CPD represents an independent part of reality, a physical mechanism.

From this we may conclude that the causal interpretation of the model
is correct as long as we define causality in terms of interventions. The mo-
dularity of the decomposition captures Pearl’s interventions. An interven-
tion, which Pearl considers an atomic operation, can be seen as replacing
one specific CPD with a CPD that allows perfect control over the variable
(for setting it to a certain state).

The claim of this dissertation does not suggest that decomposition is all
there is to causality. The hypothesis I advocate is that it reflects the causal
component of graphical causal models. The consequences of causality for
causal models rely on this decomposition. Just as the interventions do not
give a definition of causality, but describe the benefits of understanding
the structure of a system’s underlying mechanisms.
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4.2.1 A Distributed d-separation Algorithm

To prove the hypothesis, it should be verified that all aspects of causal
model theory are conform the CPD decomposition. I will demonstrate
that independencies following from the Markov condition (given by the
d-separation criterion defined in section 3.2.2) can be determined by a dis-
tributed algorithm that runs on each CPD component independently, with-
out global synchronization. The components only communicate through
the variables.

The subtlety of d-separation lies in the v-structures. Knowing some-
thing about the state of one cause of X tells us nothing about the state of
the other causes, unless X is known or something is known about X via
its effects. This happens ‘within’ a CPD. This also explains why, contrary
to what a graph suggests, the edges are not the atomic elements of the
systems. A decomposition of the model along its edges would is not able
to explain the behavior of a v-structure.

Algorithm 4.1 Distributed algorithm for the conditional information
Input:
Output: To be executed by each component:

1. If the effect node is in conditioning set, set all cause nodes to true.

2. If effect node is set to true:

• set infoThruEffects to true, and

• set all cause nodes to true.

The distributed algorithm for determining X 2Y | Z will run on each
component independently. Each component only has access to the cause
nodes and the single effect node. Each node has one boolean that can be
read or set by the components, and is initially set to false. Each component
keeps also track of one boolean, infoThruEffects, initially set to false.
One first runs the preparatory step defined by Algorithm 4.1. It spreads the
necessary information about the conditional variables. Since they represent
the a priori information, this step may be executed in advance and can be
expected to be completed before running the actual algorithm. After that,
variable X is set to true and Algorithm 4.2 is executed. When finished,
all nodes that became true depend on X. By the acyclicity of the graph,
both algorithms stop.

Other algorithms, like for inference or identifiability, rely on d-separation.
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Algorithm 4.2 Distributed algorithm for determining dependence on X

Input:
Output: To be executed by each component:

1. If the effect node is X, set effect node and all cause nodes to true.

2. If the effect node is set to true by another component and is not
in conditioning set: set all cause nodes to true.

3. If one of the cause nodes is set to true by another component:

• if the effect node is not in conditioning set, set effect node to
true; and

• if the effect node is in conditioning set or infoThruEffects
is true: set all other cause nodes to true.

One can thus expect that they can also be written as distributed algo-
rithms.

The causal decomposition can be said to rely on a form of reductionism.

4.2.2 Reductionism

According to the reductionist view, the world can be studied in parts.
Parts can be isolated and analyzed independently to the rest of the world.
Understanding of the parts helps us to understand the whole.

The antipole is holism, a principle which was concisely summarized by
Aristotle in the Metaphysics:

“The whole is more than the sum of its part”.

Or, as Wikipedia puts it 5, Holism is the idea that all the properties of
a given system (biological, chemical, social, economic, mental, linguistic,
etc.) cannot be determined or explained by the sum of its component parts
alone. Instead, the system as a whole determines in an important way how
the parts behave.

Example 4.5 (Traffic Jam).

Consider the typical accelerating and decelerating behavior of
traffic during traffic jams, also called the accordion effect. A

5http://en.wikipedia.org/wiki/Holism

http://en.wikipedia.org/wiki/Holism
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traffic jam, for example, contains patterns of behavior which
cannot be reduced to the behavior of an individual car. This
indeed contradicts strong reductionism, according to which a
system can be understood by understanding its constituent
parts solely. A simple addition of the parts’ behavior does
not give the overall system’s behavior. Weaker forms of reduc-
tionism admit that the interactions between the parts should
be taken into account too. That ‘the whole is more than the
sum of its parts’ is due to the interactions of the parts. In
order to understand the behavior of the whole, a synthesis of
the parts together with their interactions should be made. In-
teractions of subsystems can still be studied independently of
the rest. For understanding the accordion effect of traffic jams,
one should consider how a car reacts to the behavior of the car
in front of him, making him to break or accelerate. Still, this
can be studied independently of the specific street or country
in which the traffic jam occurs. A relative simple model of an
individual car can be designed which includes its interaction
with other cars. Using this model results in traffic simulations
that come close to reality.

In the weaker form, reductionism holds, subsystems and their interac-
tions can be studied independently, abstractions can be made. This does
not exclude that complex situations exist in which it is extremely diffi-
cult to know all parts and interactions that participate, such as in social
sciences.

Ackoff [1974, p. 8] gives a viewpoint that goes even further. According
to him

“reductionism is a doctrine that maintains that all objects and
events, their properties, and our experience and knowledge of
them are made up of ultimate elements, indivisible parts.”

It is not only that the world can be studied in parts, but, even more, the
world exists of unique, independent parts. By this principle, one should
endeavor in finding the ultimate elements when studying systems or phe-
nomena. Systems or situations can be understood by combining the inde-
pendent mechanisms. The minimal, unique and independent mechanisms
form a canonical decomposition of the system under study. Intuitively
I’m willing to go along with this point of view. Either way, it is difficult
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to imagine how a ‘holist’ world, in which mechanisms cannot stand inde-
pendently, would look like, or how it needs to be studied. Opponents of
reductionism do not come up with strong answers or convincing examples.

4.3 Validity of Causal Inference

I demonstrated that the minimal Bayesian network is (a) the KMSS in
absence of regularities in or among the CPDs and (b) the causal interpre-
tation relies on the CPD decomposition. This section intends to contribute
to the discussion about the validity of the causal inference algorithms by
analyzing counterexamples with respect to both statements:

• (a) The minimality of a causal model is challenged by the presence of
regularities not incorporated into the model. Conditional indepen-
dencies are a specific kind of such regularities. Unfaithfulness is an
indication of non-modeled regularities. The question is then whether
these regularities imply that the causal interpretation is incorrect.

• (b) The correctness of the decomposition is challenged by physical
mechanisms that are responsible for producing the state of multi-
ple variables or the presence of global mechanisms controlling other
mechanisms. The question is then whether one can infer the right
mechanisms from the regularities not represented by the minimal
Bayesian network.

conform global wrong
reality mechanism decomposition

minimal model (A) (B) (C)
unfaithful model (3) (6) (2) (7) (5) (8)

non-modeled regularities (1) (4)

Table 4.2: Classification of counterexamples along 2 axes: whether there
are independencies or other regularities not captured by the model and
whether the CPDs correspond to real physical mechanisms.

Table 2 classifies the counterexamples according to both criteria. Case
(A) happens when the inferred causal model is minimal and conform rea-
lity. While in cases (B) and (C) minimality does not imply that the model
is correct. This happens when reality is more complex than suggested by
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Figure 4.5: Causal model in which A is independent from D.

the complexity of the observations. Occam’s razor can never guarantee cor-
rectness, but must be regarded as the most effective strategy for inductive
inference.

Counterexample 1. The system exhibits additional regularities, but
remains faithful and the decomposition is correct. A well-known example
is when the description of individual CPDs can be compressed. This regu-
larity is called local structure [Boutilier et al., 1996] and appears ‘inside a
component’.

Counterexample 2. The most-known example of unfaithfulness is
when in the model of Fig. 4.5 A and D appear to be independent [Spirtes
et al., 1993]. This happens when the influences along the paths A→ B →
D and A → C → D exactly balance, so that they cancel each other out
and the net effect results in an independence. The independence of A and
D is, however, not ‘expected’ by the causal model. This balancing act can
give an indication of a global mechanism, such as evolution, controlling the
mechanisms such that the parameters are calibrated until they neutralize
[Korb and Nyberg, 2006].

Counterexample 3. Distributions with deterministic relations can
not be represented by a faithful graph [Spirtes et al., 1993]. They will be
thoroughly discussed in the next chapter. I show that it is related to the
violation of the intersection condition, one of the graphoid properties that
Pearl imposes on a distribution in the elaboration of causal theory and its
algorithms [Pearl, 1988](Section 3.1.4). The solution I will propose is to
incorporate the information about deterministic relations in an augmented
causal model. So that the model again incorporates all regularities from
the data. Next I will characterize the conditional independencies following
from deterministic relations. The d-separation criterion is extended so
that it can be used to retrieve all conditional independencies from the
model. In such way, the faithfulness of the model can be reestablished.
Deterministic relations correspond to non-random CPDs, but appear in
nature. The CPD decomposition is still correct here.
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Figure 4.6: Particle with state S decays into 2 parts with momenta M1

and M2. (a) Represented as one mechanism and by a (b) faithful model.

Counterexample 4. For some systems, the CPDs do not represent
independent mechanisms. Take the example of particle decay, one of the
counterexamples of the Causal Markov Condition reported by Williamson
[2005, p. 55], taken from Fraassen [1980, p. 29]:

Suppose that a particle decays into 2 parts, that conserva-
tion of total momentum obtains, and that it is not determined
by the prior state of the particle what the momentum of each
part will be after the decay. By conservation, the momentum
of one part will be determined by the momentum of the other
part. By indeterminism, the prior state of the particle will not
determine what the momenta of each part will be after the
decay. Thus there is no prior screener off.

The prior state S fails to screen off the momenta. But by symmetry, nei-
ther of the two parts’ momenta M1 and M2 can be considered as the cause
of the other. This system cannot be represented by a causal model. The
generation of M1 and M2 by S should be considered as one (causal) mech-
anism, as shown in Fig. 4.6 (a). The system can, however, be represented
faithfully by adding a hidden common cause X, as shown in Fig. 4.6 (b).
However, the CPDs of this model do not correspond to the real mecha-
nisms. Note that the system exhibits an additional regularity, namely the
perfect symmetry of the two parts. Other counterexamples of the Causal
Markov Condition given in Williamson [2005, p. 52] are similar.

Counterexample 5. Take the set of strings of n bits for which m con-
secutive bits are 1 and the others are 0. For n = 8 and m = 2, “01100000”
and “00001100” represent valid strings. Every bit can be regarded as a
discrete variable. By picking valid strings randomly, the joint distribution
is observed. All bits are correlated, but each pair becomes independent
by conditioning on some other bits. The simplest model for this pattern
contains a latent variable S, denoting the start position of the non-zero
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Figure 4.7: Two models for a pattern in a 8-bit string.

bit sequence. The causal model, shown in Fig. 4.7(a), however, considers
each edge as a separate mechanism. But the mechanisms cannot be re-
garded as unrelated, the decomposition is therefore invalid. The system is
highly regular and contains conditional independencies not following from
Markov. The model of Fig. 4.7(b) is more accurate, it indicates that there
is one mechanism generating the states of all bits.

Counterexample 6. Variables in pseudo-independent models are pair-
wise independent but collectively dependent [Xiang et al., 1996]. Consider
three variables, X1, X2 and X3, that are pairwise independent, but be-
come dependent by conditioning on the third variable. For example, if the
variables are binary and they are related by an exclusive or: X3 = X1 EXOR
X2. Such distributions exhibit strict regularities. Yet, pseudo-independent
models fit in the reductionist approach of causal models. We still can try
to find out which variables are the causes and which the effects. Possibly,
the model X1 → X3 ← X2 generates a pseudo-independent distribution if
only the knowledge of X1 and X2 together says something about X3. Note
that this is examined by case (a) in the proof of theorem 4.4.

Counterexample 7. Consider the coder-decoder example, taken from
Spirtes et al. [1993, Fig. 3.23], shown in Fig. 4.8. Variable Y encodes the
values of both R and X, and Z decodes Y to match the value of X. This is
possible because it is the first bit of Y that corresponds to the value of X.
The model is not faithful. Z is independent from R, but connected by an
unblocked path in the model. Also, the v-structure X → Y ← R suggests
that X and R are dependent when conditioned on Y , but this is not.
The coder-decoder system is designed to exhibit the specific behavior that
Z equals to X. The CPD components are part of a greater mechanism
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Figure 4.8: Coder-decoder system, taken from [Spirtes et al., 1993, Fig.
3.23], in which Z equals to X.

Figure 4.9: System with contextual relation (a) and the learned partially-
directed acyclic graph (b).

and are engineered to match each other in such a way that the desired
functionality is realized.

Counterexample 9. Another problem for causal inference algorithms
is a mixture of populations, in which causal connections are in opposite di-
rections for subpopulations. Some people drink too much because they are
depressed, while other people are depressed because they drink too much.
A mixture of units in which the causal connections go in opposite directions
does not in general satisfy the Markov Condition [Scheines et al., 1996, Ch.
2]. Such systems can be regarded as containing contextual causal relations.
This happens if a causal relation is only valid in a certain context. Consider
the model depicted in Fig. 4.9(a). Discrete variable T with domain {0, 1}
sets the context for the causal relation between A and B. A is a cause of
B if T = 1, while it is an effect of B if T = 0. Contextual causal relations
were studied by Borms [2006]. The application of the PC algorithm on a
sample of this system gives a too complex result. The model learned, Fig.
4.9(b), is a partially-directed acyclic graph. The relation between A and
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B is left unoriented since the independencies provide no information to de-
cide upon the orientation. The contextual relation also makes that other
causes of A or B do not form a v-structure with respectively B or A. Such
a v-structure would determine the orientation of the relation A−B. The
partially directed acyclic graph represents the Markov-equivalence class
containing all directed graphs that cannot be distinguished by the condi-
tional independencies. It consists of two graphs, one with A → B and
one with A ← B. But none of both is faithful. C is d-connected with
E conditional on A (via unblocked path C → B → E): C 0E | A. But
independency C⊥⊥E | A holds. This follows from Fig. 4.9(a), the indepen-
dency holds in both contexts. There is no faithful model and the model
also does not correspond to the real causal mechanisms. Contextual re-
lations cannot be represented by standard causal models. The question
arises how they can be recognized.

4.4 Faithfulness

Faithfulness of a causal model is put forward as a cornerstone of causal
model theory and the accompanying learning algorithms. Its importance
is often misunderstood and its validity criticized. Based on the above
analysis, we can conclude the following about faithfulness:

1. Faithfulness holds when the system is indeed composed of indepen-
dent and unrelated mechanisms. The probability of an exact corres-
pondence of probabilities so that causally-related variables become
independent is quite small, as expressed by the stability property
used by Pearl (see start of Chapter). The typical elements of the
set of all Bayesian networks built from a given DAG are faithful
(Theorem 4.4).

2. Conditional independencies are the basis for causal inference: we do
not consider them as coincidences, but as meaningful information
that tell us something about the system under study. Unfaithfulness
gives an indication that other mechanisms might be at play.

3. Pearl hypothesizes that there is no unbounded set of conditions on
a distribution that would ensure the existence of a faithful graph
[Pearl, 1988, p. 131]. Indeed, as shown by theorem 4.4, ‘unexpected’
conditional independencies can always appear. Every dependence
can be turned into an independence by a balanced parametrization
of some CPDs.
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4. Faithfulness ensures the capacity of deriving answers to qualitative
questions from the graph only. This was one of the goals that Pearl
put forward while building up causal model theory [Pearl, 1988, p.
79] (Section 3.1.2). All Bayesian networks representing the same
joint distribution (built starting from different variable orderings)
can be used for predicting unknown variables quantitatively. But
they do not describe the same independencies. They are not suit-
able for qualitative reasoning : for answering questions about condi-
tional independencies, such as ‘does A affect B when C is known’.
A non-faithful model can only answer these questions correctly by
quantitative calculation of the probabilities. The model of Fig. 4.3
suggest that B, C and E should be known to have maximal informa-
tion about D. But from the graph of Fig. 4.2 we know that B has no
additional information about D once we know C and E. Qualitative
reasoning based on the model only demands that the model contains
all meaningful information, that all qualitative properties can be in-
ferred from it without needing precise quantitative information. This
is exactly what the faithfulness property stands for.

In the light of meaningful information, faithfulness can be interpreted
in a broader sense:

Faithfulness means that a model explicitly captures all regularities
of the data.

Consider a Bayesian network that is not based on the minimal factor-
ization, such as the one depicted in Fig. 4.3. Its DAG is unfaithful and
can not explain some of the conditional independencies. The DAG together
with the CPDs incorporates all independencies, as they can be calculated
from the joint distribution, but not from the meaningful information, the
DAG, only. Following the principles according to which modeling should
be based on the regularities, faithfulness motivates the ability to learn
causal models from observations:

If a unique, minimal model has the power to foresee all qualitative
consequences, it must come close to reality.

4.5 Summary of Chapter

This chapter addressed the two major criticisms towards causal model
theory and causal inference - the validity of faithfulness and the causal
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interpretation of the models - by interpreting them with the principles of
minimality, regularity extraction and meaningful information.

The conditional independencies are the regularities at hand that allow
compression of a distribution and the learning of the minimal model from
the data. Minimality relies on the incompressibility of the minimal Baye-
sian network. The DAG of the minimal factorization is the Kolmogorov
Minimal Sufficient Statistic (KMSS) and is faithful if the CPDs are random
and unrelated. Non-minimality implies the presence of non-modeled regu-
larities. Regularities in an individual conditional probability distribution
(CPD) or among several CPDs can lead to conditional independencies not
expected by the Markov condition; independencies that do not follow from
the system’s causal structure. Causal model theory thus describes what
can ‘normally’ be expected from a causal structure, without taking into
consideration the precise parameterization of the CPDs. The algorithms
for causal inference rely on the assumption that no other independencies
arise.

I argued that the causal component of causal model theory corres-
ponds to the decomposition of the model into unique and independent
components, the CPDs. The d-separation criterion can be expressed by a
distributed algorithm that runs independently on all components, which
only communicate through the variables. What causal models tell us about
reality is how the system is composed of independent mechanisms. Each
mechanism is responsible for setting the state of one variable. Decompo-
sition corresponds to a reductionist approach: we have chopped up the
system into simpler components, which constitute the ‘atomic’ elements of
the system. They give the canonical decomposition of the system.

The validity of causal inference can then be analyzed by the validity of
faithfulness, the absence of non-modeled regularities and the correctness of
the decomposition. Counterexamples of causal model theory were analyzed
by these three statements. The analysis showed that the invalidity of the
decomposition could be related to the presence of non-modeled regulari-
ties or non-Markovian independencies. Concluding, in case of faithfulness
and absence of additional regularities, a causal model offers a plausible
hypothesis about reality.

This chapter concludes the philosophical discussion about inductive
and causal inference. The next chapter will clear the way for introducing
causal inference into the world of performance analysis.



Chapter 5

Information Equivalence

THE theory of information equivalence was developed to overcome limi-
tations of the current causal learning algorithms due to the violation

of faithfulness by the presence of deterministic relations. Performance data
contain a lot of deterministic relations. The PC algorithm fails when they
appear in the data. Consider the model of Fig. 5.1. It indicates how
the datatype of the main data structure (integer, floating point, double-
precision, . . . ) used in an algorithm affects the cache misses when executed.
The model shows that it is in essence the size of the datatype which de-
termines the cache misses and not its specific type. The relation between
datatype and data size is however a function: data size = f(datatype).
A variable that is determined by some other variables is depicted with
double-bordered circles, as data size in Fig. 5.1. The model implies, by
the Markov property, that

datatype ⊥⊥ cache misses | data size. (5.1)

But from the function it also follows that

data size ⊥⊥ cache misses | datatype, (5.2)

for, by the functional relation, variable datatype contains all information
about variable data size. datatype contains the same information about
the cachemisses. However, both independencies cannot be represented by
a faithful graph and pose problems for constraint-based algorithms. The

Figure 5.1: Example causal model.
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adjacency step of the PC algorithm (see Sec. 3.4.1) fails since the two
independencies result in the removal of edges ‘data size − cache misses’
and ‘datatype− cache misses’. The algorithm relies on the property that
directly related variables do not become independent by conditioning on
any set of other variables. By testing this property on two dependent varia-
bles, the algorithm discriminates directly from indirectly related variables.
This does not hold in the presence of deterministic variables. The current
approach to overcome this problem is to remove deterministically related
variables from the data [Scheines et al., 1996]. I will, however, argue that
deterministically related variables contain valuable information and should
not be eliminated from the data.

The problem of deterministic variables is characterized by a violation
of the intersection condition, one of the necessary conditions for faith-
fulness [Pearl, 1988]:

X⊥⊥Z |W, Y & Y⊥⊥Z |W, X ⇒ X, Y⊥⊥Z |W (5.3)

The condition states that if two variables render the other irrelevant with
respect to a third variable, neither of both can depend on that variable.
This condition is violated when two variables contain the same information
about a third variable, Z. They are called information equivalent with res-
pect to Z. Although both are marginally dependent on Z, either becomes
conditionally independent from Z by conditioning on the other variable.
Hence, the intersection condition is broken.

If X and Y are information equivalent for Z, they contain the same
information about Z. This must be incorporated by the model. It is not
clear which of the two should be connected to Z. Connecting both to Z
would represent redundant information and in this manner disrupt the mi-
nimality condition. Connecting one suffices. I propose to connect the one
having the simplest relation with Z. This choice enables the construction
of useful models. The purpose is to reestablish the faithfulness of Bayesian
networks as representation of conditional independencies by characterizing
information equivalences and integrating them into an augmented model.
This results in an augmented model that correctly describes the qualitative
properties of the system under study, as expressed by the faithfulness pro-
perty. These models can be learnt from observational data by the extended
PC algorithm.

The first section gives an overview of related work. In the following
section information equivalences are defined. It is shown that they appear
when a distribution results in an equivalent partitioning. Some useful
properties of information equivalences are proved. Augmented Bayesian
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networks, incorporating the knowledge about deterministic relations and
basic information equivalences, are defined in Section 3. Section 4 discusses
how minimality can lead to a selection criterion for information equivalent
relations and section 5 shows how faithfulness can be reestablished for
the augmented models. Finally, section 6 extends the PC algorithm so
that it can learn augmented models and section 7 reports on experimental
verification of the extended learning algorithm.

5.1 Related Work

Recent research has developed methods for performing inferences in Baye-
sian networks with functional dependencies [Cowell et al., 1999, Cobb and
Shenoy, 2004]. Dechter and Mateescu introduced mixed networks to ex-
press probabilistic and deterministic information in the form of constraints
[Dechter and Mateescu, 2004], whereas I view deterministic relations as
proper causal relations. Geiger [1990] and Spirtes et al. [1993] extended
the d-separation criterion for retrieving the dependencies entailed by de-
terministic relations, which they called D-separation.

Current constraint-based learning algorithms fail for data containing
functionally determined variables [Spirtes et al., 1993, p. 57], they require
that such variables are eliminated from the input data [Scheines et al.,
1996]. The argument is that such variables are not essential to the model
since they contain redundant information. In section 5.2.1 I show, however,
that such variables provide insight in the underlying mechanisms and often
reduce the complexity of the model. Moreover, determinism is not always
known a priori.

