
March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

Parallel Processing Letters
c©World Scientific Publishing Company

MODELING THE PERFORMANCE OF
COMMUNICATION SCHEMES ON NETWORK TOPOLOGIES

JAN LEMEIRE

and

ERIK DIRKX

and

WALTER COLITTI

ETRO Department, Vrije Universiteit Brussel, Pleinlaan 2
B-1050 Brussels, Belgium

Received October 2007
Revised March 2008

Communicated by C. R. Jesshope

ABSTRACT

This paper investigates the influence of the interconnection network topology of a parallel system on
the delivery time of an ensemble of messages, called the communication scheme. More specifically, we
focus on the impact on the performance of structure in network topology and communication scheme.
We introduce causal structure learning algorithms for the modeling of the communication time. The
experimental data, from which the models are learned automatically, is retrieved from simulations. The
qualitative models provide insight about which and how variables influence the communication perfor-
mance. Next, a generic property is defined which characterizes the performance of individual commu-
nication schemes and network topologies. The property allows the accurate quantitative prediction of
the runtime of random communication on random topologies. However, when either communication
scheme or network topology exhibit regularities the prediction can become very inaccurate. The causal
models can also differ qualitatively and quantitatively. Each combination of communication scheme
regularity type, e.g. a one-to-all broadcast, and network topology regularity type, e.g. torus, possibly
results in a different model which is based on different characteristics.

Keywords: Parallel Processing, Performance Modeling, Causal Inference, Network Topology, Struc-
ture.

1. Introduction

The goal of this work is to study the impact of structure in network topology (NT) and
communication on the time the system needs to exchange data among processors. We call
the ensemble of messages sent among processors the communication scheme (CS) of a pa-
rallel program. We will experimentally demonstrate that regularities in NT and CS greatly
affect the performance, qualitatively and quantitatively. Consider a star NT, where every
processor is connected to one central processor, or a ring NT, in which the connections of

1

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

2 Parallel Processing Letters

the processors form a ring (Fig. 1). Consider a structured CS such as a one-to-all broadcast
or a shift collective communication. In the former one process sends a message to all other
processes, where in the latter every process sends a message to its direct neighbor (Fig. 1).
It is intuitively clear that a one-to-all broadcast communication on a star network and the
shift operation on a ring network are very efficient. In contrast, a broadcast on a ring or a
shift on a star results in a much higher runtime. The efficiency by which communication
can be completed depends on the match of CS and NT.

Fig. 1. Two regular network topologies and two regular communication schemes.

The patterns in CS and NT affect which and how variables affect the communication
time. We propose causal models [13] to explicitly describe the relations among the variables
of interest. Causal structure learning algorithms [16] are employed to infer models for the
causal dependency of communication time on properties of CS and NT. The analysis is
based on experimental data retrieved from simulation of the communication on the network.

Fig. 2. Network Topologies and Communication Schemes can be characterized by generic performance proper-
ties (a) or every combination entails a specific model (b).

Next, we investigated the existence of a generic performance prediction model. The
question is under which circumstances and to what extent can communication schemes
and network topologies be characterized by generic performance properties. Such that the
communication time, Tcomm, can be predicted by a simple model based on these charac-
teristics, as shown in Fig. 2(a). Each NTi is characterized by a Performance Factor, called

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

Modeling the Performance of Communication Schemes on Network Topologies 3

NTPFi, and each CSj is characterized by Performance Factor CSPFj . Ideally, a function
of the form Tcomm = f(NTPFi, CSPFj) exists that gives accurate estimations for the
communication time for any combination of CSj and NTi. We showed experimentally that
random NTs and random CSs can be characterized by a single performance factor.

This model can, however, become very inaccurate when patterns occur in CS or NT.
Non-random NTs or CSs, exhibiting certain patterns, can differ not only quantitatively, but
also qualitatively by the properties of NT and CS influencing the performance. In the worst
case, each combination of NT regularity type and CS regularity type would need a different
model, as shown in Fig. 2(b). Our results show that it is not possible to characterize the
performance of an NT while not considering the patterns of the CS. An NT can perform
well for one CS, but not for another.

This paper is organized as follows. The next chapter discusses related work, section 3
the causal learning algorithms and section 4 the experimental setup. Section 5 gives the
causal models learned for random communication on random networks, and compares it
with models for structured communication on regular networks. Finally, in section 6 we
define a performance factor that characterizes individual NTs and CSs, and experimentally
test how well communication time can be predicted based on these factors.

2. Related Work

Our experiments adopt the setting used in [9, p. 106]. Kumar et al. built analytical formulas
for the performance of structured collective communication operations, such as the one-to-
all broadcast, all-to-all or shift, on regular interconnection networks, such as the hypercube,
star or mesh. We automatically derive models from experimental data.

Our study of the genericity of performance models is similar to that based on the convo