For the faithfulness of graphical models, many conditions should hold
[Pearl, 1988]. Therefore, other representation schemes of independency
information were developed, such as the imsets of Studeny [2001], which
can model any conditional independence structure. My approach claims
that if violations of faithfulness come from local properties, these properties
should be integrated into the causal modeling framework.

5.2 Information equivalences

A necessary condition for the existence of a faithful graph is the intersection
condition. This condition is violated by information equivalences.
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5.2.1 Definition

Definition 5.1 (information equivalence). X and Y are called informa-
tion equivalent with respect to Z, the reference variable, if

• X 2Z and Y 2Z

• Y⊥⊥Z | X

• X⊥⊥Z | Y

Note that single stochastic variables are denoted by capital letters, sets
of variables by boldface capital letters. Knowledge of either X or Y is
completely equivalent from the viewpoint of Z. It follows that I(Y ;Z) =
I(X;Z), hence X and Y contain the same amount and the same kind of
information about Z.

A variable Y is determined by a set of variables X if the relation
between Y and the set X is a function, written as Y = f(X ). A functional
relation implies that the variables X contain all information about Y . If Y
is correlated to a third variable Z, all information from Y about Z is also
present in X . If additionally X⊥⊥Z | Y holds, meaning that X contains no
additional information about Z, then Y and X are information equivalent
with respect to Z. For a bijection, when Y = f(X) and X = f−1(Y )
are functions, each variable dependent on X or Y implies an information
equivalence.

If, besides the independencies of Definition 5.1, additionally X⊥⊥Y | Z
holds, then all three variables contain the same information about each
other and are information equivalent. I call this a multi-node equiva-
lence.

Example 5.2 (Causal Performance Model).

Fig.5.2 represents a causal model of performance related data
of a quicksort algorithm. The overall performance is measured
by the computation time (Tcomp). #op represents the num-
ber of basic compare-swap operations1, which is affected by
the array size. The computation time depends on #op, the
number of processor cycles for one operation (Cop) and the
processor’s clock frequency (fclock). The number of cycles con-
sists of Cinstr, the cycles spent executing the instructions of one
operation (#instrop), and Cmem, the cycles spent waiting due

1Recall that the quicksort algorithm mainly consists of comparisons of elements,
alternated with swapping elements.
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Figure 5.2: Causal model of the performance of the quicksort algorithm.

to memory accesses, which are triggered by the cache misses.
These are determined by the memory capacity, the array size
and element size, which is the size in bytes of the elements
of the array. Finally, the data type of the elements (varia-
ble data type) affects Cop, and determines #instrop and the
element size. The causal interpretation of the edges should be
read as “a change of the state of A causes a change of the state
of B”.

Deterministic variables are depicted with double-bordered cir-
cles, they are determined by their parents in the graph. Even
the other non-input variables are quasi-determined by their
parents, since a serial computer is deterministic. One can argue
that these deterministic variables can be omitted and that the
computation time can directly be expressed in function of the
parameters. The intermediate variables, however, are of great
explanatory importance and extend the predictive power of the
model. The cache misses, for example, are only determined by
the size of the data, not by the data type. This knowledge
enables the prediction of the cache misses for new data types.
Moreover, element size is a countable variable, whose domain
is an ordered set. The relation with the cache misses can be
expressed by a continuous function, which makes it possible to
predict the cache misses for yet unknown sizes. The relation of
the discrete variable element type and the cache misses is a
table without predictive capacities.
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Figure 5.3: Causal model of SGS (Fig. 3.23) in which Z equals X

Example 5.3 (Coder-decoder).

Consider the coder-decoder example, taken from [Spirtes et al.,
1993, Fig. 3.23], shown in Fig. 5.3. Variable Y encodes the
values of both R and X, and Z decodes Y to match the value
of X. This is possible because it is the first bit of Y that
corresponds to the value of X. X is therefore deterministically
related to Z, though not adjacent in the graph. Both X and
Y are information equivalent with respect to Z.

5.2.2 Equivalent Partition

Information equivalences follow from a broader class of relations than just
deterministic ones. Therefore I have to introduce the notion of equivalent
partition.

If two variables X and Z are dependent, implied by P (Z | X) 6= P (Z),
the conditional distribution of one variable differs for at least two values
of the conditioning variable:

∃ x1, x2 ∈ Xdom : P (Z | x1) 6= P (Z | x2). (5.4)

The information a variable contains about another lies into the differences
in the conditional distributions. Values for which this distribution is the
same contain the same information.

Definition 5.4. The domain of X, denoted by Xdom, can be partitioned
into disjoint subsets Xk

dom for which P (Z | x) is the same for all x ∈ Xk
dom.

We call this the Z − partition of Xdom. We define κZ(X) as the index of
the subset.
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Figure 5.4: Z-partition of the domain of X

Accordingly, the conditional distribution depends solely on the index
of the Z-partition:

P (Z | X) = P (Z | κZ(X)) (5.5)

Fig. 5.4 shows the Z-partition of Zdom and the related conditional distri-
butions of Z. P (Z) is also shown, it is the weighted sum of the conditional
distributions: P (Z) =

∑
x

P (Z | x).P (x).

A binary relation between two variables associates elements of the
domain of X with that of Y . This can be shown graphically by representing
both domains with a two sets and connect the elements that are related
by the relation. For the Cartesian product of X and Y , X × Y , each
element of Xdom is associated with each element of Ydom.

Definition 5.5. A relation < ⊂ X × Y defines an equivalent partition
in Ydom to a partition of Xdom if:

1. ∀x1 and x2 ∈ Xdom that do not belong to the same partition: ∀y1 ∈
Ydom with x1<y1, it must be that ¬(x2<y1).

2. For all subsets Xk
dom of the partition: ∃x1 ∈ Xk

dom,∃y1 ∈ Ydom :
x1<y1.

For an equivalent partition, every partition Xk
dom corresponds to a par-

tition Y l
dom. If an element of Ydom is related to an element of a partition

of Xdom, it is not related to an element of another partition, and each
partition of Xdom has at least one element that is related to a partition of
Ydom.

Fig. 5.5 shows an example of an equivalent partition. No y is related to
X-values belonging to different partitions and for every partition, there is
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Figure 5.5: Variables X and Y are information equivalent for Z. P (x, y)
is only strictly positive for values that affect P (Z) similarly. These values
are related by relation R.

at least one related Y -value. Note that a function, for which every x-value
has a related Y -value, defines an equivalent partition on Ydom for every
partition of X.

This concept will be used to exactly define when the intersection con-
dition is violated. The relation < defined by P (x, y) > 0 is considered.
Two values x ∈ Xdom and y ∈ Ydom are related by < if there is a non-zero
probability that both appear together.

Recall that independence of U and W conditional on V (U⊥⊥W | V )
is defined by

P (U | v ,w) = P (U | v) whenever P (v ,w) > 0 (5.6)

And that:

U⊥⊥W | V ⇔ P (U | w) =
∑
v∈V

P (U | v).P (v | w) whenever P (v, w) > 0

(5.7)

Theorem 5.6. If X 2Z and Y⊥⊥Z | X, then

X⊥⊥Z | Y ⇔ the relation x<y defined by P (x, y) > 0, with x ∈ Xdom and
y ∈ Ydom, defines an equivalent partition in Ydom to the Z-partition of

Xdom.

Proof ⇐
I have to prove that P (Z | Y,X) = P (Z | Y ). The left hand side leads
to P (Z | Y,X) = P (Z | X) = P (Z | κZ(X)), with κZ(X) the index of X
in the Z-partition of Xdom. I will prove that P (Z | Y ) leads to the same
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expression.
By the independence Y⊥⊥Z | X, I can write that

P (Z | Y ) =
∑

x∈Xdom

P (Z | X = x).P (X = x | Y ) (5.8)

The last factor only differs from zero if both X and Y belong to the subsets
that correspond to each other by the equivalent partition. By proper num-
bering of the subsets, I make the indices κZ(X) and κZ(Y ) correspond. It
follows that

=
∑

x∈Xdom:κZ(x)=κZ(y)

P (Z | X = x).P (X = x | Y ) (5.9)

= P (Z | κZ(x))
∑

x∈Xdom:κZ(x)=κZ(y)

P (X = x | Y ) (5.10)

Since the conditional distribution of Z is constant in each subset of the
Z-partitioning by definition. The sum is 1, since P (X = x | Y ) is zero
everywhere else.

Proof ⇒
I have to show that ∀x1, x2 ∈ Xdom for which P (Z | x1) 6= P (Z | x2), there
exists a y1 ∈ Ydom for which P (x1, y1) > 0 and that for all such y1 values
P (x2, y1) = 0.
Since P (x1) > 0, there must be at least one value y1 for which P (x1, y1) >
0, otherwise P (X,Y ) is not a valid distribution. Next, both given condi-
tional independencies, Y⊥⊥Z | X and X⊥⊥Z | Y , imply that (Eq. 5.6)

P (Z | x1, y1) = P (Z | x1) = P (Z | y1). (5.11)

Assume that P (x2, y1) 6= 0, then likewise

P (Z | x2, y1) = P (Z | x2) = P (Z | y1) (5.12)

Combining the right hand sides of both equations leads to the contradic-
tion that P (Z | x2) = P (Z | x1).

By applying Equation 5.6 on both conditional independencies of equi-
valence X and Y for Z it follows that

P (Z | x ) = P (Z | y) whenever p(x ,y) > 0 (5.13)

This summarizes the results of the theorem.
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5.2.3 Assumptions

In analyzing the relation between independencies in distribution and the
DAG (of a valid BN), I make no assumption about faithfulness. A Bayesian
network represents the conditional independencies that follow from the
Markov condition. Besides those, other independencies can occur. The
only thing we can say about the relation between a Bayesian network and
the distribution it represents is that:

For any graph of a Bayesian network that correctly represents a
probability distribution, it follows that

• d-separation in graph ⇒ (conditional) independency in distribu-
tion.

• (conditional) dependence in distribution⇒ there is an unblocked
path in graph.

In order to be able to investigate the effect of an information equi-
valence on the conditional independencies between other variables, I will
assume a condition that expresses a kind of transitivity.

Assumption 5.7. Weak Transitivity

T⊥⊥V |W & T⊥⊥V |W, U ⇒ T⊥⊥U |W or U⊥⊥V |W (5.14)

Or, put the other way around:

T 2U |W & U 2V |W ⇒ T 2V |W or T 2V |W, U (5.15)

It is one of the necessary conditions for the existence of a faithful graph
[Pearl, 1988]. Eq. 5.15 says that if T depends on U and U depends on
V , it implies that either T depends on V (e.g. as in model T → U → V )
or becomes dependent by conditioning on U (e.g. as by v-structure T →
U ← V )

Take again the coder-decoder example shown in Fig. 5.3. X determines
the first bit of Y and R the second. The decoding of Z is determined by
the first bit of Y . This model, however, violates the weak transitivity
condition. Y depends on X, R and Z; but R is independent from X
and Z, also after conditioning on Y . The values of variable Y reflect two
separate quantities, one that is determined by X and one by R. Each value
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Figure 5.6: Bayesian network which is a counter example of Assumption
5.8.

of Y combines both quantities. The coder-decoder system is designed to
exhibit this specific behavior.

The following assumptions are introduced to simplify the discussion.
They exclude some exotic cases in which the probability distributions ex-
hibit very specific regularities. These assumptions hold for the experiments
presented in section 5.7.

Assumption 5.8.

X 2Z & X⊥⊥Z | Y & X⊥⊥Z | C ⇒ X⊥⊥Z | Y, C (5.16)

Example 5.9 (Counterexample of Assumption 5.8).

The construction of a counterexample of Assumption 5.8 shows
that the violation of the assumption only happens when the
probabilities of the CPDs of the Bayesian network give an ex-
act match. X 2Z implies that X and Z are related in the graph,
X 2Z | Y,C implies that there is a path between X and Z that
is not blocked by Y and/or C. On the other hand, independen-
cies X⊥⊥Z | Y and X⊥⊥Z | C mean that the correlation of X
and Z is neutralized when conditioned on Y or C separately.

Fig. 5.6 shows a Bayesian network which can lead to the
violation of the assumption by a well-balanced parameteriza-
tion of the CPDs. The network corresponds to factorization
P (Z) = P (Z | C,X, Y ).P (C).P (X).P (Y ). For X⊥⊥Z | Y we
get the following conditions on the distribution:

∀ x, y, z : P (z | x, y) = P (z | y) (5.17)

⇔∀ x, y, z :
∑
c

P (z | x, y, c).P (c) =
∑
c

∑
x

P (z | x, y, c).P (c).P (x)

(5.18)
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Figure 5.7: Model with X and Y information equivalent for Z and some
additional nodes.

The left-hand side and the right-hand side of Eq. 5.17 lead to
respectively the left-hand side and the right-hand side of Eq.
5.17. Similarly, independence X⊥⊥Z | C imposes an additional
set of conditions on the distribution:

∀c, x, z :
∑
y

P (z | c, x, y).P (y) =
∑
x

∑
y

P (z | c, x, y).P (x).P (y)

(5.19)

Assumption 5.10. If X and Y are information equivalent with respect
to a variable Z, it follows that

X⊥⊥Y | D ⇒ X,Y⊥⊥Z | D (5.20)

If D contains all information shared by X and Y , D also contains the
information that X and Y have about Z. A counterexample is given later.

5.2.4 Properties of Information Equivalences

The following properties prove that information equivalences can be re-
duced to a set of fundamental equivalences. An example model is depicted
in Fig. 5.7. It provides an example for each of the properties. The variables
that appear in the properties correspond to those of the model. The first
property shows that an information equivalence remains for all variables
related to the information equivalent variables via the reference variable.

Property 5.11. If X and Y are information equivalent with respect to
a variable Z and for variable A it holds that A 2Z and Z screens off X
and Y from A (X⊥⊥A | Z and Y⊥⊥A | Z), then X and Y are information
equivalent with respect to A.
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Proof. From X⊥⊥A | Z it follows that (using Eq. 5.7)

P (A | X) =
∑
z∈Z

P (A | z).P (z | X)

=
∑
z∈Z

P (A | z).P (z | Y ) = P (A | Y ) (5.21)

The last step is true by Y⊥⊥A | Z.

The next property says something about the conditional independen-
cies implied by information equivalences. If among information equivalent
variables, one contains all information that a variable has about the refer-
ence variable, the other equivalent variables also contain this information.

Property 5.12. If X and Y are information equivalent with respect to a
variable Z, it follows that

Z⊥⊥B | X ⇔ Z⊥⊥B | Y (5.22)

Proof. Let the domain of X be partitioned into subsets Xk
dom so that P (Z |

x) is the same in each subset, namely P (Z | k), but different for elements
of different subsets. There are at least two such subsets, since P (Z | x) 6=
P (Z).

P (Z | B) =
∑

x∈Xdom

P (Z | x).P (x | B) =
∑
k

∑
x∈Xk

dom

P (Z | x).P (x | B)

(5.23)

=
∑
k

P (Z | k)
∑

x∈Xk
dom

P (x | B) (5.24)

=
∑
k

P (Z | k)
∑

x∈Xk
dom

∑
y∈Ydom

P (x | y,B).P (y | B) (5.25)

Each subset Xk
dom maps to a subset Y l

dom for which P (Z | k) = P (Z | l).
By Eq. 5.13, P (x | y,B) is only positive whenever x ∈ Xk

dom and y ∈ Y l
dom,

thus:

P (Z | B) =
∑
k

P (Z | k)
∑

y∈Y ldom

P (y | B)
∑

x∈Xk
dom

P (x | y,B)

(5.26)
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The equivalence also implies that∑
x∈Xk

dom

P (x | y,B) = 1 if y ∈ Y l
dom, (5.27)

hence:

P (Z | B) =
∑
l

P (Z | l)
∑

y∈Y ldom

P (y | B)

(5.28)

=
∑

y∈Ydom

P (Z | y).P (y | B) ⇔ Z⊥⊥B | Y (5.29)

The following property proves that an information equivalence can be
reduced to another if there is a variable which makes the reference variable
independent from the information equivalent variables.

Property 5.13. If X and Y are information equivalent with respect to a
variable Z and assumptions (5.7), (5.8) and (5.10) hold, it follows that

X⊥⊥Z | C ⇔ Y⊥⊥Z | C (5.30)

If, together with Eq. 5.30, additionally C 2Z | X holds, then X and Y are
also information equivalent for C. Otherwise (C⊥⊥Z | X), C is together
with X and Y information equivalent for Z.

Proof. By assumption 5.8, X⊥⊥Z | C, Y holds. Weak transitivity (Eq.
5.14) then demands that X⊥⊥Y | C or Y⊥⊥Z | C holds. This proves the
second independency, because if the first is true, the second follows from
assumption 5.10. Then, by assumption 5.8 again, Y⊥⊥Z | C,X holds,
which means that the information equivalence remains under conditioning
on C.

For proving the equivalence, I have to show that (a) Y⊥⊥C | X and (b)
X⊥⊥C | Y . From Y⊥⊥Z | X and Y⊥⊥Z | C,X; weak transitivity demands
that Y⊥⊥C | X or C⊥⊥Z | X. The second independence is false, which
proves the first independence and thus (a). Independence (b) is proved
with the same arguments. C 2Z | Y holds, because C⊥⊥Z | Y would mean
that C and Y are information equivalent with respect to Z. But then, by
transitivity of information equivalences (follows directly from Eq. 5.13),
C and X would be information equivalent for Z, contradicting the given
C 2Z | X.

Finally, if C⊥⊥Z | X, then - by transitivity - X, C and Y are equivalent
for Z.
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Example 5.14 (Information Equivalence Under Conditioning).

Information equivalences do not always hold under conditio-
ning. In the causal performance model of Fig. 5.2, elementType
and elementSize are equivalent for the processor cycles spent
on memory access, Cmem. But after conditioning on Cop, this
equivalence is not true any more. Then, a path between element-
Type and Cmem is unblocked and thus: elementType 2 Cmem |
elementSize, Cop. The knowledge of elementType enables the
prediction of the cycles spent on computation, Cinstr. To-
gether with the total number of cycles (Cop), an estimation
of the cycles lost due to cache misses can be made. Thus,
elementType gives more information on Cmem then the know-
ledge of elementSize alone.

An information equivalence is called a basic information equiva-
lence if no variable exists that contains more information about the ref-
erence variable than the equivalent variables.

Property 5.15. Under assumptions (5.7), (5.8) and (5.10), basic in-
formation equivalent variables are directly related and at least one of the
variables is directly related to the reference variable of a basic information
equivalence.

Proof. Take X and Y information equivalent for Z. X and Y are depen-
dent, so there is a path connecting both. If there is another variable on
the path, for example D, making X and Y independent: X⊥⊥Y | D. By
assumption 5.10, X⊥⊥Z | D follows. Then, by property 5.13, either D is
also information equivalent for Z (when D⊥⊥Z | X) or X and Y are in-
formation equivalent with respect to D (when D 2Z | X). With the given
X⊥⊥Y | D, the three variables form a multi-node equivalence.

By the dependency of the equivalent variables with the reference va-
riable, there must be a path connecting them. If this path is blocked by a
variable C, by property 5.13, variable C is also equivalent for Z; or X and
Y form a basic information equivalence for C, while X and Y do not for
Z.
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Figure 5.8: Bayesian network which is a counter example of Property 5.15.

Example 5.16 (Counterexample of Property 5.15).

Assumption 5.10 was introduced to exclude a special case in
which the last property about adjacency does not hold. Con-
sider the equivalence of X and Y for Z and independence
X⊥⊥Y | D. Then it is possible that:

• D is not information equivalent together with X and Y
for Z: this means that Z 2D | X or Z 2D | Y .

• X and Y are not information equivalent for D: this means
that X 2D | Y or Y 2D | X.

Fig. 5.8 shows a Bayesian network for which this is possible,
for example when Z 2D | Y and X 2D | Y . This requires
a very specific parameterization of the probabilities. D has
exclusive information about X and about Z. On top of that,
D participates in the equivalent partition of X and Y . The
relation defined by P (D,X) > 0 defines an equivalent partition
in Ddom to the Z-partition of Xdom. Assumption 5.10 excludes
this particular case.

5.3 Augmented Bayesian Network

The previous section showed that the basic information equivalences suffice
to augment the model. Other equivalences can easily be derived from
it. Deterministically related variables, however, possibly generate multiple
equivalences. Since for Y = f(X ), X is equivalent for all variables related
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Figure 5.9: Augmented Causal Model with a Functional Relation (a), a
Bijection (b) and an Information Equivalence (c).

to Y . A deterministic relation is thus more fundamental and is added to
the model instead of all equivalences that follow from it.

Definition 5.17. An information equivalence augmented Bayesian net-
work consists of a DAG G over variables V, the conditional probability dis-
tributions P (Vi | parents(Vi)), the deterministic relations Deterministic(V)
and the information equivalences Equivalences(V). Deterministic(V) is
the set of ordered tuples of variables in V, where for each tuple 〈V1, . . . , Vn〉,
Vn is a deterministic function of V1, . . . , Vn−1 and is not a deterministic
function of any subset of V1, . . . , Vn−1. Equivalences(V) is the set of or-
dered tuples of sets of variables in V, where for each tuple 〈W1, . . . ,Wn〉,
the sets W1, . . . ,Wn−1 are information equivalent with respect to Wn.

I propose the following notation. Deterministic nodes are depicted
with double-bordered circles with dashed edges coming from the deter-
mining variables, as shown in Fig.5.9 (a). If the parents comprise all the
determining variables, the dashed edges may be omitted. Two variables
related by a bijection are linked with an unoriented dashed edge (Fig.5.9
(b)). Information equivalent variables are connected by a dashed edge
annotated with the reference variable (Fig.5.9 (c)). I do not provide a no-
tation for equivalences of sets of variables, this would require hyper-edges.
Such equivalences can be added as text to the graph. Besides, they rarely
occur in practice.

5.4 The Complexity Criterion

Modeling is based on the minimality criterion, i.e. we should seek, in spirit
of Occam’s Razor, the simplest model that is able to describe the data.
In the context of causal models, dependent variables are connected with
an edge, whereas variables that become independent when conditioned on
others are not directly related. For a basic information equivalence, X and
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Y for Z, there is no other variable that makes X and Y independent from
Z. This implies that they should be related. This was proved by Property
5.15. It is therefore reasonable to call the relations X − Z and Y − Z
information equivalent relations. From the viewpoint of information,
both relations are equivalent.

For a faithful representation, the two independencies, Y⊥⊥Z | X and
X⊥⊥Z | Y , suggest that neither X or Y is adjacent to Z. On the other
hand, including both edges would disrupt the minimality condition, since
both variables have the same information about the reference variable.
Relating one of both with Z suffices to model the information they contain
about Z. This section will propose a selection criterion.

5.4.1 Complexity of Relations

The relations of information equivalent variables with the reference va-
riable represent the same ‘information transfer’. We therefore need crite-
ria, different from conditional independencies, to select among information
equivalent relations. In absence of background knowledge, the only objec-
tive criterion is the complexity of the relations, according to which simpler
relations should be preferred over complex ones. The choice between two
equivalent variables X and Y for being adjacent to the reference variable
Z is decided upon which relation, Z −X or Z − Y , is the simplest.

Shannon’s mutual information, defined by the decrease in entropy (un-
certainty) of a variable due to knowledge of another, measures the infor-
mation one variable conveys about the other. But it does not take the
complexity of the relation into account. Therefore I will rely on the anal-
ogous algorithmic mutual information, denoted as IA(x : y), defined
as the decrease in Kolmogorov complexity [Grünwald and Vitányi, 2003]:

IA(x : y) = K(x)−K(x | y) (5.31)

It reflects the additional compression of x thanks to the knowledge of y,
where simpler relations lead to higher values. This measure is proved to be
symmetric [Grünwald and Vitányi, 2003]. The complexity of an individual
object x is measured by its Kolmogorov complexity K(x), defined as the
length of the shortest program that prints the object and then halts. The
conditional Kolmogorov complexity K(x | y) of x given y is the length
of the shortest program that given y as input prints x and then halts.
The complexity of relation X − Y can then be quantified by estimating
IA(xn : yn), where xn and yn are the vectors of the observed data with
sample size n.
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If the complexities of the relations match, we have to decide upon other
criteria. I will then connect the reference variable to the variable(s) which
is/are cause(s) of the other equivalent variable(s). If, for example, X and Y
are linearly and deterministically related, the relation of X and Y with any
other variable will be completely similar, qualitatively and quantitatively.
They contain equivalent information about any other variable, so - in the
absence of background knowledge - they represent equivalent quantities.
Both variables are indistinguishable from the perspective of the system
under study. Handling information equivalences thus only makes sense
when non-linear relations appear in the data.

For a relation among continuous variables, a regression analysis is used
for estimating K(xn | yn). It seeks the most appropriate function that fits
the data, such that the function minimizes

fbest = arg minf∈F{K(f) +K(en)} (5.32)

with F the set of admissible functions and en the error vector defined
as ei = xi − f(yi) with i from 1 to n. This corresponds to Minimum
Description Length (MDL) approach applied to regression analysis 2.4.2.
In this approach, minimizes the sum of L(H) + L(D | H). K(f) can be
approximated with L(H), and K(en) with L(D | H). Practical complexity
measurement was discussed in Section 2.4.2. For calculating IA(xn : yn),
I assume that xi is randomly drawn from a uniform distributions in range
[xmin, xmax], so that K(xn) = n.(xmax − xmin)/p.

For discrete variables, the conditional distributions P (xi | parents(xi))
are described by discrete distributions. The number of probabilities (writ-
ten with precision d) in the probability table determine its complexity.

I will assume that if one of two information equivalent sets has fewer
elements, the relation with the reference variable is simpler.

5.4.2 The Increase of Complexity

The complexity criterion makes sense by making the following assumption:

Assumption 5.18. The Complexity Increase assumption:

A 2C & A⊥⊥C | B
⇒ IA(A : C) ≤ IA(A : B) & IA(A : C) ≤ IA(B : C)

(5.33)

A 2D & A⊥⊥D | B & C 2D & C⊥⊥D | B :
IA(A : B) < IA(B : C) ⇔ IA(A : D) < IA(C : D)

(5.34)
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Figure 5.10: Example causal model with IA(A : B) < IA(B : C).

Figure 5.11: Simplest, but incorrect model for the system of Fig. 5.3.

Fig. 5.10 illustrates both cases of the assumption. The complexities of
the relations do not decrease when variables are more distant in a causal
model. This would happen by correspondences of the relations and neu-
tralization of its complexities. Note the similarity with the data processing
inequality, which states that, if A⊥⊥C | B, the mutual information of A and
C cannot be higher than that of A and B. The assumption implies that if
X → Y → Z is the true model and X and Y are information equivalent
for Z, connecting the nodes having the simplest relation gives the correct
model.

In case of independent causal mechanisms, complexity increase is what
‘normally’ can be expected. Only rarely will it lead to cancellation of
complexities, such as in specifically-designed systems like the coder-decoder
model of Fig. 5.3. In which X and Y are equivalent for Z, but the relation
X − Z is simpler than Y − Z. The complexity increase assumption is
violated, due to a complete dependence of the decoding relation Y → Z
on both X → Y and R→ Y . Hence, a learning algorithm would consider
the X−Z relation as a direct one and not the more complex Y −Z relation,
as shown in Fig. 5.11. In the context of learning, choosing the simplest
model is the best strategy [Grünwald et al., 2005]. It overcomes overfitting
and even if the learned model deviates from the true model, it will give
good predictions about the behavior of the system. The model of Fig.
5.11 correctly predicts the behavior of the coder-decoder and represents
the purpose of the system.
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5.5 Faithfulness

Faithful models provide a compact representation of all independencies of
a distribution. To capture the independencies that follow from information
equivalences, causal models are augmented.

5.5.1 Conditional Independence and Simplicity

An information equivalence cannot be modeled faithfully in the original set-
ting. Therefore we restrict the conditional independencies that are shown
graphically with the requirement that the conditioning set should provide
a simpler relation in case of information equivalence.

Definition 5.19. (Conditional independence and simplicity) Conditional
independence and simplicity between two sets of variables X, Y and a
conditioning set Z, written as X⊥⊥SY | Z, occurs when

• X⊥⊥Y | Z, and

• IA(Z : Y) > IA(X : Y) if Z⊥⊥Y | X (Z and X are information
equivalent regarding Y), and

• IA(Z : X) > IA(X : Y) if X⊥⊥Z | Y (Z and Y are information
equivalent regarding X).

5.5.2 Deq-separation

When there are deterministic relationships among variables, there are con-
ditional independencies that are not entailed by the Markov condition
alone. Spirtes et al. [1993], based on the work of Geiger [1990], enlarged
the concept of d-separation to create a graphical condition for retrieving
all conditional independencies from a graph and a set of deterministic rela-
tions. They called it D-separation. I enlarge the criterion to also capture
independencies following from information equivalences.

Definition 5.20. (Deq-separation) Let p be a path between a node U and
a node W of a DAG G. Path p is called blocked given subset V of nodes
in G and a set of deterministic relations and information equivalences if
there is a node v on p satisfying one of the following conditions:

1. v has converging arrows (along p) and neither v nor any of its de-
scendants are in V, or

2. v does not have converging arrows (along p) and v is in V or is
determined by V.
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Figure 5.12: Model with X and Y information equivalent for Z and ad-
ditional nodes depicting the possible consequences (same model as in Fig.
5.7).

V and the set of deterministic relations and information equivalences is
said to Deq-separate U from W in G, denoted U⊥eqW | V, iff members
of V block every path from U to W or there is an equivalence of X and Y
with respect to Z such that

1. Y ⊂ V, and

2. the members of (V \Y) ∪X block every path from U to W , and

3. the members of (V \Y) ∪ {Z} block every path from U to W , and

4. members of (V \Y) do not unblock a path between U and W that is
not blocked by X.

Consider the model of Fig. 5.12, A and B are d-separated by X, but
not by Y . If, however, X and Y are information equivalent with respect
of C, A and B are Deq-separated by conditioning on Y .

5.5.3 Faithfulness Revisited

Given the additional independencies that information equivalences entail,
the definition of faithfulness is reconsidered. In cases of information equiva-
lences, the independencies depicted graphically are restricted by the defini-
tion of conditional independency and simplicity (⊥⊥s). On the other hand,
the extended d-separation criterion (⊥eq) makes it possible to retrieve the
independencies following from information equivalences.

Definition 5.21. A causal model is called faithfuleq to a probability dis-
tribution containing information equivalences if

X⊥eqY | Z ⇔ X⊥⊥Y | Z (5.35)
X⊥Y | Z ⇔ X⊥⊥sY | Z (5.36)
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I will show that the definition makes sense by proving that the con-
sequences of combinations of an information equivalence and conditional
independencies that follow from the Markov condition can be captured by
a model that is faithfuleq. Take X and Y equivalent for Z and X − Z
the simplest relation, IA(X : Z) > IA(Y : Z). Consider conditional inde-
pendence statements containing at least two of the three variables of the
information equivalence. There are ten possible combinations:

1. X 2A and X⊥⊥A | Z:

• If also Y⊥⊥A | Z, by property 5.11 it follows that X are Y
equivalent for A. The second part of the Complexity Increase
Assumption assures that IA(X : A) > IA(Y : A), thus Y⊥⊥SA |
X, but X 2SA | Y . An example is shown in Fig. 5.12.

• On the other hand, if Y 2A | Z, then Y is connected to A via
an alternative path and has more information about A than X.

2. Z 2B and Z⊥⊥B | X:
Independency Z⊥⊥B | Y follows property 5.12. Then, there are two
possibilities:

• If B has less information about Z (Z 2X | B), it is related to Z
via X, as shown in Fig. 5.12. By Deq-separation the conditional
independency Z⊥⊥B | Y can be retrieved from the graph.

• If on the contrary variable B contains as much information
about Z as X, all three nodes are equivalent for Z. This is
shown by node D in Fig. 5.12. The node having the simplest
relation with Z is related to Z, which is X in the figure.

3. Z 2C and X⊥⊥Z | C:
By property 5.13, Y also gets independent, Y⊥⊥Z | C. Then, there
are two possible cases:

• If C⊥⊥Z | X, then C is also information equivalent with respect
to Z, which is discussed in the previous case.

• If C 2Z | X, then C has more information about Z. Property
5.13 proves that X or Y are information equivalent for C as
well. This case is shown by node C in Fig. 5.12. By the second
part of the Complexity Increase Assumption, X − C must be
simpler than Y − C, thus Y⊥⊥SC | X.
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4. X⊥⊥Y | D:
By assumption 5.10, it follows that X⊥⊥Z | D, which is discussed by
case 3.

5. Independency X⊥⊥E | Y only interferes with the equivalence if there
is an independence with Z. This is discussed by the previous cases.

The 5 remaining cases, Y⊥⊥A | Z, Z⊥⊥B | Y , X⊥⊥Z | C, Y⊥⊥Z | D and
Y⊥⊥D | X, are equivalent, by symmetry, to respectively cases 1, 2, 3, 4
and 5.

5.6 Constraint-based Learning Algorithms

Recall the PC algorithm, discussed in section 3.4.1. The graph is con-
structed in two steps. The first step, called adjacency search, learns the
undirected graph and the second step tries to orient the edges.

The construction of the undirected graph is based on the property that
two nodes are adjacent if they remain dependent by conditioning on every
set of nodes that does not include both nodes. The algorithm starts with
a complete undirected graph and removes edges for each independency
that is found. The number of nodes in the conditioning set is gradually
increased up to a certain maximal number, called the depth of the search.
The orientation step is based on the identification of v-structures of the
form X → Y ← Z, for which X and Z are independent, but become
dependent conditional on Y . Recall that for all three other possible orien-
tations of X−Y −Z the opposite is true, X and Z are initially dependent,
but become independent by conditioning on Y . During both steps, the
following extensions should be considered.

5.6.1 Equivalence Detection

Information equivalences pose a problem for the constraint-based algo-
rithms. Take X and Y equivalent for Z, by Y⊥⊥Z | X the algorithm would
remove the Y − Z edge and X⊥⊥Z | Y deletes the X − Z edge. Informa-
tion equivalences should therefore be detected during the construction of
the undirected graph. For each conditional independency that is found, it
should be tested whether an equivalence can be found by swapping varia-
bles of the conditioning set with one of both arguments. Furthermore,
equivalences imply independencies. For equivalence X and Y for Z, any
independency Y⊥⊥Z | X,U would be a consequence of the information
equivalence. Such tests can thus be skipped in the procedure. This results
in Algorithm 5.1.
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Algorithm 5.1 Information equivalence detection during adjacency search
of PC algorithm
Input:
Output: For each test U⊥⊥V |W during the adjacency search:

1. Skip test if an equivalence U+ and W− for V , or V+ and W− for
U has been found previously. U+ is defined as a set containing U
and some other nodes and W− denotes a subset of W.

2. If the independence test turns out positive, check for equivalences
U∗ and W for V , and V∗ and W for U , with U∗ and V∗ sets
containing U and V respectively and some nodes adjacent to V and
U respectively such that they have the same number of elements
as W.

3. If an equivalence is found, it is added to the model. Unless there
was already an equivalence found of one of both equivalent nodes
sets with for the same reference variable, then the other set is
added to that equivalence.

4. If both equivalences hold, U∗, V∗ and W form a multi-node equi-
valence.

5. Edge U − V is not removed from the graph.

5.6.2 Equivalence selection

The second step of the extended PC algorithm alternates selection among
equivalent relations, given by Algorithm 5.2, with the original orientation
step until no more equivalences or undirected edges can be resolved. For
orientation, the original orientation rules can be applied on the graph. If
for an information equivalence, relation X − Z is considered simpler than
relation Y −Z, node Y has to be regarded as separated from Z by X, while
X is not separated from Z by Y . This d-separation information is used by
the orientation rules. For the equivalences that could not be resolved with
the complexity criterion, the equivalent node set that are causes of the
other equivalent node set are chosen as adjacent to the reference variable.
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Algorithm 5.2 Edge selection among information equivalences by the
complexity criterion
Input:
Output: To evaluate information equivalences of W 1, . . . ,W n with res-

pect to Z, compare the complexities of the following functions fi with i
from 1 to n, only if the nodes Wi,j ∈W i are still connected to Z.

1. if all edges connecting the equivalent nodes and the reference va-
riable are oriented:

(a) if the edges are oriented toward the reference variable, con-
sider the following functions: Z = fi(Wi, other nodes with
edges oriented to reference node Z).

(b) if the edges are oriented from the reference variable, in order
to evaluate W i, count up the complexities of the functions
Wi,j = fi(Z, other nodes with incoming edges to Wi,j), for
all Wi,j ∈W i.

2. if some edges are not oriented, consider the following functions:
Z = fi(Wi).

The complexity of the functions is estimated as explained in section
5.4.1. If the complexity of the simplest function differs by at least 8 bits
(this threshold corresponds to 1 operation) with the complexities of the
other functions, the corresponding equivalent nodes can be related with
the reference variable, the edges of the other equivalent nodes with the
reference variable are removed. For multi-node equivalences, the simplest
edges should remain in the graph such that all nodes are connected.
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Figure 5.13: Model learned from random data generated by a set of struc-
tural equations.

5.7 Experiments

This section reports on learning models based on generated data. 150 data
points were generated using the following structural equations:

G = A+B K = D + 0.4I + err O = 10 + 1.3L− F
H = 4C2 L = 1.5 + 0.35K + 0.35E + err P = L.F + err
I = 0.4C3 M = 1 + 0.04K2 Q = 10N/O + err
J = G+ 0.4H N = 10 + L+ F R = M + 0.4Q+ err

Variables A, B, C, D, E and F are randomly chosen between 0 and 10
and err is an error term, reflecting a random disturbance with maximal
size 1/8 of the variable’s range (the difference between its maximal and
minimal value). There are 7 deterministic variables (G, H, I, J , M , N
and O). The system incorporates the different cases discussed in this
paper: a bijective relation between K and M ; G is determined by A and
B; multi-node equivalence C, H and I; and equivalence of (L, F ) and (N ,
O) for P and Q.

The extended PC algorithm with default options is applied onto the
data. To handle data with non-linear relations, an independence test is
used based on the conditional mutual information and kernel density esti-
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mation, which will be explained in Section 7.3. The augmented Bayesian
network learned by the extended PC algorithm, depicted in Fig. 5.13,
provides a correct model. Remark that the algorithm does not check for
deterministic relations, only for information equivalences. This strategy
was followed to verify that the algorithm works.

I also verified the correctness of the assumptions. Assumptions 5.8 and
5.10 hold for the generated data. Weak transitivity, however, was violated
in 31 out of the 1022 cases (in which Eq. 5.14 applies). The cases are
characterized by a failure of the independence test in detecting dependen-
cies between ‘distant’ variables. The influence of a variable on another
variable happens via multiple variables so that the random disturbances
get to dominate the influence. For example, the test classified A and M
as independent, while weak transitivity expects dependence (or A 2M | J ,
which is also not true), since A 2J and J 2M . The test also returned E⊥⊥K
and E⊥⊥K | N , but E 2N and K 2N demand a dependence.

The learning module together with the experimental data can be found
on the web. They can be accessed at http://parallel.vub.ac.be.

5.8 Summary of Chapter

Deterministic relations and, more generally, information equivalences pose
problems for the current constraint-based learning algorithms. This limi-
tation had to be overcome in order to be able to apply the algorithms
on performance data. Information equivalences give rise to violations of
the intersection condition and the inexistence of a faithful graph. They
generate independencies that do not follow from the Markov condition.
Information equivalences appear when two sets of variables in some sense
have the same information about another variable. The probability distri-
bution is then characterized by an equivalent partitioning.

In order to capture information equivalences, this chapter provided
extensions to the definition of causal models and to the PC algorithm ac-
cording. The extensions were developed according to the same philosophy
as the original theory:

• The conditional independencies provide the required information. In-
formation equivalences are detected by a violation of the intersection
condition.

• The aim is a faithful model, one that describes all conditional inde-
pendencies. To incorporate information equivalences, an augmented

http://parallel.vub.ac.be


5.8. Summary of Chapter 121

Bayesian network was defined and faithfulness was redefined. Un-
der weak transitivity and two other mild assumptions, information
equivalences can be characterized by basic information equivalences,
which are added to the augmented Bayesian network. To retrieve
the conditional independencies that follow from information equiva-
lences and the Markov condition from the graph, the d-separation
criterion was enlarged. To ensure minimality of the model, the com-
plexity of the relations was introduced to determine adjacency among
information equivalent relations. Faithfulness can then be reestab-
lished by enlarging the definition of conditional independency with
the requirement of simplicity.

• Causal models aim at describing the qualitative properties of a sys-
tem. A deterministic relation is clearly a regularity. The description
of P (Y | X) can be compressed considerably when y = f(x).

• Constraint-based learning algorithms rely on evidence. The com-
plexity of relations was introduced as a criterion to determine ad-
jacency among information equivalent relations. Complexity is the
evidence which allows for the construction of correct models. At least
under the assumption that the complexity of the relations increases
for more distant variables, which I called the Complexity Increase
Assumption. The PC algorithm could easily be extended for lear-
ning the augmented models. Experiments with generated data show
that the assumptions hold and correct models are learned.

It must be added that the results are also conform the regularity-
philosophy unfolded in the previous chapter. Information equivalences
are a kind of regularities that were not described by Bayesian networks so
far. They are characterized by an equivalent partitioning. Note that the
assumptions made for the here developed extensions are based on strict
regularities too. An example of the violation of weak transitivity was
discussed in the previous chapter, counterexample 7 of Section 4.3. The
invalidity of Assumptions 5.8 and 5.10 also happens when the probability
distribution exhibits strict regularities. Finally, the violation of the Com-
plexity Increase Assumption happens when complexities along a causal
path neutralize each other, so that the net effect is a simpler complexity
for more distant variables. The correspondence of the relations has to be
viewed as yet a new regularity. Not only should this regularity be added
to the model, this regularity also provides useful information. If A→ B is
known to be quite complex and B → C too, then A→ C will be expected
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to be even more complex. If this is not the case, it is an interesting fact
about the system.

This chapter concludes the first part, the theoretical and philosophical
study of causal inference.



Part II

Performance Modeling
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AN overview of the actors appearing in the second part of my work must
start with computers, these pieces of hardware allowing for calcula-

tions and information processing. The speed of the evolution of computer
technology is astonishingly swift, such as the ever-lasting increase of pro-
cessing power. But despite the doubling every 18 months of the processing
power (Moore’s Law), it cannot catch up with the growing demand for
computational resources. This is triggered by, for example, the continuing
release of new applications and the introduction of scientific computing
in new fields, such as bio-informatics. Performance remains a constant
problem for computer application and system developers. Consider also
the present need for small, cheap and energy-efficient systems. However,
performance becomes an increasingly difficult matter to master, since the
growth of available processing power is paralleled with an almost similar
expansion of the complexity of today’s systems.

A solution for responding to the demand of processing power lies in
parallel processing. The idea is to connect (simple) computing units so
that the accumulated resources become available at once. A program is
rewritten in a parallel version, which will perform the same calculations
in parallel on the available computing units. Performance is the ‘raison
d’être’ of parallelization. Understanding performance is therefore essen-
tial. The increased complexity of interactions among the intertwined pro-
cesses of computation and communication makes it even more challenging.
Software and hardware developers must require insight in the aspects con-
suming most of the resources: knowledge, at a high level, of the program
sections that are responsible for a bad efficiency; knowledge, at a low level,
of the bottlenecks in the system. This is nowadays supported by advanced
performance monitoring and analysis tools. The challenge for computer
scientists is to provide the application and system developer with a clear
and understandable performance analysis. The track which I chose to pur-
sue in the so-diverse world of the study of computers’ performance is to
automate the construction of models about performance. Models which
are learned by the statistical analysis of experimental data. Models about
performance serve two purposes: prediction and understanding. Quan-
titative models are required for estimating the performance for a given
configuration. Qualitative models uncover which and how parameters and
variables affect the overall performance. I will focus on the qualitative
models learned by the algorithms for causal inference.

The overall performance depends on the match of program and system.
A certain kind of programs might run faster on a certain type of systems,
while another kind might be more efficient on other systems. The question
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arises to what extent generic models exist which are valid for combinations
of applications and systems. Whether it is possible to characterize an ap-
plication at once, so that its performance can be predicted on any system.
The worst case scenario is that any combination of application and system
results in a different model. This problem is addressed in the last chapter.
I will show that regularities play a decisive role in the match of program
and system.



Chapter 6

Performance Analysis of
Parallel Processing

THE second part of my work studies the modeling of the performance of
sequential and parallel programs. This section will introduce parallel

processing and the analysis of its performance.

Parallel processing is the only answer to the ever-increasing demand
for more computational power. Nowadays, the big giants in hardware and
software, like Intel and Microsoft, are increasingly aware of it and have
pounced onto the market. But unlike sequential programs running on the
Van Neumann computer, the parallelization of programs is not trivial. It
depends quite heavily on the underlying parallel system architecture. Au-
tomatic parallelization of programs is a 50-year old dream in which a pro-
gram is efficiently matched with the available computing resources. This
has become possible, but only for a very limited number of applications,
the class of trivially parallelizable programs. For those, the computational
work can be divided into parts which can be processed completely inde-
pendently. Other programs, on the other hand, need manual adaptation
to the available resources. This cannot be achieved without a detailed un-
derstanding of the algorithm. Intelligent reasoning is necessary to engineer
the matching of the patterns of the concurrently operating entities to the
pattern of the processors and the network resources, in order to obtain
an efficient interplay of computation and communication. The aim of a
performance analysis is to provide support for the developer of parallel
programs.
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The goals of a performance analysis are multifold:

• An understanding of the computational process in terms of the
underlying processes: instructions performed, processor cycles
spent, cache misses, memory hierarchy utilization, communica-
tion, resource utilization per program section, number of itera-
tions, and so on.

• An identification of inefficient patterns, the bottlenecks that un-
necessarily slow down the execution process. In particular, per-
formance values that are, given the context, ‘abnormally’ low
and which can be considered for optimization and improvements.
They indicate up to which points tuning efforts are most effective.

• A prediction of the performance for a new program or system
configurations. A performance model should provide an expecta-
tion of the achievable performance with a reasonable fidelity, as
a function of program and system parameters.

• The definition of program and system properties that fully cha-
racterize their performance, i.e. which allow the quantification of
their performance for a wide range of systems and system confi-
gurations.

Various tools exist nowadays for automated diagnosis and control. Con-
siderably more effort is needed to improve current work to present the user
a simple, comprehensible and reasonably accurate performance evaluation
[Pancake, 1999]. Current challenges are further automation, tackling com-
plex situations (e.g. GRID environments [Nemeth et al., 2004]) and provi-
ding the software developer with understandable results with a minimum
of learning overhead. To sketch the difficulty of the task, consider the study
of network performance. Communication delays should be attributed to
the different steps of the communication process, such as machine latency,
transfer time, network contention, flight time, etc [Badia, 2003]. A cor-
rect understanding of the origins of the delays is indispensable. The task of
identifying them becomes even more difficult when implementation-specific
low level issues come into play, such as specific protocol behavior, window
delays or chatter [NetPredict, 2003]. These are not always fully understood
and can often not be measured directly.

The first section discusses the parallel performance metrics which where
employed to build our performance analysis tool, EPPA. These metrics are
based on the lost cycle approach. Overhead ratios are defined to quantify
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the impact of each type of lost cycle, or overhead, on the overall perfor-
mance, the speedup. The second section explains which information is
recorded by EPPA and compares the tool with related work.

6.1 Parallel Performance Metrics

Parallel processing is the simultaneous execution of a program by mul-
tiple processors. Parallelization is the rewriting of a sequential program
into a program that can be processed in parallel and that gives the same
result as the sequential program. The advantage is that the combined
computing and memory resources of the processor group can be utilized.
Calculation or memory intensive programs can fruitfully exploit the aggre-
gated resources to finish the job in less time.

Example 6.1 (Parallel processing I: Protein folding).

Proteins are long chains of thousands of amino acids. After cre-
ation, the sequence ‘folds’ into a unique 3-dimensional structure
that determines the protein’s properties. The shape into which
a protein naturally folds is known as its native state. Fig. 6.1
shows an antibody against cholera, unfolded and in its native
state. Understanding the structure of a protein is critical in un-
derstanding its biological function. The structure of (synthetic)
proteins can be determined by running detailed simulations of
the folding process. Because of the complexity and multitude
of interactions, these computations require ‘zillions’ of proces-
sor cycles. It takes with today’s computers about 10000 days
to simulate a particular folding of an average protein.

Folding@Home is a distributed computing project from Stan-
ford university to tackle this performance problem (http://
folding.stanford.edu/). People from throughout the world
run the software and make one of the largest supercomputers
in the world in the form of a computational grid. The partici-
pation in this project throughout the world is depicted in Fig.
6.2. Every computer runs a section of the simulation for one of
the many protein foldings that need to be calculated in research
on Alzheimer’s Disease, Cancer, Parkinson’s Disease, etc. To
contribute, you simply install a small program on your com-
puter which runs in the background only consuming processor
time when there is no other work.

http://folding.stanford.edu/
http://folding.stanford.edu/
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Figure 6.1: Protein folding, from amino acid sequence to a 3-dimensional
structure.

Figure 6.2: Folding@Home’s supercomputer. Distribution accross the
world of the computers participating in the project.
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The runtime of a sequential program is defined as Tseq. The parallel
version, whose runtime is denoted as Tpar, will hopefully finish faster. The
profit of switching from one to multiple processors is characterized by the
speedup:

Speedup =
Tseq
Tpar

(6.1)

It expresses how much faster the parallel version runs relative to the se-
quential one. Note that in the context of parallel processing I denote the
computation time of the sequential program as Tseq, whereas in context of
sequential computing I denote the computation time as Tcomp.

When the parallel program is run on p processors, the efficiency is
defined as:

Efficiency =
Speedup

p
=

Tseq
p.Tpar

(6.2)

Efficiency measures how well a processor is used during the parallel com-
putation. It represents the effectivity of the set of cooperating parallel
processes. Efficiency quantifies the portion of the parallel runtime dur-
ing which the processors where doing useful work, i.e. when the parallel
execution is performing parts of the sequential execution. Ideally, the ef-
ficiency is 100%, which is equivalent to a speedup of p. Each processor
optimally executes an equal part of the sequential program. In practice,
the effectivity of the parallel program is limited due to the inevitable pa-
rallel overhead, such as communication of data between the processors.
Hence, speedup will be smaller than p. It can even become lower than 1,
which indicates a slow down instead of a speed up. On the other hand is it
also possible to attain a speedup higher than p, called superlinear speedup.
It typically occurs when the parallel program succeeds in a more efficient
utilization of the memory hierarchies of the processors. This results in
lower access times of the memory hierarchies.

It must be noted that the here developed performance metrics focus on
the computation time of the process. Other performance metrics, such as
energy utilization, are, despite their increasing importance, not considered
here. On the other hand, a generic approach is pursued, one that applies
for a multivariate analysis in general.

6.1.1 Lost Cycle Approach

For the analysis of the parallel runtime and overhead, I adopt the lost
cycle approach, as conceived by Crovella and LeBlanc [1994]. It provides
a measure of the impact of the overhead on the speedup. Ideally, each
processor computes its part of the total work. Thus without additional
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work, we would have Tpar = Tseq/p. The work is divided among the
processors of the parallel system. The total useful computational work is
characterized by the sequential runtime. The Speedup then equals to p.
In practice, however, additional processor cycles are needed to manage the
parallel execution. Overhead is therefore defined as

overhead = p.Tpar − Tseq. (6.3)

Each process has Tpar time allocated to perform its part of the job. The
cycles during this period that are not employed for useful computation are
therefore considered lost processor cycles. Take the following example.

Example 6.2 (Parallel processing II: Parallel Matrix Multiplication).

Consider the multiplication of 2 square matrices with size n×
n: C = A × B. The elements of the product matrix C are
calculated according to the formula

Ci,j =
n∑
k=1

Ai,k.Bk,j , (6.4)

with i and j indicating respectively the row and column of
the element. The computation involves n3 multiplications and
n2×(n−1) additions. The runtime rapidly increases for higher
values of n, what makes it worth for being computed in paral-
lel for high values of n. There exist many ways to calculate
the product in parallel. A simple version is illustrated by Fig.
6.3. The A matrix is striped into p blocks n/p of contiguous
rows, the B matrix into p blocks of n/p columns. They are
distributed among the p processors. Each processor stores a
submatrix of A and one of B, labeled in Fig. 6.3, in which p is
3. A master processor does the partitioning and sends the sub-
matrices to the slave processors. The algorithm then alternates
p computation and communication steps. In each computation
step, each processor multiplies its A submatrix with its B sub-
matrix, resulting in a submatrix of C. The black circles in Fig.
6.3 indicate the step in which each submatrix is computed. Af-
ter the multiplication, each processor sends it B submatrix to
the next processor and receives one from the preceding pro-
cessor, in such way that the communication forms a circular
shift operation. When finished, the slaves send their part of C
to the master computer. The timeline of the execution on our



6.1. Parallel Performance Metrics 133

Figure 6.3: Parallel Matrix Multiplication on 3 processors: partitioning,
computation and communication in 3 steps. At each step, 3 submatrices
are calculated, indicated with black circles.

cluster of Pentium II processors connected by a 100MBs switch
is shown in Fig. 6.4. Two types of overhead can be identified:
communication and idling. The speedup for the computation
of a 100× 100 matrix is 2.55 and the efficiency is 85%.

The parallel runtime on processor i consists of its part of the useful
work, T iwork, and the cycles spent on the overheads. The impact of the
different types of overhead will be analyzed separately. Each overhead
type is labeled with an index j. The number of overhead types is denoted
with O. T i,jovh then denotes the time of overhead j on processor i. The
runtime on every processor can then be written as:

T ipar = T iwork +
O∑
j

T i,jovh with i = 1 . . . p (6.5)

Tseq + Tanomaly =
p∑
i

T iwork (6.6)

where Tanomaly is the difference between the sum of all cycles spent on
useful work by the different processors and the sequential runtime. In
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Figure 6.4: Execution profile of a Parallel Matrix Multiplication of two
100x100 matrices.

most cases it is very close to zero. If positive, the execution of the useful
work takes more time in parallel. If negative, the parallel execution is
faster, for example by a more efficient use of the memory hierarchy. The
parallel runtime is the same on all processors:

Tpar = T 1
par = . . . = T ppar. (6.7)

Hence, we may write:

Tpar =

p∑
i

T ipar

p
(6.8)

Together with 6.5 it follows that

Tpar =

p∑
i

T iwork +
p∑
i

O∑
j

T i,jovh

p
(6.9)

=

Tseq + Tanomaly +
O∑
j

T jovh

p
(6.10)

with T jovh =
p∑
i

T i,jovh, the total time of overhead j. Parallel anomaly is also

regarded as overhead, although that it might be negative. It is therefore
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added to the overheads, TO+1
ovh The speedup can then be rewritten as

Speedup =
Tseq

Tseq+

O+1∑
j

T jovh

p

=
p

Tseq
Tseq

+

O+1∑
j

T jovh

Tseq

(6.11)

Hence [Kumar and Gupta, 1994]:

Speedup =
p

1 +
∑
j

T jovh
Tseq

. (6.12)

The equation expresses how the overheads influence the speedup. The
lost processor cycles must be considered relative to the sequential runtime.
Without any overhead, the speedup equals to p.

6.1.2 Overhead Ratios

From Eq. 6.12 it follows that the impact of overhead on the speedup is
reflected by its ratio with the sequential runtime. I call these terms the
overhead ratios. They express the relative weight of the overhead term:

Ovhj =
T jovh
Tseq

. (6.13)

The speedup is then:

Speedup =
p

1 +
∑
j

Ovhj
, (6.14)

and the efficiency gives

Efficiency =
1

1 +
∑
j

Ovhj
. (6.15)

These definitions differ slightly from the normalized performance
indices used by the performance tool AIMS, defined as indexj = T jovh/Tpar
[Sarukkai et al., 1994]. They are always less than one, while the overhead
ratios become more than one if the runtime of the overhead surpasses the
sequential runtime. The advantage of the overhead ratios is that they are
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Figure 6.5: Parallel Matrix Multiplication on 3 processors: overall perfor-
mance.

Figure 6.6: Parallel Matrix Multiplication on 3 processors: overhead ratios
per process.

independent of the other overheads. This is not the case for the indices,
since Tpar incorporates all overheads. If one overhead increases, its index
increases and the indices of the others decrease, since their relative weight
decreases.

Example 6.3 (Overheads of Parallel Matrix Multiplication).

Fig. 6.5 shows the overall performance of the run of the pre-
vious example. Two overheads are identified: the communica-
tion and the idle time. Their ratio with the sequential time,
Ovhj , is given. The sum of the processor’s computation times,
p∑
i

T iwork, divided by the sequential runtime is also given, but

is not equal to 100%. A value of 100% means that the compu-
tation time of the useful work is equal for a sequential as for a
parallel execution. It is 102.6% instead, which means that the
overhead ratio of the parallel anomaly is 2.6%. In parallel, 2.6%
more cycles are needed to do the same work. Additionally, Fig.
6.5 shows the overhead ratios per processor individually.
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6.1.3 Overhead Classification

The different overheads of a parallel execution can be classified into the
following classes:

1. Control of parallelism (TctrlPar) identifies the extra functionality ne-
cessary for parallelization. This additional work can be further sub-
divided into the different logical parts of the parallel algorithm, like
partitioning or synchronization, as done by several authors [Bull,
1996] [Truong and Fahringer, 2002b].

2. Communication (Tcomm) is the overhead due to the exchange of data
between processors. It is defined as the overhead time not over-
lapping with computation: the computational overhead due to the
exchange of data between processes, in the sense of loss of processor
cycles due to a communication operation.

3. Idling (Tidle) is the processors idle time. It happens when a processor
has to wait for further information before it can continue. Reasons for
idling are for example load imbalances, when the work is unequally
distributed among the processes, or a bottleneck at the master, when
it has to serve all slaves.

4. Parallel anomaly (Tanomaly) is the difference between the sum of
all cycles spent on useful work by the different processors and the
sequential runtime (Eq. 6.6). By the alternative speedup formula
(Eq. 6.12), Tanomaly was regarded as overhead. It influences the
speedup, given by its ratio with the sequential runtime.

6.1.4 Granularity

To illustrate how a performance analysis is performed, this section intro-
duces one of its most influential concepts: granularity. The key to the
execution of parallel algorithms is the communication pattern between
concurrently operating entities. By choosing speedup as the main goal of
parallelization, Eq. 6.12 shows that overheads should be considered rela-
tively. Communication overhead Tcomm must be considered with respect
to the computation time. The inverse of the communication overhead ratio
is called the granularity [Stone, 1990]:

Granularity =
Tcomp
Tcomm

=
1

Ovhcomm
(6.16)
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Granularity is a relative measure of the ratio of the amount of computa-
tion to the amount of communication of a parallel algorithm implemen-
tation. The bigger the granularity, the more the application spends time
in computation relative to communication. Another interpretation is that
it expresses the size of the tasks. Since the communication is often the
main overhead, the granularity gives a good indication of the feasibility of
parallelization. With a granularity of one, the efficiency is 50%.

The communication time can be modeled as a simple linear function of
the transmitted data size and a constant additive factor representing link
startup overheads (latency). This is a conventional approach in analyzing
communications for most message-passing, distributed systems [Steed and
Clement, 1996]. The communication time can thus be split into a compo-
nent proportional to the communicated data size and a part proportional
to the latency of the communication links. For computing-intensive tasks
and large data chunks, the data-proportional part overwhelms the constant
part so that the latter can be neglected. Since parallelization is used for
computation-intensive tasks, the approximation is valid. The communica-
tion overhead time can then be written as β.qdata, with qdata the size in
bytes of the communicated data. Assume that we can approximate the
computation time by τ.qoperations, with qoperations the number of basic op-
erations of the algorithm and τ the cycles per operation. The granularity
can then be rewritten as:

Granularity =
Tcomp
Tcomm

=
τ

β
.
qoperations
qdata

(6.17)

This ratio depends on hardware and software, so τ/β is called the hard-
ware granularity and qoperations/qdata the software granularity. The
performance is affected by the overall granularity, independent of how it is
spread over software and hardware.

6.1.5 Parameter Dependence

As can be expected, parallel performance heavily depends on program and
system configuration. Most numerical, computation-intensive algorithms
have a parameter that determines the size of the computational work. I
call it the work size parameter, which I denote with W . For parallel
processing, p, the number of processors participating, is the most impor-
tant system parameter. The following example gives a typical parameter
dependency analysis.
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Figure 6.7: Performance of Parallel Matrix Multiplication as a function of
number of processors (with n = 100).

Example 6.4 (Parameter Dependence of Parallel Matrix Multiplication).

Let’s go back to the example of the multiplication of 2 n × n
matrices. Fig. 6.7 shows speedup and efficiency in function of
p. Although the speedup increases when more processors are
employed, the efficiency decreases.

Performance as a function of matrix size n gives a different
picture. Experimental results are shown in Fig. 6.8. Commu-
nication increases with increasing n, but computation increases
a lot faster, as it is proportional to n3. The net result is that
the impact of the overhead decreases and, consequently, the
efficiency increases. With p = 3, the ideal speedup is 3. The
results show that with increasing p, the speedup asymptotically
approaches the ideal speedup. For large matrices, the commu-
nication overhead can be neglected and an ideal speedup can
be achieved. Software granularity is proportional to n.

The performance results for matrix multiplication are typical for a lot of
parallel programs: overhead increases with p so that speedup decreases and
overhead relatively decreases with increasing work size W . Applications
with a computational part that increases faster than the communication
as a function of W are appropriate for parallelization.
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Figure 6.8: Performance of Parallel Matrix Multiplication in function of
worksize (with p = 3).

The influence of other system parameters, such as clock frequency and
memory size, or application parameters, such as the datatype used for the
datastructure, can be studied similarly.

6.2 Tool

Between 2000 and 2004 a tool for the performance analysis of parallel ap-
plication was developed at the parallel lab of the VUB, by Jan Lemeire,
John Crijns and Andy Crijns [Lemeire et al., 2004][Lemeire, 2004]. The
tool is called EPPA, which stands for Experimental Parallel Performance
Analysis. Experimental data is gathered through the profiling of parallel
runs. The post-mortem analysis is based on the performance metrics deve-
loped in the previous section. The goal of EPPA is to support the developer
of parallel applications with an easy and clear analysis.

6.2.1 EPPA

The EPPA analysis is based on traces of the execution of a parallel pro-
gram: every phase is identified together with the important characteristics
of each phase. The tracing is performed automatically when the program
uses MPI [Snir et al., 1996]. MPI, the Message Passing Interface, defines
the standard for writing parallel programs based on message passing. Pa-
rallel processes communicate by exchanging messages. The other approach
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Figure 6.9: The MPI profiling interface to intercept MPI calls (dashed
lines).

is shared memory, according to which memory may be simultaneously ac-
cessed by the different parallel processes.

The MPI profiling interface makes it easy to intercept the MPI calls
made by a parallel program. How this works is shown in Fig. 6.9. After
linking an MPI program with the EPPA library, each MPI call, before go-
ing the MPI library, is intercepted by the library. The information about
the MPI operations and their durations are stored in the EPPA database.
By this, EPPA collects information about the communication operations:
when messages are send, at what times they arrive, when and how long
a process is waiting for an incoming message, etcetera. Four phases are
identified automatically: computation, sending, receiving and idling. The
periods between successive MPI calls are stored as computation phases.
What exactly the program is doing, useful work or overhead, cannot be de-
tected automatically. The user has the possibility to clarify this by adding
EPPA calls. The idling phases are the periods that a process is waiting
for incoming messages. The user program has only to be linked with the
EPPA instrumentation library to activate the tracing of all communica-
tion activity. This is shown in Fig. 6.10. Programs using the older PVM
library for message-passing should be instrumented manually by adding
an EPPA function call after each call to PVM.

The EPPA Tool presents the performance analysis in different views:

• The timeline shows the program execution of each process (Fig. 6.4).

• The overall performance gives speedup, efficiency and global over-
head ratios (Fig. 6.5).

• The overhead ratios per process (Fig. 6.6).
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Figure 6.10: Scheme of the EPPA tool.

• The performance variables in function of number of processors p or
work sizeW (Fig. 6.7 and 6.8). Besides the visualization, a regression
analysis can be applied on the displayed functions, returning the
curve that best fits the data.

Besides the information about the program’s communication that is col-
lected automatically, the user is given the possibility to specify additional
information. The data collected in this way facilitates the refinement of
the analysis. EPPA provides the following options:

• The user can differentiate computational phases. EPPA automati-
cally traces computation phases, as the cycles between two successive
MPI calls. But it can not know whether these computations are part
of useful work or overhead (control of parallelism). To make this
difference, the user can add EPPA calls to specify the role of each
computational phase.

• System parameter p and the program’s work size parameter W are
added for each experiment. Besides these, the user can add other
system or program parameters. The performance variables can then
be studied as a function of these parameters.

• The size of each message in bytes is automatically recorded by EPPA.
The communication performance can be studied as a function of mes-



6.2. Tool 143

sage size. Additionally, the user can specify the number of quantums
that are processed and communicated in each phase. The defini-
tion of a quantum depends on the specific program. For a matrix
operation, a quantum is an element of the matrix. EPPA provides
the functionality to visualize performance metrics in function of the
number of quantums.

• Finally, the main part of an algorithm usually is the repetitive exe-
cution of a basic operation. For matrix multiplication, the main
computations consist of a multiplication and addition. The number
of basic operations can also be passed to EPPA and studied in detail.

6.2.2 EPPA Measurement Overhead

Measurement implies interference. Measurement is impossible without
adding overhead. In the case of tracing the MPI calls during parallel
execution the overhead constitutes the measurement of the phase duration
and the recording of all phase information. The phase information is kept
in memory during execution and is only written to the EPPA database
when the experiment is finished. The database calls do not have to be
added to the overhead.

To verify the impact of profiling, the same experiment can be run
with and without the tracing. The overhead was estimated with a test
program in which the number computations and the size of communicated
data could be varied. Experiments were run on our Linux computers with
Athlon processors of 1.6GHz. The differences between the runtimes with
and without tracing give an overhead per call between 4 and 5 µs. Time
measurement has a precision of only 0.5 µs. This overhead, however, only
has an impact on the performance for experiments with a low number of
computations and small messages. Experiments show that the error on
the parallel runtime is smaller than 5% if the messages are larger than 600
Bytes.

Concluding, coarse grain applications, in which large data sets have to
be communicated that need many computations, the overhead that EPPA
introduces can be neglected. For fine grain applications, with many small
messages and short computation times, the overhead is not negligible. It
must, however, be noted that when the MPI calls are equally distributed
among the processes, the impact of the overhead on each process is the
same. Each phase is equally extended with the same measurement over-
head. The parallel runtime will be affected by the overhead, but not the
execution profile. EPPA thus still offers a valid overhead evaluation. Ex-
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cept when one process performs much more MPI calls than the other pro-
cesses. Finally, it must be noted that runtime and speedup can always be
measured exactly by switching off the detailed phase tracing.

6.2.3 Related Performance Analysis Tools

XPVM (http://www.netlib.org/utk/icl/xpvm/xpvm.html) and XMPI
(http://www.lam-mpi.org/software/xmpi/), tools that come together
with PVM and MPI, automatically trace the computation-communication-
idle phases of the execution profile. Fundamentally, EPPA does the same
thing. But EPPA provides the possibility to the user to specify extra
information. EPPA is mainly used for multiple experiment analysis, while
XPVM and XMPI are limited to the analysis of a single experiment.

More advanced profiling tools like SCALEA [Truong and Fahringer,
2002a], Pablo [Reed et al., 1993], KOJAK [Mohr and Wolf, 2003a] or
VAMPIR [Nagel et al., 1996] (semi-) automatically instrument the pa-
rallel program and use hardware-profiling to measure very detailed per-
formance data. In the post-mortem analysis, they automatically filter
out relevant parts (bottlenecks, situations of inefficient behavior, perfor-
mance losses) from the huge amount of low-level information and try to
map them onto the developers program abstraction. They rely on a de-
tailed classification of overheads (see e.g. [Bull, 1996] or [Fahringer and
Seragiotto, 2002]) and inefficiencies that are identified with an advanced
search engine. Our research focuses on a multivariate analysis. Current
tools that support multiple experiment analysis plot performance varia-
bles (SCALEA [Truong and Fahringer, 2002b]) and inefficiencies (Aksum
[Fahringer and Seragiotto, 2002]) as a function of application and system
parameters. Others, such as AIMS [Yan et al., 1995], additionally provide
a regression analysis.

6.3 Summary of Chapter

This chapter introduced parallel processing and the performance metrics
to evaluate parallel programs. For optimal performance, the occurrence
of lost processor cycles during parallel execution should be avoided. The
impact of an overhead, a source of lost cycles, on the speedup is quantified
by its ratio with the sequential runtime. When considering the main phases
of a parallel execution, overheads can be classified according to 4 types:
control of parallelism, communication, idling and parallel anomaly. The
tool EPPA can be used to automatically trace these phases during a run of
a parallel program. The execution is visualized together with the different

http://www.netlib.org/utk/icl/xpvm/xpvm.html
http://www.lam-mpi.org/software/xmpi/


6.3. Summary of Chapter 145

performance metrics. The user can augment the analysis by providing
additional information about the parallel program.

The here developed performance analysis and tool allows the statistical
analysis of experimental data retrieved from the execution of parallel pro-
grams. Qualitative statistical analysis, which will be applied to the data,
is discussed in the next chapter.





Chapter 7

Qualitative Multivariate
Analysis

SCIENCE endeavours to find laws relating to the world. The world
consists of what we can observe about it1. Observation happens by

signals that arrive to us. The sources of the signals are the ‘things’ we
observe from the world. The ‘things’ have different ‘states’ at different
moments2. By calling the things variables and the states the values of
the variables, we talk about a multivariate statistical analysis. The goal of
statistical analysis is to learn something from the observations about the
system that generated the observations. Multivariate analysis is thus more
or less basic to science. Causal inference is a statistical analysis which tries
to reveal the underlying structure of the system under study.

Multivariate statistical analysis involves observation and analysis of
more than one statistical variable at one time. At each observation the
state of the variables is recorded. The observed data, called a sample,
can be presented in a table:

variable 1 variable 2 variable 3 . . .
experiment 1 7 10.45 white . . .
experiment 2 3 0.655 black . . .
experiment 3 2 34.93 red . . .

. . .

1“There could be more to the world, but if we cannot sense it, if we are not influenced
by it, without interaction or without contact, we cannot say anything substantial about
it,” Frans Lemeire, my father (besides many other philsophers who say the same, but I
learned it from him).

2Things having the same state at any moment, are boring and easy to study scien-
tifically. Moreover, the question remains whether we would be conscious of such things.

147
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I restrict myself to an analysis that is based on the assumption that
the observations are independent and identically distributed (i.i.d.):

• Observations are mutually ‘independent’, an observation made at
time t does not influence the outcome of an observation made at
time t′.

• ‘Identically distributed’ means that observations made at different
moments come from the same underlying probability denstity distri-
bution. The system under study does not change during the experi-
ments.

The i.i.d. assumption is true for data that is gathered during separate runs
of programs. The execution of a program on a computer system can be
assumed to be to a great extent independent of an execution that happened
just before.

This chapter attempts to elucidate the practicalities of the multivariate
analysis that will be employed in the next chapters. The focus lies on a
qualitative analysis, i.e. the discovery of the relational structure among
the variables, as explained in the first part of this work. The purpose is
to get to understand systems by analyzing the data gathered during expe-
riments. For this, the EPDA (Experimental Performance Data Analysis)
tool was developed for analyzing performance data [Lemeire, 2006]. Be-
sides its focus on performance data, it is applicable to any multivariate
statistical analysis. It allows for easy recording, storage and visualization
of the experimental data. For data analysis, it groups a set of statisti-
cal technologies, comprising the calculation of derived variables, regression
analysis, kernel density estimation, outlier detection, conditional probabi-
lity table compression and, last but not least, the extended causal structure
learning algorithm (Chapter 5). A combined use of these techniques allows
for the construction of qualitative and quantitative models. The chapter
concludes with practical details about the causal inference algorithm, the
use of mutual information as dependency measure and the calibration of
the kernel density estimation algorithm.

7.1 EPDA

EPDA is based on the recording of experiments, during which values are
attributed to the variables of interest. EPDA is written in C++, runs on
Linux and the data is stored in a MySQL database. Per database, expe-
riments are grouped in applications and applications in projects, allowing
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Figure 7.1: Screenshot of EPDA.

the user to manage his experiments. The database also stores the pro-
perties of each variable: its type (categorical, discrete or continuous), if
applicable its unit, whether the variable is an in- or output, if discrete or
categorical its domain (the set of possible values) and additional comment.

Nominal or categorical variables have a domain which contains ca-
tegories. Each value is chosen from a set of non-overlapping categories. A
set of data is said to be ordinal if the values or observations belonging to
it can be ranked (put in order) or have a rating scale attached. You can
count and order ordinal data. Among the ordinal variables, the discrete
ones only take on value of a countable set of numbers such as integers,
while continuous variables can take on any real number in some finite or
infinite interval.

7.1.1 Visualization Facilities

First of all, EPDA allows the user to explore the data, as shown in Fig.
7.1:

• (A) View and select experiments: the experiments are grouped per
user, project and application.
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• (B) View all variables.

• (C) View the selected variable’s properties.

• (D) Plot data of one variable as a function of another and, optionally,
in function of a third one.

• (E) Specify a fixed, a minimum or a maximum value for a variable.
These will act as constraints for the data to be loaded.

The data that is loaded comes from the under (A) selected experiments
and is filtered by the constraints on the variables, under (E). Together they
form the query by which the data is retrieved from the database. This al-
lows the analysis of specific experiments in a specific context. Limiting
a variable to a certain value allows for the analysis of the data for that
specific value only. For example, when the system’s behavior depends on a
categorical variable, when it changes qualitatively for different values. Fil-
tering the data by specific values make it possible to analyze each behavior
separately. The variable then determines the context. Another example is
when a system’s behavior changes when the value of a variable crosses a
threshold. By filtering the data, the system under study can be analyzed
separately for each context.

7.1.2 Statistical Technologies

The statistical techniques that can be applied to the observed data within
EPPA are the following:

1. Creation of derived variables, variables for which the value is cal-
culated from the values of others. The user selects the dependent
variables and specifies the formula (chosen from a set of equations,
comprising sum, product, quotient, comparison and equality). This
is shown in Fig. 7.1(F) by new nodes which have the nodes of the
dependent variables as inputs.

2. Calculation of the partial derivative of metric f . Consider f a func-
tion of parameters x, y and z. The partial derivative is the derivative
of f with respect to one of those parameters, say x, with the others
held constant, written as

(
∂f
∂x

)
y,z

. It quantifies the change of f by

a change of x. The derivative is named df dx. This functionality is
not shown in Fig. 7.1.
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3. Application of a regression analysis, curve fitting, for finding the
best fit on the selected data in the chart. This is shown by let-
ter (G) in Fig. 7.1. Regression analysis quantifies the relations.
Curve fitting applied on the submodels allows the construction of
an analytical model. In Section 2.4.2 the MDL approach was ex-
plained. The Java library, written by Dr Michael Thomas Flanagan
(http://www.ee.ucl.ac.uk/∼mflanaga), is used for fitting functions
on data. The routines return the closest fit of the given function
according to the minimization of the sum of squared errors.

4. Learning the causal structure by causal inference: send the current
data to the causal structure learning module of TETRAD. The user
will be asked to select the variables on which the algorithm should
be applied. The practical implementation of the algorithm is given
in Section 7.3.

5. A kernel density estimation (KDE), which estimates the underlying
continuous probability distribution from a given sample. The princi-
ples of KDE were discussed in Section 2.2.1, the algorithm to bring
it into practice and its calibration is given in Section 7.3.3.

6. An information analysis: estimation of the classical information
quantities such as entropy and mutual information. The calcula-
tion is based on the probability distributions estimated by the KDE.
Practical application of the formulas is given in Section 7.3.2.

7. Outlier detection: set the outlier property of an experiment. Ex-
ceptional data can be identified by labeling the experiment. This is
discussed in more detail in Section 7.1.3.

8. Apply a conditional probability table (CPT) compression on a dis-
crete variable. This will be explained in Section 7.1.4.

Although the focus of our research lies on causal inference, the other tech-
niques will show their value in combination with causal learning.

The outcome and relevance of a multivariate analysis relies on the ob-
served or calculated variables. Techniques 1, 2 and 8 define new variables
that are added to the data. These new variables possibly identify interest-
ing properties and provide additional insight into the system.

7.1.3 Outlier Detection

Exceptions or outliers deviate so much from other observations that they
arouse suspicions, in the sense that they could be generated by a different
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mechanism than the assumed behavior. Outliers occur frequently in ex-
perimental data, due to accidental, temporal, unexpected non-uniformities
in behavior of certain components of the system. This is a fortiori true in
the field of parallel processing as interactions between system resources are
much more dynamic than in computers of the sequential (Von Neumann)
type.

Outliers greatly affect the modeling, since they lie beyond the normal
regime. A curve fitted on data containing outliers will be distorted. As
the square of the distance is taken as a score, outliers contribute dispro-
portionally to the error sum as they lie far from the actual curve. Their
part in the error term will be much greater than that of other points, so
that they greatly affect the result of the fitting. Outliers should therefore
be excluded from a quantitative analysis.

A lot of research is done on identifying outliers in data, using distances
to the mean value [Rousseeuw and van Zomeren, 1990], iterative methods
[Chen and Liu, 1993], clustering techniques [Arshad and Chan, 2003] or
information-theoretic approaches [Pynnonen, 1992]. None of these meth-
ods are currently integrated in EPDA. The user is required to identify the
outliers by manual inspection of the data. The visualization capabilities of
EPDA greatly facilitate this task. For these data points, the user activates
the ‘exception’ flag of the experiment the datapoint comes from. The flag
is a boolean variable initially set to ‘false’. It can be used to filter the data
(removing the exceptions) or alternatively search for possible explanations
of the exceptions, which can be performed by a causal analysis.

7.1.4 Probability Table Compression

In a causal model each variable is generated by its direct causes, which
are its parents in the graph. The relation between a node, for example
Z, and its parents (denoted parents(Z)) can exhibit striking regularities,
called local structure. Sometimes it is useful to model these regularities
explicitly. If the parents of Z are discrete variables, the conditional pro-
bability distribution (CPD) P (Z | parents(Z)) is stored in a table, called
a conditional probability table (CPT). The table stores one value for each
combination of the elements of the domains of parents(Z) and Z. Regu-
larities among the values allow compression of the table and reduction in
the description length of the table.

The algorithm will group values of parents(Z) that are associated with
the same probability distribution over Z. These groups are labeled by a
new variable (Fig. 7.2). Some values of X exert the same influence on
Z. These resemblances are valuable information, worth of being added
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Figure 7.2: Reduction of a conditional probability table and insertion of a
new variable.

explicitly to the model. This is accomplished by introducing a new va-
riable Y , which takes one value for each group of values of X having the
same P (Z | X). The influence of X on Z is then completely captured by
Y . It can replace X in the model as a direct parent of Z. The relation
between X and Y is not of causal nature, but logical. Y contains redun-
dant information. Nevertheless, the addition of the deterministic variable
is useful, it provides more detailed precise information about the influence
of X on Z. Y characterizes X with respect to Z. The relation of Y with
Z is simpler, and in many cases the variable corresponds to a meaningful
quantity. Y represents a property of X. Take the relation of the datatype
in a computation with the processor instructions. The double and float
datatype require exactly the same number of instructions on some modern
processors.

If only one value of a discrete variable of parents(Z) gives a different
distribution on Z, this is modeled by adding a boolean variable that is true
for the specific value. This new variable will replace the discrete variable in
parents(Z). Note that similar work goes further in looking for regularities
in conditional probability tables [Boutilier et al., 1996].

7.1.5 Sequential Experiment Probing

The EPDA library provides a probe object, written in C++, to monitor
runs of sequential programs on a single computer and write the data to the
EPDA database [Lemeire, 2006]. Each experiment measures the following
variables:

• runtime (Tcomp),

• date of experiment,

• computer’s properties: name and clock frequency,
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• values of the hardware counters: the standard PAPI library [Browne
et al., 2000] provides access to a processor’s hardware counters: at the
end of each experiment the EPDA Probe reads a processor dependent
number counters. The most interesting are:

– PAPI TOT CYC: total number of cycles, it corresponds to
Tcomp/fclock.

– PAPI TOT INS: total number of instructions executed.
– PAPI L1 DCM: level 1 data cache misses.
– PAPI L2 DCM: level 2 data cache misses.
– PAPI L1 DCA: level 1 data cache accesses.
– PAPI L2 DCA: level 2 data cache accesses.

• Additional variables of interest, specific to the program, are user-
defined:

– algorithm parameters, like the work size W ,
– algorithm variables, such as the number of basic operations or

iterations of the main loop of the program,
– system parameters and characteristics, such as the memory hi-

erarchy sizes.

7.1.6 Loading Parallel Performance Data

The EPPA tool, discussed in the previous chapter, is used to track expe-
riments with parallel programs. EPPA is focused on providing the user a
visualization of the experimental outcomes. For detailed statistical analy-
sis, experimental data is transferred from the EPPA database to the EPDA
database, as shown in Fig. 7.3. For example, the computation time of an
experiment or the delay of an individual message. The former results in 1
EPDA record per EPPA experiment, the latter in 1 EPDA record for each
communication operation that happened during the EPPA experiment. I
come back to this in the following chapter, when the experimental setups
are discussed.

7.2 The Modeling Process

Fig. 7.4 shows the different parts of the modeling process. The EPDA tool
offers the statistical facilities in a semi-automatic way, the user guides the
process by choosing the sequence of tasks to be executed.

The modeling steps are:
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Figure 7.3: Extracting performance data from EPPA into EPDA.

Figure 7.4: Scheme of the modeling process.
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• The user chooses the context of the data that has to be loaded: which
experiments and for which parameter values.

• Data can be inspected by the visual facilities of EPDA.

• The addition of interesting derived variables or partial derivatives.

• The user identifies outliers. For these experiments, the exception flag
is activated. This flag can be used to clean up the data by filtering
the outliers. On the other hand, for studying the outliers, one can
detect which variables affect the exceptions.

• TETRAD’s causal structure learning algorithms are used reveal the
qualitative, causal model.

• Curve fitting applied on the qualitative model results in an analyti-
cal model. The quantification of submodels with a discrete variable
produce multiple curves, one for each discrete value of the variable.
This is called parameter identification in statistics. It is not the main
purpose of our work.

• Compression of the conditional probability tables (CPTs) leads to
the addition of variables that refine the model.

7.3 Causal Structure Learning

EPDA is linked to TETRAD which contains the causal structure learning
algorithms. The current algorithms, however, had to be extended in two
ways to cope with the full complexity of performance data:

• The presence of a mixture of categorical, discrete and continuous
data.

• The presence of non-linear relations.

• The presence of deterministic relations.

Most research on causal learning does not consider models that contain
such a wide variety of variables and relations. They focus on one type of
variable, categorical/discrete or continuous, where the continuous variables
are most often expected to be approximately linearly related with Gaus-
sian or non-Gaussian disturbances [Spirtes et al., 1993] [Shimizu et al.,
2005]. Currently, TETRAD applies the Pearson correlation coefficient for
measuring association amongst continuous variables and the G2 test for



7.3. Causal Structure Learning 157

categorical or discrete variables. The analysis of data with a mix of both
types is not supported. Moreover, Pearson’s correlation coefficient is only
correct for linear or quasi-linear relations among the variables, it measures
the proximity of a relation to linearity (Section 3.1.1).

In case of deterministic relationships, one should exclude variables from
the dataset that are definable in terms of other variables in the set [Scheines
et al., 1996]. As discussed in Chapter 5, deterministic relationships imply
additional conditional independencies that cannot be captured by faithful
models. Current constraint-based learning algorithms also fall short when
applied on them. In Section 5.2.1 was argued that deterministic variables
contain valuable information, worth being left in the model.

These limitations were overcome by extending the current algorithms
in two ways:

• the independency test employed in the dependency analysis is based
on the information-theoretic concept of mutual information (defined
in the introductory chapter). It measures the decrease of uncertainty
of one variable when observing other variables. This solves two pro-
blems: independencies containing a mixture of discrete and continu-
ous variables can be quantified and it offers a form-free dependency
measure.

• TETRAD’s PC algorithm was extended to discover information equi-
valences and adding them to the models. The extensions for handling
information equivalences were discussed in detail in Chapter 5.

The alternative independence test is discussed in the next subsections. But
first I discuss the assumptions of the PC algorithm and the utilization of
background knowledge. Finally it must be noted that the depth of the
algorithm is set to 2.

Validity of Assumptions

Section 3.4.2 listed the assumptions under which the PC algorithm is
known to learn correct models. The two most important assumptions are
faithfulness and causal sufficiency.

The existence of a faithfulness graph is broken by the presence of de-
terministic relations. This problem was solved by proving that faithfulness
could be reestablished by adding the information of deterministic relations
to an augmented causal model. Causal sufficiency, or the absence of an un-
known common cause, is guaranteed in a performance analysis by including
all parameters of algorithm and system to the data. They constitute the
ultimate causes of all performance-influencing variables.



158 Chapter 7. Qualitative Multivariate Analysis

Background knowledge

The construction of performance models is in some ways simpler than
those of other domains since a lot of background knowledge is available.
This information is given to the learning algorithm as forbidden or required
edges and known orientations.

• Performance data is a result of what in statistics is called a set of
controlled experiments: at the start of each experiment, the input
variables are set to specific values. While modeling, input variables
are not connected with each other and they only have outgoing edges.
They do not have causes, they are assumed to be the ultimate causes
of the other variables.

• Performance models aim at understanding some performance me-
trics. These variables can be regarded as output variables as they
only have incoming edges.

• While not all edges can a priori be guessed by the user, the orientation
of the edges is in most cases easy to determine. Any case of doubt
by the learning algorithm can be solved by the user’s knowledge.

• In fact, a lot of dependencies and independencies are known a priori.
They can also be passed to the algorithm as background knowledge.

7.3.1 Pearson Correlation Coefficient

Causal inference is based on conditional independencies, which have to be
estimated from the data. The Pearson product moment correlation
coefficient is widely used to measure the degree of association between
two continuous random variables. For variables X and Y , it is defined as

rXY =
cov(X,Y )√

var(X)var(Y )
(7.1)

where cov() measures the covariance between two variables and var() the
variance of a continuous variable:

µ(X) =
1
n

n∑
i

xi (7.2)

var(X) =
1

n− 1

n∑
i

(xi − µ(X))2 (7.3)

cov(X,Y ) =
1

n− 1

n∑
i

(xi − µ(X))(yi − µ(Y )) (7.4)
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µ() gives the mean value of a statistical variable. Pearson’s coefficient gives
a measure of how close a relation approximates linearity. The standard
independence test of TETRAD is based on the comparison of Pearson’s
coefficient with a threshold value, by default set to 0.05.

Conditional independencies are measured by partial correlations. They
can be calculated directly from the correlation coefficients, but only if
linearity holds. The first-order correlation of X and Y given Z is defined
as:

rXY.Z =
rXY − rXZrY Z√

(1− r2
XZ)(1− r2

Y Z)
(7.5)

Higher-order coefficients are defined similarly. All dependencies can thus
be calculated from the correlation matrix, where the correlation matrix
is the n× n matrix whose i, j entry is the correlation of the variables with
indices i and j. For independence, the same threshold of 0.05 is used.

Correlations lead to good results for quasi-linear associations. Partial
correlations, however, fail if the relations diverge too much from linearity.
This was confirmed by our experiments.

7.3.2 Information-Theoretic Dependence

Mutual information gives a form-free measure of association. The mu-
tual information quantifies the decrease in uncertainty of a variable when
knowing a set of other variables. Association is measured in terms of the
information that variables share. This is independent of the form of the re-
lation, whereas Pearson’s correlation coefficient cannot distinguish between
the deviances of linearity and the uncertainty of the relation (explained in
Section 3.1.1).

Recall from classical information theory (discussed in Section 2.1) that
the mutual information can be written as

I(X;Y ) =
∑
x∈A

∑
y∈B

p(x, y) log2

p(x, y)
p(x)p(y)

(7.6)

Conditional information, I(X;Y | Z), is calculated similarly. The G2

independence test [Bishop et al., 1975], used by the TETRAD tool for
identifying independencies among discrete variables, is defined as:

G2 = 2
∑

Pobserved. ln
Pobserved
Pexpected

(7.7)

It is of the same form as Eq. 7.6. The nominator, p(x, y), stands for the
observed joint distribution, while the denominator, p(x)p(y), stands for
the mutual probability in case both variables are independent.



160 Chapter 7. Qualitative Multivariate Analysis

For computing the entropy of continuous variables, their distributions
have to be discretized. For a variable X with density f(x) and division of
the range ofX in bins of length ∆, the entropy of the quantized distribution
is [Cover and Thomas, 1991]

H(X∆) = −
+∞∑
−∞

f(xi)∆ log2(f(xi)∆) (7.8)

The discretized definition of mutual information is then of the same form
as Eq. 7.6. After discretization, the handling of continuous and discrete
variables is identical. This allows for the calculation of dependencies for a
mixture of continuous and discrete variables. The difference with Pearson’s
correlation coefficient is that mutual information considers each value of
X independently: it sums for every value of X the decrease in uncertainty
of Y . The relation between X and Y may be arbitrary. Whereas Pearson
seeks for a linear trend in the (x, y) points over the whole range of X.

The main disadvantage of mutual information is that larger sample
sizes are necessary. The definition suggests that for every value of X
multiple data points are needed. This approach would be the same as
discretizing the continuous variable and would also induce a quantization
error. Kernel density estimation overcomes these problems. The reason is
that P (X = x) will also be influenced by the data points in the neighbor-
hood of x, so that the sample size can be limited.

7.3.3 Independence Test Calibration

The causal inference algorithm relies on the correct qualification of the
independencies between the variables. The independence test must mea-
sure the dependency strength between two variables, and use a threshold
below which the variables are classified as being independent. Dependency
strength is based on the mutual information calculated from an estimation
of the underlying distribution of the variables. If the mutual information
falls below a threshold, the variables are classified as being independent.

The estimation of the underlying distribution uses kernel density esti-
mation (KDE), discussed in Section 2.2.1. I chose the width of the kernel,
called bandwidth, to be proportional to the average distance of each data
point to its closest neighbor. The exact proportion is called the band-
width factor. It is the main parameter. I performed the calibration of
this parameter with a series of about 300 independence tests for which the
result is determined by manual inspection of the data. I selected a set
of tests that cover the whole range of possibilities: continuous or discrete



7.4. Summary of Chapter 161

Figure 7.5: The KDE dependency strength between variables as a function
of the KDE bandwidth factor for 300 experiments. The circles denote
independent variables, the triangles dependent variables.

variables, mixtures of both and by conditioning on one or more variables.
Fig. 7.5 shows the experimental results of the dependency strength by
varying the bandwidth factor. The points denoted by circles represent
tests of independent variables, the quadrangles dependent variables. An
increased bandwidth factor smoothens the distribution, hence the mutual
information decreases. A small bandwidth factor results in high depen-
dency values, even for independent variables. The estimate then consists
of narrow non-overlapping kernels centered on each datapoint. The band-
width factor should be chosen between those two extremes. Fig. 7.5 shows
that a bandwidth factor between 3.5 and 5 gives a maximal difference in
dependency strength for positive and negative tests. The independence
threshold is set to 0.35.

Fig. 7.6 shows the influence of the number of experiments (the sample
size) on the accurateness of the dependency estimation. For estimations
based on more than 100 points, the dependency strength can differentiate
independent from dependent variables.

7.4 Summary of Chapter

This chapter was devoted to the technologies offered by our EPDA tool
for the statistical analysis of experimental data. Although that the tool
is generic, special attention is made for data about the performance of
sequential programs, executed on a single computer, or parallel programs,
executed on a collection of connected computers. The latter is traced
by the EPPA tool, as explained in the previous chapter. EPDA allows
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Figure 7.6: The KDE dependency strength between variables in function
of the sample size. The circles denote independent variables, the triangles
dependent variables.

you to organize, filter, visualize and analysis of your data. Among the
various statistical techniques that EPDA offers, the focus lies on the causal
inference algorithm. The tool will be used in the next two chapters to
gather and analyze experimental data about the performance of parallel
and sequential programs. I will show the benefits of causal inference.



Chapter 8

Causal Inference for
Performance Analysis

THIS chapter researches how causal models and causal inference, both
thoroughly discussed in Part I, can be beneficial for the performance

analysis of applications. Basically, the user analyzes an application by
measuring the states of various variables during various experiments as
explained in the previous chapter. The variables comprise parameters, per-
formance metrics, system counters (such as cache misses), program coun-
ters (such as the number of iterations of a loop instruction), user-defined
variables, etc. The causal learning algorithms will reveal the relations
among the observed variables. The relevance of the analysis is therefore
limited to the set of defined and observable variables.

The following properties of causal inference will prove their utility:

1. The construction of causal models is based on a dependency analysis:
causal models reveal how variables relate.

2. Causal model theory is based on the Markov property (defined in
the introductory chapter): recall that for Markov chain A− B − C,
variable A affects C, but B ‘screens off’ the influence of A on C. A
becomes independent from C by conditioning on B; if the state of B
is known, learning about A’s state offers no additional information
about C.

3. A causal model corresponds to a decomposition: independent sub-
models are identified by a causal analysis.

This chapter begins with an overview of the potential benefits of causal
models and causal inference to the analysis of the performance of computer

163
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programs. After comparing my approach with related work, causal perfor-
mance models are defined. It is investigated to what extent the models can
be labeled as describing relations of ‘causal’ nature. Next the results of the
analysis of data from experiments with sequential and parallel programs
are presented. Three different algorithms are studied: a standard LU
decomposition algorithm, the Kakadu implementation of the JPEG-2000
standard for image compression and a differential equation solver of the
Aztec benchmark library. Overall performance is studied, the communica-
tion overhead of parallel programs and explanations for exceptional data
are sought. The results prove that relevant models are learned showing
the influence of all relevant variables on the performance.

8.1 Utility

The utility of causal performance models and the learning algorithms is
twofold: they support the modeler in building performance models as well
as the user in understanding the performance of his application.

8.1.1 Support of the Modeling Process

Model Construction

The learning algorithms provide the ability to construct models from ex-
perimental data. This is useful in situations when the relations among
variables are not a priori clear or can be used to discover unexpected de-
pendencies.

Model Validation

Any analysis is explicitly or implicitly based on independency assumptions
made by the modeler. The dependency analysis allows the verification of
these independencies.

Reuse of Autonomous Submodels

Causality takes the position that the world is reducible, that we can learn
something about the whole by studying the parts. In chapter 4 was shown
that causal models can be decomposed into independent, local submodels
of the form P (Xi | pai). Causality thus inherently provides autonomous
submodels that can be reused when modeling systems in a different context.
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Reveal Performance Characteristics

For being able to reuse submodels for performance modeling of systems
independent of the application (previous subsection), the submodels must
consist of application-independent characteristics. The Markov property
enables the validation of performance characteristics of applications. Such
quantities aim at fully characterizing the performance behavior of the ap-
plication so that they can be used to generically explain and predict per-
formance:

application→ characteristics→ performance. (8.1)

The characteristics should hold all performance information of the appli-
cation. This property is captured by independence application ⊥⊥ perfor-
mance | characteristics.

Reveal Explanations

A performance analysis should not only provide models for performance
prediction, but also provide insight in the performance results. The Markov
property enables to find and validate explanations for performance issues.
The requested models should be of the form

application→ explanations→ performance. (8.2)

The explanations should hold all performance information of the applica-
tion, which is characterized by independence application ⊥⊥ performance |
explanations. The right part of the model is then generic - reusable in the
analysis of other applications. It provides insight into the features that
determine performance.

Combination of Equations 8.1 and 8.2 results in:

application→ characteristics→ explanations→ performance. (8.3)

The application characteristics determine what influences the performance.
The explanations tell how they affect the performance.

Flexibility

Flexibility of the causal modeling framework enables the refinement of mo-
dels by adding variables of interest. They can provide further explanation
and deepen the insight. Or they can provide additional information by
which performance can be predicted with a higher accuracy. These new
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variables were latent (unknown) variables in the initial models. Assume
initial causal relation A→ B and that variable C is added. The additional
variable can intervene with the causal relation in 3 possible ways:

1. C is an effect of A or B, e.g. A → B → C. The variable is a new
metric which is explained by the original variables.

2. C provides a deeper explanation for B, the model becomes A→ C →
B. A becomes an indirect cause of B. We can say that the model is
refined.

3. C is a cause of either A or B, resulting in new models respectively
C → A → B or A → B ← C. The states of A and B are explained
by an until then unknown variable. However, a common cause of A
and B would cause a problem for the initial model. The presence of
latent common causes is not supported by the PC algorithm (Section
3.4.2). Fortunately, all ultimate causes are known in a performance
analysis, namely the parameters of application and system. This case
can therefore be excluded.

8.1.2 Presentation of a Clear Performance Report

Causal models explicitly encode relational information. They offer a for-
malization of a structured representation of the relations among the varia-
bles of interest. They provide insight into complex situations with many
variables and dependencies.

Structuring the Variables

In order to understand complex situations with many variables and de-
pendencies, a structured representation of the relations is required. This
is offered by causal models.

Filtering Relevant Information

Causal models correspond to physical mechanisms and enable the filtering
of relevant information, by the statistical analysis, which reveals the impact
of every factor, the most influential factors can be filtered.

Reasoning under Uncertainty

At the start, a model can be kept simple, as an approximation with a lim-
ited number of variables. Additional information can easily be integrated
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into the model later. Probabilistic models, such as Bayesian networks,
were developed to reason under uncertainty, to work with incomplete in-
formation. They estimate the information of variables when knowing some
other variables: P (unknown variables | state known variables).

Qualitative Reasoning

Besides the explanatory facilities, causal models can be exploited to reason
about the performance. They provide answers to questions like: Do the
cache misses affect the runtime of a program? Which program parameters
affect the cache misses? Do the chosen data structures in the program
affects the cache misses? Is the knowledge of the size of the data structures
sufficient for predicting the cache misses?

8.2 Related Work

Causal models are not widely used for performance analysis yet. Only one
reference could be found. Cohen and Chase use Tree-Augmented Baye-
sian Networks (TANs) to identify combinations of system-level metrics
and threshold values that correlate with high-level performance states in
a three-tier web service under a variety of conditions [Cohen et al., 2004].

Many tools exist for automated performance analysis. They are inte-
grated in frameworks for coordinated monitoring and control of computer
applications. The complexity of deployed systems surpasses the ability
of humans to diagnose and respond to problems rapidly and correctly.
Research on automated diagnosis and control - beginning with tools to
analyze and interpret instrumentation data - should provide the means
to guide the developer and user with understandable information. Our
research focuses on exploiting the statistical learning techniques in cases
that models or relations are not a priori known. This approach assumes
little or no domain knowledge, is therefore generic and has the potential to
adapt to changes in the system and its environment. The most common
approach is to incorporate a priori models, which explicitly or implicitly
represent how variables relate to each other. Other approaches let the
user himself discover the interrelational structure incrementally. These
approaches have several limitations: the models are difficult and costly to
build, they may be incomplete or inaccurate in significant ways, and in-
evitably become brittle when systems change or unanticipated conditions
are encountered.

Most performance monitoring tools fall under two categories. One col-
lecting statistical data from multiple experiments, concerned with counts
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and durations. The other category is based on event traces, the exact se-
quence of actions that took place during a run is recorded. Statistical data
is more compact than that of event traces, yet the predictive power is lim-
ited [Carrington et al., 2005]. Our approach is only applicable to the first
category. It is based on a multivariate analysis that tries to characterize
the relations among the data. The difference with current work, is that
they work with relational structures that are a priori chosen or have to
be configured manually. Current tools that support multiple experiment
analysis plot performance variables (PMaC [Snavely et al., 2002], PER-
FORM [Hey et al., 1997] and SCALEA [Truong and Fahringer, 2002b])
and inefficiencies (Aksum [Fahringer and Seragiotto, 2002]) as a function
of application and system parameters. Several tools allow for automatic
bottleneck detection. Examples are KappaPi [Espinosa et al., 1998], Ko-
jak [Mohr and Wolf, 2003b] and Paradyn [Karavanic et al., 1997]. They
detect patterns in statistical data or event traces. Our approach cannot
detect patterns, since it only analyzes variables once they have been mea-
sured or derived from others. Once an interesting pattern is defined, it can
be added to the model as a variable. Causal inference can subsequently
be used to find possible causes or effects of the pattern. It reveals which
variables influence or are influenced by the occurrence of the pattern.

8.3 Causal Performance Models

The causal structure learning algorithms applied on data gathered from
performance experiments result in ‘causal performance models’. In this
section I analyze what models can be expected and the validity of the
causal interpretation.

8.3.1 Definition

Causal performance models are defined as causal models over a set of
variables relevant in a performance analysis. Take the following example
of a simplified performance model of a LU decomposition algorithm.

Example 8.1 (LU decomposition runtime performance model).

LU decomposition is a matrix decomposition which writes a
matrix as the product of a lower and upper triangular matrix
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Figure 8.1: Simplified causal model of the performance of the LU decom-
position algorithm

[Horn and Johnson, 1985]. For a 3× 3 matrix, this becomesa11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 1 0 0
l12 1 0
l13 l23 1

u11 u12 u13

0 u22 u23

0 0 u33

 (8.4)

This decomposition facilitates solving a system of linear equa-
tions, Ax = b, or finding the inverse of a matrix. The se-
quential implementation of the algorithm mainly consists of 3
nested for-loops with the inner loop having a division, a multi-
plication and a subtraction of matrix elements. The number of
iterations of each loop is proportional to n, with n the row and
column size of the matrix. Only square matrices are considered.
The instructions of the inner loop form the main computations
that have to be performed. The total number of times they are
executed is proportional to n3. This is identified by qop, the
number of basic operations.

The performance model shown in Fig. 8.1 is constructed in an
intuitive way. It represents a simplified model of the computa-
tion time Tcomp. The datatype of the matrix (float, double,
integer, . . . ) influences the number of instructions instrop
needed to perform 1 basic operation, but also Cop, the number
of processor cycles needed for 1 basic operation. Together with
the processor’s clock frequency fclock and qop they determine
the runtime Tcomp.

The model is a first-order approximation. It gives a good indication
for the computation time, but fails to characterize the full complexity of
the computational process. It therefore should be regarded as a probabilis-
tic model. The relations are probabilistic. They are not able to exactly
determine the computation time.
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Figure 8.2: General model of parallel performance

8.3.2 Parallel Performance Models

Based on the metrics defined in Section 6.1, a causal model of the variables
involved in a parallel performance analysis can be constructed. It is shown
in Fig. 8.2. As application parameter, the work size W of the applica-
tion is shown. System parameters, like the number of processors p and the
processor’s clock frequency fclock, are depicted. Overall performance varia-
bles, sequential runtime Tseq, parallel runtime Tpar and speedup, placed at
the right side constitute the output of the model. Intermediate variables
like the runtime for control of parallelism TctrlParallel, communication time
Tcomm and idle time Tidle measure the overheads. Other variables in their
turn explain the values for the overheads. Most of them can be measured
in the application, in the system (like the cache misses) or by the MPI
profiling capabilities (like the size of the communication data or the num-
ber of messages). Finally, the partitioning and the communication scheme
denote performance characteristics of the application.

8.3.3 Causal Interpretation

The question arises whether multivariate models about performance can be
interpreted as causal models. Spirtes et al. use 3 properties as an axiomatic
foundation of causal models: the Causal Markov condition, minimality
and faithfulness [Spirtes et al., 1993] (Section 3.4.2). The Causal Markov
condition consists of the Markov condition and the causal interpretation of
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the relations. Chapter 4 showed that causal models basically correspond
to a decomposition into independent submodels X = P (parents(X)). Let
us analyze whether these 5 properties apply to performance models:

1. Markov condition: A variable is expected to be determined by its
parents only.

2. Causal interpretation: The causal interpretation of the edges should
be read as “a change of the state of A causes a change of the state
of B”.

3. Minimality : The model is assumed not to contain redundant rela-
tions.

4. Faithfulness: The paths between the variables show the dependencies
among the variables. This corresponds to the faithfulness condition.
If the alternative definition is used, faithfuleq, it incorporates de-
terministic relations.

5. Independence of submodels: As will be shown by example 8.4.4, the
genericity of submodels is limited. The validity of a submodel de-
pends on the specific application. Nevertheless, similar submodels
will reappear across different applications. Hence, submodels are
only partially independent, they depend on the context.

One might argue that not all relations among the variables are of causal
nature. Consider the deterministic relation datatype → elementsize,
elementsize is a property of datatype. Nevertheless both variables re-
present different quantities. The size in bits of a datatype can vary across
different platforms. Also variables that rely on a definition can be called
into question. Take the definition of efficiency, Efficiency = Speedup/p.
The relation cannot be interpreted as a causal relation. Here, Speedup
must not be seen as a cause of Efficiency (or vice versa). They are both
affected by other variables, those of application and system that determine
the overall performance. Speedup and Efficiency share these causes.

8.4 Experiments with a Sequential LU Decompo-
sition Algorithm

The first series of experiments deals with the performance analysis of the
LU decomposition algorithm, which was explained in Example 8.3.1. 125
sequential experiments were run on a standard off-the-shelf computer with
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Figure 8.3: Detailed performance model of LU Decomposition.

an AMD Athlon XP processor running Linux and by performing a param-
eter sweep over the following parameters:

• Matrix size n, ranges from 5 to 300.

• datatype: short (2 Bytes), int (4 B), float (4 B), double(8 B), long
(8 B) and longdouble (12 B).

• optimization: the inner loop of the calculation can be optimized.
The result of a division that is performed twice is stored in a tempo-
rary variable so that it does not have to be recalculated the second
time.

The EPDA probe was used to record the relevant performance variables
(see section 7.1.5). The EPDA tool and its facilities were used to analyze
the data and TETRAD for applying the extended PC algorithm on the
data. As background knowledge for the algorithm, the input (parameters)
and output variables (overall performance metrics and partial derivatives)
were indicated.

8.4.1 Performance Modeling

Fig. 8.3 shows the performance model of second-order approximation.
We see that only the level 2 cache misses L2Mop have a non-negligible
influence on the performance, not the level 1 cache misses. But even with
these additional variables, datatype is still directly related to Cop. In other
words, L2Mop and instrop are insufficient to explain all processor cycles.

The model shows that optimization only influences the number of in-
structions, not the cache misses. But the number of instructions cannot
characterize completely the effect on the performance. Optimization is
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Figure 8.4: Parts of the performance model of LU Decomposition. Effect
of the optimization (a) and modeling of the cache misses (b).

also related to the number of cycles Cop. This reconfirms that the num-
ber of instructions is not a good measure for explaining the overall perfor-
mance. It is the number of cycles we have to look at. To investigate deeper
the effect of the optimization on the performance, the partial derivative
∂Cop/∂optimization is calculated. It gives the decrease in number of cy-
cles by the optimization. By adding this variable, we can learn on which
variables the effect of the optimization depends. Fig. 8.4(a) shows that
the decrease in cycles depends on the datatype. Quantitative results reveal
it is about 50 cycles for integers, only 18 cycles for floats or doubles, but
110 for longs.

8.4.2 Model Validation

Dependency analysis also allows for the validation of models presumed by
the user. The influence from datatype on Cop goes via L2Mop and instrop,
as shown in Fig. 8.3. Omitting the link datatype → Cop, however, would
be incorrect. This can be verified by applying the Markov condition (see
section 3.3) on node Cop: without the link, datatype would be indepen-
dent of Cop given L2Mop and instrop. Yet, the independent test applied
on the experimental data gives a mutual information I(datatype;Cop |
L2Mop, instrop) = 0.45. This is above the threshold of 0.35, so Markov is
violated and both nodes must be connected in the model.

8.4.3 Datatype Characterization

The goal is to characterize the influence of the discrete variable datatype on
the performance. It turns out that the cache misses can be predicted with
the size of the datatype, elementsize, but that the penalty cycles caused
by a miss cannot be predicted by an application-independent feature.

Fig. 8.5 presents the experimental data of the level 2 cache misses in
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Figure 8.5: Experimental results of the LU Decomposition: level 2 cache
misses versus matrix size n in function of the data type.

function of matrix size. It shows clearly how the misses jump to another
level when the cache memory is filled completely. Parameterization of
L2Mop in function of its parents is done by a regression analysis performed
on the curves for each datatype separately. Datatype is a discrete variable
that does not allow defining continuous functions over it. The curve fitting
thus seeks for L2Mop = fi(n) with i corresponding to the datatype. It
results in a step function:

L2Mop = ±0 if n < thresholdL2M

= jumpL2M if n > thresholdL2M (8.5)

The cache misses before the jump can be neglected, since it is smaller than
the resolution of the estimation. Then, the parameters jumpL2M and
thresholdL2M of the functions are added to the model. They both depend
on elementsize, as shown in Fig. 8.4(b). A regression analysis reveals that
both are linearly related to elementsize. This can be expected. For big
matrices, the cache data is badly reused since only the first element of the
cache line (of 64 bytes) fetched from the lower memory level is effectively
used once. The cache line is overwritten during the following instructions,
when needing data further in the matrix.

Next, Cop is analyzed quantitatively, in order to reveal how many cycles
are spent to computation and how many cycles the processor is just waiting
for memory accesses. The curve Cop is fitted for each datatype separately
and gives

Cop = CPI.#instrop + CL2M .L2Mop (8.6)
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It results in an equation with 2 unknowns, CPI, the Cycles Per Instruction,
and CL2M , the penalty cycles due to a cache miss. Dependency analysis
reveals that CPI still depends on the datatype, but unexpectedly also
does CL2M . The penalty cycles increase from 166 per miss for the integer
datatype, 295 for double, to 418 for longdouble. These values, however,
depend on the application. This was shown by a dependency analysis
performed on data retrieved from experiments with other applications 1.

8.4.4 Reusability of Cache Misses Submodel

The previous analysis resulted in a submodel explaining the cache misses
which happen during the execution of the LU decomposition. The number
of cache misses was found to depend on the size of the data type whenever
the matrix size exceeds a certain threshold. This is shown by the curves
depicted in Fig. 8.5.

Other applications might exhibit a different behavior, but some appli-
cations will give a similar behavior. Submodels are only partially generic.
The genericity depends on the given application and system. The analysis
of the cache misses for a set of applications will result in a set of models,
each describing a specific cache miss behavior. Each model thus explains
the behavior for a certain number of applications.

8.5 Image Compression with Kakadu

The modeling approach proposed in this work is applied for modeling the
parameter sensitivity of a very different application, the Kakadu imple-
mentation for the compression of still images. The analysis focuses on the
sensitivity of the algorithm’s performance to the parameter configuration.

8.5.1 The Algorithm

Kakadu is a C++ implementation of the JPEG-2000 standard [ISO/IEC,
2002], which has been developed to address a number of weaknesses in
the existing JPEG standard and to provide a number of new features. It
supports lossless and lossy compression, progressive recovery of images by
resolution, region of interest coding, random access to particular regions
of an image, etc. It therefore is extremely suitable for internet applica-
tions. The coding algorithm mainly consists of two stages. The first stage

1A matrix multiplication and a merge sort, which can be regarded as quite similar
to the LU decomposition. They exhibit the same cache miss pattern as depicted in Fig.
8.5
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Figure 8.6: Wavelet decomposition of an image into subbands by the
JPEG-2000 compression.

splits the image into frequency bands through the iterative application of a
wavelet transform. Each transform yields four subbands: horizontally and
vertically lowpass (LL), horizontally lowpass and vertically highpass (LH),
horizontally highpass and vertically lowpass (HL) and horizontally and
vertically highpass (HH). The wavelet decomposition is associated with R
resolution levels, where at each level the LL band is further decomposed,
as shown in Fig. 8.6. Due to the statistical properties of these subband
signals, the transformed data can usually be coded more efficiently than
the original untransformed data.

During the second stage, the subbands are partitioned into code blocks,
typically 64 x 64, which are independently coded using a bit-plane coder
(all first bits of the pixels of the block are coded together, followed by the
second bits, etc.). It generates a sequence of symbols that is compressed
by an entropy coder: the MQ coder. Rate scalability is achieved through
quality layers. The coding passes containing the most important data
(based on the lowpass subbands) are included in the lower layers, while
the coding passes associated with finer details (based on the highpass sub-
bands) are included in higher layers. During decoding, the reconstructed
image quality improves incrementally with each successive layer processed.
Consult [Adams, 2001] for an easy accessible introduction, and [Taubman
and Marcellin, 2002] for an elaborate discussion.

The Kakadu implementation, written in C, has its key focus on memory
efficiency and execution speed. I investigated the parameter sensitivity of
the compression execution time - the cost in performance of changing the
algorithm’s configuration. Due to Kakadu’s high number of parameters,
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Figure 8.7: Performance Model of JPEG-2000 Image Compression with
Kakadu. Arrows with dashed lines only apply for lossless compression, for
which bitsppel is not set as a parameter.

this is a task well suited for automation. Experiments were performed with
12 different images, scaled to different widths and heights (ranging both
from 500 to 10000 pixels), and various parameter settings that overspan
the entire configuration space. After some try-outs I selected the most
interesting parameters for running the final experiments: the precision of
the data representation (16-bit or 32-bit), the kernel used for the wavelet
transform (the 5/3 or 9/7 kernel), the blockSize used in the second stage
(ranging from 4x4 up to 64x64), the number of quality layers (varied from 2
to 12) and the bitrate of the highest layer (set between 0.5 to 10 bits/pixel).
This last parameter is only set when lossy compression is employed. At
each run, the following variables are measured: the image size, the runtime
T , the number of processor instructions instr, the resulted number of
bits of the compressed image bits, the level 2 caches misses L2M and the
number of processor Cycles Per Instruction (CPI). All these quantities,
except size and CPI, are divided by the image size to get per pixel values.
They are denoted by the suffix ‘ppel’. The results show that most of these
values become size independent and hence the per pixel values simplify the
model. Furthermore, some interesting partial derivatives are calculated.
They are named dX dY signifying the derivative of the function of X with
respect to parameter Y , while the other parameters are kept constant.
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8.5.2 Performance Model

Fig. 8.7 shows the learned model for lossless and lossy compression. Loss-
less compression results in a bitrate, variable bitsppel, measured in bits
per pixel, which reflects the information necessary to describe the image.
It is determined by the compressibility of the image. Lossy compression
allows the bitrate to be chosen by the user. The data for lossless and
lossy compression were analyzed independently, after which both resulting
models were merged into one. Arrows with dashed lines indicate relations
that only apply for lossless compression.

The results for lossless compression comprise the following interesting
observations:

• All performance characteristics increase linearly with the image size,
the values per pixel are therefore size independent.

• The number of desired quality layers has no significant impact on
the bitrate or performance.

• The resulting bitrate, bitsppel, influences the number of instructions,
instrppel, and the the cycles per instruction, CPI. The bitrate
is, however, an outcome of the compression and can thus not be a
cause. The correct interpretation is that it is the compressibility of
the image, determining bitsppel, that also affects the performance.

• The cache misses do not affect the runtime. This confirms the mem-
ory efficiency of the implementation. The model reveals that the
number of instructions are a good indicator for the number of cache
misses.

• The increase of the runtime Tppel by choosing a higher precision is
not considered as significant by the independency test. The deriva-
tive dTppel dprecision is, however, positive, and depends on the
kernel and the image width.

The model simplifies for lossy compression, when bitsppel is set as a
parameter. In that case, the number of instructions, instrppel, is only
affected by bitsppel and blockSize. Furthermore, CPI is not influenced
by the compressibility of the image.
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8.6 Parallel Experiments With Aztec

Experiments with parallel processing were conducted with the Aztec li-
brary [Tuminaro et al., 1999](http://www.cs.sandia.gov/CRF/aztec1.
html), which is often used as a benchmark for performance evaluation. It
provides a parallel algorithm for solving of partial differential equations,
defined over a 3-dimensional grid. First I study the overall performance of
the algorithm and then the communication performance in more detail.

8.6.1 Experimental Setup

Aztec’s algorithm supports 2 sparse matrix formats, a point-entry modified
sparse row (MSR) format and a block-entry variable block row (VBR)
format. Experiments are run on the dedicated cluster of the lab, which
contains 8 Pentium II computers connected by a 100MHz non-blocking
switch. The number of equations is varied between 100 and 400 and the
number of grid points between 53 and 203. The same experiments are
performed for both matrix formats.

The performance analysis tool EPPA uses the MPI profiling facilities
to automatically trace the MPI calls and writes them to a database, as
explained in Chapter 6. The extended PC algorithm with default options is
applied onto our data. As background knowledge the user indicates which
are the input (parameters) and output variables (overall performance), and
by which variables the derived variables are calculated. The parameters
are nbrProcessors, matrixFormat, nbrEquations and nbrGridPoints.

8.6.2 Overall Performance

Fig.8.8 shows the model of Aztec’s performance constructed by TETRAD.
The variables are ordered from input to output, starting with the 4 input
parameters at the left and the parallel runtime and speedup at the right.
The model that was discovered is interesting, since it shows how the per-
formance is generated. In order to analyze this in depth, 2 variables were
registered which the algorithm returns at the end of the execution, namely
the total number of flops needed for the computation (totalF lops) and the
number of iterations (totalIterations) that the algorithm performed. The
variable totalIterations is completely determined by the number of grid
points and does not affect the performance in a direct way. This can be
understood by the fact that totalF lops incorporates all information, ex-
cept for nbrProcessors, about the runtime, communication time Tcomm
and idle time Tidle. I added an additional variable eqXpoints which is

http://www.cs.sandia.gov/CRF/aztec1.html
http://www.cs.sandia.gov/CRF/aztec1.html
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Figure 8.8: Causal model of Aztec’s performance

simply the product of nbrEquations and nbrGridPoints. This is a useful
variable since it explains how totalF lops depends on nbrEquations and
nbrGridPoints. totalF lops is much bigger for the VBR matrix format as
well as for the MSR format. Finally, the speedup depends on the number
of processors, the computation, communication and idle time.

8.6.3 Global Communication Performance

Fig. 8.9 shows the learned model for the total communication time Tcomm
(top right). The 4 input parameters are placed at the left side. The com-
munication performance is completely defined by the number of processors,
the number of messages and the size of the communicated data. I registered
4 variables which are counted by the algorithm. The internalUnknowns
are the elements that can be updated using only information on the cur-
rent processor. externalUnknowns refers to the off-processor elements
that are required during the calculations by the borderUnknowns ele-
ments. unknownsSentToNeighbors represents the number of elements
actually sent. These definitions confirm the model. The communication is
primary affected by unknownsSentToNeighbors, which on its turn is in-
fluenced by borderUnknowns and this by externalUnknowns. The VBR
matrix format generates more messages than the MSR format. The varia-
ble eqXpoints, which is the product of nbrEquations and nbrGridPoints,
determines internalUnknowns in combination with the number of proces-
sors. On the contrary, the relation of externalUnknowns with nbrEquations
and nbrGridPoints cannot be replaced by eqXpoints alone.
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Figure 8.9: Causal model of Aztec’s communication time

Figure 8.10: Execution profile (EPPA) of a parallel sort of 9000 integers
on 4 processors.

8.6.4 Point-to-point Communication Performance

Next, I model the performance the individual point-to-point communica-
tion operations of parallel algorithms running on a cluster of computers.
They are retrieved from the EPPA database as explained in section 7.1.6.

A point-to-point message involves a great number of processes. It is
passed by the MPI layer to the lower TCP/IP communication layers, and
via the hardware interface to the receiving process. This study, however,
only intends to give the user insight in the implications for the overall per-
formance, not into the decomposition of it. The communication system
is regarded as a black box. Fig. 8.11 shows the impact of a communi-
cation operation on the execution of a parallel application. The sending
and receiving of a message will consume processing time at the sender and
receiver, called respectively the senderOverhead and receiverOverhead.
The delays caused by the transmission of the message over the network
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Figure 8.11: Network Performance Metrics of a Point-to-point Message

do not directly influence the execution time, but can indirectly cause pro-
cesses to wait for incoming messages, which results in time-consuming
idling. This is affected by the transportLatency, the time spent due to
the transportation of the message.

Fig. 8.10 shows the typical execution profile of a parallel sort. A
master process sends a part of the array to be sorted to the slaves and
merges them in a final sequential step. The number of processors that
participate in the experiments is varied between 2 and 8. The different
phases of the execution profile, as shown in Fig. 8.10, are recorded and
stored in a database by the EPPA tool. For each point-to-point commu-
nication, the relevant variables are extracted from the execution profile
and written to the EPDA database. The performance is quantified by the
senderOverhead, the receiverOverhead and the transportLatency. The
input consists of the application-dependent message characteristics, such
as messageTag, nbrProcessors, phaseIndex (the index of the phase in
the execution of the process), msgFromMaster (does the message comes
from the master process) and the application parameters such as workSize.
Possible explanations are messageSize, source, destination, plus extra
variables that were added later during the modeling process which is dis-
cussed in the following section.

8.6.5 Unexpected Dependencies

Fig. 8.10 shows clearly that the sender overheads are not constant for the
messages the master process initially sends to the slaves, even though the
sizes of the messages are identical (9000 Bytes). The sender overhead for
the message to slave 2 is more than twice as much as that of the messages
to slave 1 and slave 3.

A superficial analysis would suggest that indeterministic events at the
master processor are responsible for these non-linear effects. This illus-
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trates the necessity for a wide diversity of experiments. Attributing the
master process to different nodes makes it possible to draw conclusions
about processor-specific performance characteristics. Experimental data
from different system configurations confirm that all nodes of the cluster
are identical. Additional variables have to be added for explaining the
variations in the sender overheads. By manual inspection of the execution
profiles and data, the following, among many others, characteristics are
identified: 2

• otherCommSenderBefore: the number of other messages also sent
by the sender but not yet arrived when the communication started.

• nbrMessageArrivals: the number of messages also sent by the sender
that arrived during the send overhead.

• receiverIdleT ime: the time the receiving process was idling longer
before it started receiving the message.

Causal analysis confirms their usefulness, the model depicted in Fig. 8.12
shows that they render the explanations for the senderOverhead application-
independent. Variables otherCommSenderBefore and nbrMessageArri-
vals reflect the background sending of the messages preceding the commu-
nication operation. NbrMessageArrivals is the main indication for the
background communication, it is generated by otherCommSenderBefore.
However, it cannot explain the entire sendOverhead increase, otherComm-
SenderBefore is therefore also connected with the sendOverhead. How-
ever, both variables cannot be regarded as true causes of the sendOverhead,
they actually represent observable manifestations of the hidden processes.
The causal sufficiency assumption is violated here, since the background
communication, which is the common cause of all three variables, is not
characterized. The left side of the model shows, in the context of the
sort application, the application characteristics that affect the background
communication. Finally, the transport latency is proportional to the mes-
sage size, but is also affected by the other communications at the sender
and the receiver’s idle time.

8.6.6 Explanations for Outliers

In the set of data from the experiments on the laboratory non-dedicated
network, some exceptional data (outliers) were detected. There are a few
long message delays recorded for messages with size of about 26000 bytes,

2I only report about the variables that appeared to be relevant during the analysis.
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Figure 8.12: Causal model of the communication performance of a parallel
sort application for messages smaller than 64KB

Figure 8.13: Exceptions in measured delays for experiments on the labo-
ratory cluster

as can be seen in Fig. 8.13. Causal inference is applied to identify the
cause(s) of the exception. The experiments are tagged with a boolean in-
dicating that the data points are exceptional and loaded into TETRAD.
TETRAD reveals that the exceptional data was caused by one parallel
experiment and one processor which was the destination of the messages,
as shown in Fig. 8.14. Experiment 46728 and node 7 were extracted from
the conditional probability table, as explained in Section 7.1.4. By these
results, we may hypothesize that during experiment 46728, computer 7 de-
layed the handling of the incoming messages, probably due to another pro-
cess running simultaneously. The model should, however, be interpreted
with care. The experiment and the destination cannot be considered as
the ’true causes’ of the exceptional data, more as indications of the time
and place where the event that caused the extra delays happened.
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Figure 8.14: Causal model explaining exceptional data

8.7 Summary and Conclusions of Chapter

This chapter demonstrated the utility of integrating causal inference in
the performance modeling process. It offers several benefits to support
the performance modeling process as well as the development of high-
performant software. Causal models of a performance analysis are called
causal performance models. The relations among the variable can be at-
tributed a causal interpretation. Analysis of experiments with sequential
and parallel applications demonstrated that correct and useful models are
learned about their performance. Moreover, unexpected dependencies were
discovered, assumptions about independencies could be validated and po-
tential explanations for outliers were found. Concluding, for the purpose
of performance analysis, causal inference must be regarded as an inter-
esting technique, which can be utilized to perform some of the subtasks
encountered during performance modeling.

The following table summarizes the potential benefits that were pro-
posed in the first section of this chapter. The second column indicates
whether the benefit is supported by the experimental results (+: benefit
is proved; ±: benefit is still disputable ; ?: results do not give a definite
conclusion yet; FW: future work):
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Possible Benefits OK? Comment
Model construction +
Validation +
Reuse of submodels ? Possible in some cases
Reveal characteristics ± Is analyzed in more depth

in the next chapter.
Reveal explanations +
Flexibility FW Theoretically possible, but learning

algorithms should be adapted for this.
Report ? The benefits of a graphical

representation is yet to be shown.
Filtering relevant information FW
Reasoning under uncertainty FW Must be based on a

quantitative analysis.
Qualitative reasoning FW



Chapter 9

The Genericity of
Performance Models

HOW complex things can get? How difficult is it to predict the per-
formance of the execution of applications on systems? Obviously,

computing-intensive parallel applications running on high-performant clus-
ters lead to an overall performance difficult to master. But even simple
algorithms cannot be reduced to a linear combination of factors influencing
the performance, such as instructions (eventually grouped by type), cycles
per instruction, number of cache misses and memory access penalty cycles.
The ingenuity of present computing units make that calculations and data
access operations are executed in a partially parallel and pipelined way.
This results in a complex game of intertwining micro-processes. Perfor-
mance thus greatly depends on the match of the application’s instructions
sequence and the specific way the system handles the instructions.

Another example in which the performance depends on a match is that
of a delivery of a set of messages through an interconnection network. I
will show that generic models are difficult to construct for this problem.
They are limited by the patterns of the communication and of the network
topology. Random communication on a random network behaves statisti-
cally and is predictable. While specific combinations of regularities may
result in a specific behavior. The regularity of the communication might,
or might not, match with the regularity of the topology, resulting in a
respectively better or worse than expected communication time. Only a
particular model adequately captures the performance behavior.

The first section begins with the discussion of the convolution method
to generic characterization of systems and applications. Some modeling
examples show the difficulty of building generic models. The rest of this
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Figure 9.1: Applications and computer systems can be characterized by
generic performance properties, respectively the Application Signature
(AS) and the System Profile (SP) (a). Every combination of application
and system entails a specific model (b).

chapter is devoted to the modeling of the performance of structured com-
munication in a structured network. Firstly, the problem setting is dis-
cussed. Next, the conclusions for qualitative and quantitative performance
models are drawn.

9.1 Runtime Performance Models

This section discusses the question whether generic models exits for the
prediction of the runtime of the execution of an application on a system.

9.1.1 The Convolution Method

The goal of the convolution method is the prediction of the runtime of
an application on an arbitrary system Snavely et al. [2001]. This requires
the existence of independent application and system performance charac-
teristics - called application signature and system profile - and a functional
relation to calculate from both the performance of an application run-
ning on a system. The separation of signatures and profiles means that
signatures need only be gathered once to support prediction on multiple
machines. Fig. 9.1(a) depicts the method. The performance sensitivity
of each application appi is completely characterized by Application Signa-
ture ASi and each system sysj by System Profile SPj . The genericity of
these characteristics ensures the existence of a function which accurately
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predicts the performance of any combination of application and system:

Tcomp(appi, sysj) = f(ASi, SPj) (9.1)

This results in the following independencies:

Tcomp ⊥⊥ appi | ASi, (9.2)
Tcomp ⊥⊥ sysj | SPj . (9.3)

The genericity of the characteristics signifies that application characteris-
tics are independent of the system, and thus valid for all systems. Vice
versa, system characteristics are application independent, adequate for pre-
dicting the performance of other applications. These requirements are ex-
pressed by the following independencies:

ASi ⊥⊥ sysj , (9.4)
SPj ⊥⊥ appi. (9.5)

The absence of such generic properties would imply that specific com-
binations result in specific models. The worst case is depicted by Fig.
9.1(b). Each combination of application and system behaves in a unique
way so that it requires a specific model:

Tcomp(appi, sysj) = fi,j(appi, sysj) (9.6)

The question is at which point we are between both extremes. Does
one model and generic characteristics suffice for accurate performance es-
timation and understanding; or does every combination require a different
model?

Related Work

A similar strategy is employed by Marin and Mellor-Crummey Marin
and Mellor-Crummey [2004]. They also try to separate the contribution
of application-specific factors from the contribution of architectural cha-
racteristics to overall application performance. Results indicate, however,
that the use of a single, simple synthetic metric, or a linear combination
of such simple metrics, to predict the performance of high-performance
application performs poorly Carrington et al. [2005].

The approach here advocated falls under the category of tools that
monitor performance by collecting statistical data of multiple experiments.
The other approach is to study event traces, according to which the exact
sequence of actions that took place during a run is recorded. Statistical
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data is more compact than event traces, but it is already noticed that the
predictive power is limited Carrington et al. [2005]. Better predictions can
be acquired by simulating the recorded trace on a model. This approach is
limited since it doesn’t give parameterized models. It also provides little
insight into the factors that determine the overall performance.

More research about analytically based performance prediction was
conducted by Kerbyson et al. [2002]. Lastovetsky and Reddy [2004] con-
structed detailed models, including the performance of memory accesses,
for predicting computation time.

9.1.2 Generic Characteristics for the LU Decomposition
Algorithm

The modeling results presented in this and the next subsection illustrate
the difficulty of creating generic models.

Recall the LU decomposition algorithm studied in Section 8.4. With
the variables considered in the analysis, one can try to construct a model
in the sense of the convolution method. Variables have to be identified
which characterize the application, independent from the system, on the
one hand and application-independent variables characterizing the system
on the other hand. The first constitutes the application signature, the
second the system profile.

Fig. 9.2 depicts the proposal for a generic model. Variables Cinstr
and Cmem are added to differentiate between the cycles spent on executing
instructions and those spent idling due to memory accesses. The model
supposes that thresholdL2M can be calculated by the memory usage of the
application and the memory size of the machine. The model shows which
variables could constitute the application signature and which the system
profile, respectively the top and bottom variables. This characterization is,
however, too simple. CL2M (the penalty cycles due to a level 2 cache miss)
is not a system constant. The results show that it depends on the datatype
and application. Also CPI, the cycles per instructions, is application
dependent. Moreover, thresholdL2M cannot be determined by the memory
requirements and memory size only. The modeling thus failed in finding
independent system characteristics.

9.1.3 Image Characterization for the Kakadu Compression
Algorithm

Reconsider the Kakadu image compression algorithm studied in Section
8.5. Fig. 9.3 recalls the model for the performance of lossless and lossy
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Figure 9.2: Fictive performance model of LU decomposition with indepen-
dent application and system characteristics.

Figure 9.3: Performance Model of JPEG-2000 Image Compression with
Kakadu. Arrows with dashed lines only apply for lossless compression, for
which bitsppel is not set as a parameter.
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compression that was learned in the previous chapter. Ideally, every image
can be characterized by one single compression performance factor, which
determines the number of instructions as well as the runtime, and is valid
for all possible parameter configurations. This is certainly not the case
as can be seen from the model. For lossless compression, imageType in-
fluences the compressibility bitsppel, instrppel and CPI independently.
This means that an image has at least three distinct features character-
izing the compression performance. None of the three variables contains
the information of imageType so that it is able to predict the values of
the 2 others without needing the value of imageType. Next, the influence
of imageType on dTppel dkernel indicates that the compression behavior
of an image with one kernel says little about its behavior with another
kernel. Indeed, inspection of the data reveals that some images are com-
pressed faster with kernel 5/3 and others with 9/7. Images also behave
differently under different blocksizes, expressed by the relation between
imageType and dTppel dblockSize. Only the computational cost of using
higher precision data representations, dTppel dprecision, is image inde-
pendent.

9.2 Execution of Communication Schemes on Net-
work Topologies

The performance of parallel programs greatly depends on the time the sys-
tem needs to exchange data among processors. The communication over-
head depends on the amount and size of the messages and the transmission
capacities, in terms of latency and bandwidth, of the underlying intercon-
nection network. But this overhead also depends on the distribution of the
messages and on the network topology (NT). The ensemble of messages
sent among the processors is called the communication scheme (CS) of
the program. My research focuses on the effect of regularities in network
topology and/or communication scheme.

9.2.1 Problem Description

Consider a star NT, where every processor is connected to one central
processor, or a ring NT, in which the connections of the processors form
a ring (Fig. 9.4). Consider a structured CS such as a one-to-all broadcast
or a shift collective communication. In the former one process sends a
message to all other processes, where in the latter every process sends a
message to its direct neighbor (Fig. 9.4). It is intuitively clear that a one-
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Figure 9.4: Two Regular Network Topologies and Two Regular Commu-
nication Schemes.

to-all broadcast communication on a star network and the shift operation
on a ring network are very efficient. In contrast, a broadcast on a ring
or a shift on a star results in a much higher runtime. The efficiency by
which communication can be completed depends on the match of CS and
NT. The patterns in CS and NT affect which and how variables affect the
communication time.

Two different models have to be considered: one for understanding the
causes of the performance and one for prediction of the performance.

The question I will try to answer is under which circumstances and to
what extent generic models can be constructed. Generic models must be
valid for any combination of CS and NT and rely on generic performance
properties of communication schemes and network topologies. This prob-
lem is equivalent to that posed during the discussion of the convolution
method and depicted by Fig. 9.1. A generic model based on generic cha-
racteristics of CS and NT has the same form of model (a). The absence of
a generic model could lead to the situation in which each combination of
CS and NT requires a different model, as is shown by situation (b).

I will show experimentally that random NTs and random CSs can be
characterized by a single performance value. The characteristic allows
accurate prediction of any combination of CS with NT. The model based
on this characteristic can, however, become very inaccurate when patterns
occur in CS or NT. Non-random NTs or CSs, exhibiting certain patterns,
can differ not only quantitatively, but also qualitatively by the properties
of NT and CS influencing the performance. The results reveal that it is not
possible to characterize the performance of an NT while not considering
the patterns of the CS. An NT can perform well for one CS, but not for
another.

In the study of the performance of the internet it is also discovered that
the development of accurate models poses many problems. The intercon-
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nection topology is not random or a simple planar graph, but a constantly
changing heterogeneous combination of regular structures [Floyd and Pax-
son, 2001][Zegura et al., 1997][Calvert et al., 1997]. On the other hand,
internet traffic at the level of IP packages resembles more self-similar than
Poisson processes [Floyd and Paxson, 2001]. Our results show that regu-
larities in network or traffic can give different quantitative and qualitative
results. Modeling these regularities for the internet is therefore required
to obtain accurate simulations.

9.2.2 Experimental Setup

The analysis is based on experimental data retrieved from simulation of
the communication on the network. Random schemes and random topolo-
gies will be considered, but also schemes and topologies having a cer-
tain structure. Our research is limited to homogeneous network topolo-
gies with bidirectional links all having identical latency and bandwidth.
The time a message takes to make one hop is approximated by latency +
messagesize/bandwidth. The simulation model of the network is descri-
bed by a graph in which each node represents a processor and each edge
a communication link. A communication scheme is a set of messages with
a certain source, destination and message size. The message size is chosen
to be the same for all messages, since its influence on the execution is not
a part of my investigation. The message hop time is thus a constant. It is
set to 1 time unit. Messages take the shortest path to go from source to
destination. Messages are queued if the link through which they have to
pass is occupied. The simulator is a discrete event simulator [Banks et al.,
2005], the operation of a system is represented as a chronological sequence
of events. Each event occurs at an instant in time and marks a change of
state. In simulating network traffic, each hop a message makes is an event.

The following graph types are considered for the network topologies,
each of them having specific parameters:

• Random graph: is constructed by probabilistically adding edges
to a given set of nodes. Parameters are the number of nodes, nodes,
and the relative node connection degree, relConnect, defined by the
average number of links of a node divided by the total number of
nodes. It is ensured that there exists a path between any two nodes.

• Torus: is a closed surface defined as the product of two circles.
Parameters are the number of nodes of the first circle, nodesC1, and
that of the second circle, nodesC2.
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• Ring: is a graph in which all nodes are connected so that they form
a ring. Its parameter is the number of nodes, nodes.

• Star: is a graph that consists of one node in the middle which is
connected to all other nodes. Its parameter is the number of nodes,
nodes.

• Neighbor graph: is a graph in which nodes are randomly positioned
in a plane and randomly connected but with a higher probability for
neighbor nodes. The probability of having an edge between two
nodes decreases quadratically with the distance between them. The
parameter is the relative node connection degree, relConnect. It is
the same to that of a random graph.

• Planar graph: is a graph in which nodes are randomly positioned
in a plane and randomly connected, but in such way that none of the
edges intersect. The sole parameter is the relative node connection
degree, relConnect.

Each type is represented by a set of instantiations, generated by randomly
chosen parameter values. The values are picked out of the following ranges
according to a uniform distribution: nodes ∈ [20, 100], relConnect ∈
[0.05, 0.9] and, for the torus, nodesC1 ∈ [4, 14], nodesC2 ∈ [4, 14].

Considered communication schemes and their parameters are:

• Random communication: each node sends a number of messages,
randomly chosen with average nodeMsgs, to randomly selected des-
tinations. The range of the parameter is: nodeMsgs ∈ [20, 100].

• One-to-all broadcast: one node, the node with index 0, sends a
personalized message to each of the other nodes.

• All-to-all broadcast: each node sends a personalized message to
each of the other nodes.

• Shift: each node i sends a message to the node with index i +
indexShift. Parameter indexShift is chosen from the range [1, 5].

Variables that are measured during each experiment are the following:

• Graph properties: avgDistance, average distance between two
nodes (distance is the minimal number of hops required to get from
one node to another) and diameter, which is the maximal distance
between any two nodes.
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Figure 9.5: Model of communication performance of random communica-
tion on a random topology.

• Communication properties: average number of messages per node,
avgNodeMsgs.

• Overall performance: total time to complete all communication,
commT , the runtime divided by the average number of messages per
node, timePerNodeMsgs, average time it takes for a message to
arrive at its destination, avgTravelT , average number of hops of a
message, avgHops, maximal number of hops of a message, maxHops,
and average time a message is queuing, avgQueueT .

9.3 Qualitative Performance Models

The purpose is a qualitative model, which uncovers the causal dependence
of communication time on properties of CS and NT. The extended PC lear-
ning algorithm discussed in Chapter 7 is employed to infer causal models
from experimental data.

First a model is inferred from the data of a set of 200 couples of random
CSs and random NTs. Next, the models for all combinations of CS types
and NT types are explored.

9.3.1 Random Communication Schemes on Random Net-
work Topologies

Analysis of experiments with random communication on random inter-
connection networks results in the model shown in Fig. 9.5. The com-
munication time depends linearly on the number of messages per node,
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Figure 9.6: Communication time per number of messages per node versus
average distance for random NT and random CS.

avgNodeMsgs. Hence it made sense to introduce the ratio timePerNode−
Msgs. It gives a quantity that is independent of the number of messages
and therefore reduces the complexity of the model. Deterministic varia-
bles, which are a function of its parents in the graph, are depicted with
double-bordered circles. The average number of hops, avgHops, is deter-
mined by the average distance, avgDistance, of the graph. The model also
reveals that the variable avgDistance gives maximal information about the
time per node message. avgDistance is, however, almost completely de-
termined by relConnect, except for low values of relConnect. With a low
number of links, the graph’s randomness makes that the average distance
can vary a lot from graph to graph. Variable relConnect thus also greatly
influences timePerNodeMsgs, but does not capture all information about
it. Variable avgDistance does.

Fig. 9.6 shows the statistic timePerNodeMsgs as a function of avgDis−
tance. For any given parameter configuration, nodes, relConnect and
avgNodeMsgs, there is still a high uncertainty on the communication
time. In the next section, a quantitative model will be proposed to cha-
racterize individual NTs and CSs so that the uncertainty can be reduced.

9.3.2 Regular Communication Schemes on Regular Net-
work Topologies

The models that are learned for the combinations of CS and NT classes
give models that are sometimes quite different than that of complete ran-
domness (Fig. 9.5). The following table summarizes these qualitative
differences. ‘=’ denotes that the model corresponds with the model for
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random communication on random networks, ‘6=’ that they are different.
When different, the numbers in brackets explain the differences.

random NT torus neighbor planar star ring
random reference 6= = = = =
CS model (6) (1)

broadcast 6= 6= 6= = 6= =
(1)(3)(4) (4) (5) (1) (8) (2)

all2all = 6= = = 6= =
(6) (9)

shift = 6= = = 6= 6=
(1)(3) (7) (5) (8) (7)

Explanation of the differences:

• (1) The relations have the same shape, but there is a higher uncer-
tainty on the relations.

• (2) All relations are deterministic.

• (3) The relation avgDistance - avgHops is not deterministic.

• (4) The number of nodes, nodes, also influences timePerNodesMsgs.

• (5) Is identical to model of random communication with the same
CS.

• (6) Besides avgDistance influencing the communication time, it is
also influenced by nodesC1 and nodesC2. The message delivery is
less optimal the more nodesC1 and nodesC2 differ. If nodesC1 is
low, there exist only a few paths connecting the circles of the second
dimension. This leads to congestion in these paths. A variable corre-
sponding to the absolute difference between both, |nodesC1 − nodesC2|,
was added to verify this.

• (7) The index shift, indexShift, also determines performance. More-
over, for a ring network it is the only parameter affecting the perfor-
mance variables timePerNodesMsgs, avgHops and maxHops.

• (8) All performance variables have a constant value.

• (9) timePerNodesMsgs is a constant, nodes affects avgQueueT .
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Figure 9.7: Generic quantitative model to predict the execution time of a
communication scheme (CS) on a network topology (NT).

These results show clearly that the model of Fig. 9.5 becomes invalid.
But it is difficult to draw general conclusions. Random communication be-
haves quite similar for all kinds of graphs, except for a torus, in which case
the average distance is not the sole direct cause of timePerNodesMsgs.
The neighbor graph gives the same models as for the random graph. But
the table shows that specific regularities in the communication can result
in very specific matches, such as on star or ring graphs. The correctness of
the learned models can be verified when one reasons about how the execu-
tion of a specific regular communication on a structured topology behaves.
For instance, consider a shift collective communication performed on a ring
which results in a very efficient execution. The transmission happens syn-
chronously. Each transmission channel is occupied by exactly one message
at each time instance. No message has to queue before arriving at its des-
tination. indexShift determines the number of hops each message has to
make and thus also the communication time.

9.4 Quantitative Performance Models

The previous section was devoted to qualitative models, providing insight
into the performance. In this section I am interested in the prediction of
the communication time. I will build a generic model, in the sense of Fig.
9.7 and the convolution method, which adequately estimates the runtime
of random communication on random topologies. A generic performance
property is defined that characterizes individual NTs and CSs, and a simple
function that calculates the runtime of any combination of NT and CS. In
the subsequent subsection I investigate whether this quantitative model is
also valid for combinations of regular CSs and NTs.



200 Chapter 9. The Genericity of Performance Models

9.4.1 Random Communication Schemes on Random Net-
work Topologies

I propose a definition of a performance factor for characterizing individ-
ual NTs and CSs, called respectively NTPF and CSPF . Its value will
be experimentally measured on a benchmark. The benchmark consists of
50 random graphs having 25 nodes and varying relConnect and 50 ran-
dom communication schemes having 25 messages per node. The bench-
mark average runtime, denoted refT , is the average runtime of all 50× 50
combinations of the benchmarks NT and CS. It serves as a reference for
characterizing the performance of NTs and CSs. The factor of topology i,
NTPFi, is defined as

NTPFi = benchmarkT (NTi)/refT (9.7)

with benchmarkT (NTi) the average runtime of running graph i on the
50 benchmark communication schemes. This factor lies around 1. If it is
smaller, it means that the communication finishes faster than on the bench-
mark graphs. If higher, the communication needs more time to complete.
Likewise is the factor of CS j defined by the average runtime of the simula-
tion of the CS on the benchmark topologies, denoted benchmarkT (CSj):

CSPFj = benchmarkT (CSj)/refT (9.8)

The function to predict the runtime of running CS j on NT i is defined as
follows:

predictionT (CSj , NTi) = refT × CSPFj ×NTPFi (9.9)

Fig. 9.8 present the results for the comparison of the estimated with
the real runtime for a test set of 100 random NTs and 100 random CSs.
Although there is a difference, a correlation coefficient of 0.98 indicates
that a good estimation is achieved.

9.4.2 Regular Communication Schemes on Regular Net-
work Topologies

Random communication on random topologies results in statistical values.
Deviations of the average for specific instantiations are accurately modeled
by the CS and NT performance factors. This section will uncover that the
method based on the benchmark NTs and CSs is not always successful in
predicting the performance of regular NTs and CSs. NTs containing 25
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Figure 9.8: Real versus estimated communication time for random com-
munication on random topologies.

nodes are considered. The same equations, Eq. 9.7 and Eq. 9.8, were used
for experimentally attributing a value to each CS and NT type. A set
of instantiations for each type (see section 9.2.2) was benchmarked. The
results are shown in the following table. The numbers come from averaging
over the results of 50 different sets measured on 10 different benchmarks.
It gives the average benchmark runtime, the average factor and the average
standard deviation of the factor for the different instantiations in each set.

The latter is an indication of how much the performance factor varies
from one instantiation to another. Its value is not filled in if there is only
one instantiation. The average runtime of the benchmark, refT , is 46.9
time units. Recall that 1 time unit is needed for a message to perform 1
hop.

benchmarkT performance factor stddev
random graph 50 1.0 0.9
torus 123 2.4 1.3
neighbor graph 141 2.8 2.1
planar graph 191 3.8 1.7
star 77 1.5 -
ring 190 3.7 -
random 50 0.99 0.09
broadcast 8.7 0.17 -
all2all 44 0.87 -
shift 25 0.49 0.27

Most graphs have a factor that is more than 1, thus performing worse
than a random graph. One must note that the number of links is not
taken into account. A low factor is therefore not necessarily an indication
of a bad efficiency when the number of edges is taken as the cost of the
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network.
Once the factors established, the quality of the estimated runtime cal-

culated with Eq. 9.9 can be verified for each combination of regularity
type. I calculate the relative estimation error according to the ratio of the
average sum of squared errors (SSQ) with the average runtime:

relative estimation error(NTi, CSj) =

√
SSQ/n

averageT (NTi, CSj)
(9.10)

with n the number of data points. The results are shown in the following
table with the CSs defining the rows and the NTs the columns. The value
in brackets gives the relative difference between the average estimated time
and average real runtime for the set.

random graph torus neighbor graph
random 14% (+0.8%) 7% (-0.3%) 9% (-0.5%)
broadcast 72% (+11%) 40% (-25%) 94% (-50%)
all2all 12% (-0.2%) 6% (-6%) 10% (+6%)
shift 61% (+5%) 270% (-160%) 97% (-46%)

planar graph star ring
random 8% (+0.2%) 8% (+1%) 6% (-0.4%)
broadcast 95% (-70%) 1150% (-1150%) 39% (39%)
all2all 9% (+6%) 37% (-37%) 5% (-5%)
shift 90% (-65%) 16% (-12%) 330% (-250%)

The standard deviation of the values over the 50 different experiments
is about 7% of the given values. This shows that there is a quite large 95%
confidence interval for the values of about 15%. Nevertheless is there a
big difference between combinations that give quite good estimations and
those for which the prediction is completely wrong (put in boldface).

The standard deviation of the estimation of random CS on random
NT is 14%. But the low value of 0.8% for the difference between average
estimation and real time indicates that the estimation is unbiased. On the
contrary, a broadcast on a planar graph executes consequently faster than
expected. An average difference of -70% for a relative error of 95% shows
that almost all estimations are too high. Several combinations lead to bet-
ter matches than expected by the benchmark. While other combinations
are well predicted, such as the all2all communication scheme. An all2all
resembles random communication.
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9.5 Summary and Conclusions of Chapter

This chapter brought the attention to the problem of model genericity
and the existence of generic performance characteristics. The problem was
outlined for models trying to explain or predict the runtime of an applica-
tion. The results given in literature show that even for simple applications
the existence of generic models can not be guaranteed. Finding generic
application and system characteristics is difficult. Even more, the mere
existence of generic characteristics can be questioned. The rest of the
chapter was devoted to the study of the execution time of a Communica-
tion Scheme (CS) through a Network Topology (NT). It is demonstrated
that the execution time can be adequately modeled when the NT corres-
ponds to a random graph and the CS is correctly modeled by messages
with randomly chosen source and destination. A generic property and a
simple function were defined that are able to predict the performance for
any combination of random CS and random NT. The property is mea-
sured on a benchmark which consists of a set of random CSs and random
NTs. However, when NT or CS exhibit specific regularities, the qualita-
tive and quantitative models may become invalid. Regular graphs give
good predictions when confronted with random communication, but not
when combined with certain structured communication types. No general
conclusions can be drawn. The qualitative and quantitative models can
be radically different for specific combinations of CS regularities and NT
regularities.

Concluding, the regularities in NTs and CSs cannot be ignored for ef-
fective understanding and prediction of communication performance. Sim-
ple models can only be realized when limited to a specific combination of
regularity types.





Chapter 10

Conclusions

SCIENCE is law-making. Computer science is about automation. My
work has dealt with the automation of law-making. The algorithms for

causal inference form one of the machine learning approaches to inductive
inference. They aim not only at learning useful models, but also intend to
uncover the underlying mechanisms from a system under study.

The growing complexity of computer systems and applications makes
that the performance of the match of both has become increasingly chal-
lenging to master. Approaches for automated analysis are more than wel-
come. I studied the application of causal inference to a performance analy-
sis, in such a way that valuable models can be learned automatically from
experimental data.

Scientific Results

The value of causal inference is given extra impetus by the following con-
tributions:

• The interpretation of causal model theory is related to that of the
Kolmogorov Minimal Sufficient Statistic (KMSS). The validity of
causal inference is related to the presence of regularities not repre-
sented by causal models.

• The faithfulness property is interpreted in a broader sense as the
capability of a model to explain all regularities of the observations.

• The hypothesis is put forward that the implications of the causal
interpretation of the models correspond to those of a model decom-
position.

205
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• The theory is extended to incorporate information equivalences. The
complexity of relations is used to determine which one, among infor-
mation equivalent relations, is the direct cause.

• A form-free independence test is implemented, which is based on a
kernel density estimation and calculated with the definition of mutual
information. Moreover, it allows for the analysis of data containing
a mixture of continuous, discrete and categorical variables.

• The utility of causal inference for the performance analysis of appli-
cations and computer systems was demonstrated.

The contributions to a performance analysis are multifold:

• Two tools (EPPA and EPDA) were developed to record the results of
experiments with sequential and parallel applications and interprete
the experimental data according to a multivariate statistical analysis.

• The developed and studied algorithm for causal inference provides
a useful technique to reveal the relations among the variables of in-
terest. It can be integrated into current tools and allow the further
automation of the performance modeling process. It must not be
regarded as a solution for performance analysis, but as a part of
the solution. Whenever questions arise about the relations among
variables, the algorithm can provide this information.

• Regularities in communication scheme or network topology were shown
to considerably influence the match of both. This dependence on
regularities limits the existence of generic models. Certain combina-
tions of regularities need specific qualitative and quantitative models.

Qualitativeness

The different lines of my research all point to the concept of qualitative
properties. However, a formal definition or treatment of qualitativeness is
not given. The scientific results only offer a glimpse of how a theory about
qualitative information would look like.

The main motivation of Pearl to develop the theory of graphical causal
models was the observation that conditional independencies are qualita-
tive properties [Pearl, 1988, p.79] (discussed in Section 3.1.2). Conditional
independencies play a different role in knowledge as opposed to the quan-
titative information of probabilities. This observation triggered Pearl’s re-
search on Bayesian networks and causal models. Bayesian networks were
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proposed as models which explicitly describe these qualitative properties.
The ‘faithfulness’ property was defined to express that a model describes
all conditional independencies of the system under study.

My work showed that a qualitative analysis can contribute to the un-
derstanding of the performance of programs. Many questions about the
performance of applications are of qualitative nature.
Which parameters influence the performance considerably?
Which variables are sufficient to predict overall performance?
Which program sections allow for optimization?
Does the computation time increases in a super-linear way with increasing
work size?
In contrast, questions about exact values of the performance metrics are
quantitative questions.

I demonstrated that regularities determine the delivery of messages in
an interconnection network. Regularities in communication scheme and
network topology cannot be neglected. They determine whether the dis-
tribution of the messages occurs in a synchronized or chaotic fashion. Dif-
ferent combinations of regularities result in different behavior. These dif-
ferences cannot be explained by a single model without taking the regula-
rities into account. Regularities result in qualitative differences.

These considerations give a proposal for a definition of qualitative pro-
perties: the regularities of an object. In the sense that regularities allow
the effective compression of the description of the object. The KMSS pro-
vides a formal instrument to separate information into a meaningful and
meaningless part, where the meaningful part is based on the regularities
of the data. The results are, however, too preliminary to draw a definite
conclusion about the formalization of qualitative properties or regularities.

The importance of regularities to modeling was underlined by their
important role in the discussion of the validity of causal inference. If all
conditional independencies follow from the causal structure, causal infe-
rence works and the causal interpretation offers a likely hypothesis. This
is expressed by the faithfulness property. In the perspective of inductive in-
ference, this principle can be interpreted as that ‘a model should be able to
explain all qualitative properties of the observations’. The correspondence
of a model with reality seems to heavily rely on this condition.

Limitations and Directions for Future Research

Finally, I comment on the limitations of this work and give some possible
directions for future research.
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Chapter 2: Principles of Inductive Inference.

Currently, the application of Kolmogorov Complexity to inductive infe-
rence is limited to the selection of the minimum model from an a priori
chosen model class. This contrasts with the scientific activity of actively
searching for regularities. However, a formal definition of regularities is
lacking, as well as an algorithmic approach to the detection of regulari-
ties. Formally, the latter is related to the intractability of Kolmogorov
complexity; the absence for a proof a minimality. It seems that we are far
from replacing the human creative mind with a computer.

Chapter 3: Graphical Causal Models.

The existence of a faithful graph is a necessary assumption for the correct
course of the constraint-based learning algorithms; at least a relaxed ver-
sion of faithfulness, as defined by Ramsey et al. [2006]. Anyway, the major
weakness of the constraint-based learning algorithms is that they are not
robust. A wrongly classified relation as dependent or independent has a
great effect on the learned model. Take model A → B ← C in which the
association between B and C only becomes apparent when conditioned on
A. This may happen when the influence of A on B is much greater than
that of C on B. Especially in the case of non-linear relations the associa-
tion of B and C is difficult to measure. The independence B⊥⊥C leads to
the wrongly deletion of the edge B − C.

Chapter 4: The Meaningful Information of Distributions.

The counterexamples of causal inference indicate that in some cases the
faithfulness assumption is unreliable. Not all independencies come from the
system’s causal structure. Therefore, according to my viewpoint, causal
models should be extended to capture other regularities. Background
knowledge seems indispensable in knowing which classes of regularities
should be taken into consideration.

To further investigate the importance of causal model theory in under-
standing causality, the relation with mechanisms must be laid down more
precisely. The correspondence of the causal component with a decomposi-
tion must be researched further.

It must be noted that the limitations of causal structure learning from
observation can be overcome by doing experiments based on interventions
[Korb and Nyberg, 2006]. Experimental manipulation of variables gives
extra information about the causal relations. This approach seems indis-
pensable for correct causal inference. It can be compared with the common
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scientific practice of isolating submodels in order to study them indepen-
dently.

Chapter 5: Information Equivalence.

The detection of information equivalences is performed by checking, for
each conditional independency X⊥⊥Z | Y that is found together with de-
pendency X 2Z, whether Y⊥⊥Z | X or X⊥⊥Y | Z also holds. Both cases
indicate a violation of the intersection condition, which I indicated as an
information equivalence. One can question the utility of the augmented
Bayesian model and argue that he or she prefers to take out the determin-
istically related variables from the data. Even then it is safe to add the
check of the intersection condition. Since its occurrence is deadly for the
constraint-based algorithms; a violation results in the removal of the two
edges connecting the information equivalent variables with the reference
variable. A violation might be caused by unknown deterministic relations
or quasi-deterministic relations. Analogously, other checks could be built
in to protect the algorithm for faulty assertions.

The extensions for information equivalences do not check for deter-
ministic relations, since they are also characterized by information equi-
valences. Deterministic relations can however be detected directly using
kernel density estimation. If P (X | Y ) is below a threshold, the uncer-
tainty of X can be regarded as zero when Y is known. Hence, variables
Y completely determine the state of X.

The complexity criterion, to choose among information-equivalent re-
lations, can also be used in the scoring-based algorithms [Korb and Nichol-
son, 2003]. Information equivalences lead to models having equal scores.
Then, the complexity of the edges not appearing in every model enables
an objective selection criterion.

Chapter 7: Qualitative Multivariate Analysis.

The results for the performance analysis underlined the importance of an
integration of statistical techniques. The available statistical technologies
can be extended with for example, form-free regression or algorithms for
automatic outlier detection.

Mutual information was used as a form-free measure of association, in
contrast with Pearson’s correlation coefficient. But the estimation of it is
more error-prone. A good calibration, per problem, is still necessary. More
fine-tuning is necessary to create a more reliable independence test.
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Chapter 8: Causal Inference for Performance Analysis.

The results so far are limited to the analysis of specific applications. In
order to create models which are valid for multiple applications, context
should be taken into account. As we have seen, parts of the performance
models are application-dependent, such as cache miss behavior (Sec. 8.4.4).
Nevertheless will these submodels be reusable in specific applications ex-
hibiting the same behavior. The feasibility of learning contextual causal
relations was already successfully studied by my colleague Borms [2006].
The results need, however, to be integrated in the current overall modeling
process.

The results of a performance analysis should be used as the knowledge
for the optimization of applications and systems. This would really prove
the value of causal inference.

Besides quantitative information, other types of qualitative information
would also give valuable information, such as the form of the curves or the
occurrence of different regimes in the system’s behavior.

Chapter 9: The Genericity of Performance Models.

The study of the match of communication and network topology showed
that regularities limit the existence of generic characteristics and models.
It must be further researched whether patterns are also the reason for the
failure of generic models for the performance prediction of applications and
computer systems. Also the difficulty of modeling internet traffic can be
analyzed according to the same philosophy.

Finally, we might ask ourselves why humans instantly see that a shift
on a ring can be performed in only one step, just like a broadcast on a
star. How do we get to understand so easily that a broadcast on a ring or
a shift on a star is very inefficient? How do we, humans, reason about the
matching problem? The approach of my research was the application of
causal inference on the results obtained by simulation. Human reasoning,
however, functions differently. It is still a great mystery why reasoning
with regularities is such a natural thing for us. A question that I posed
at the beginning of this work, but which I have to leave unanswered. The
quest continues. . .
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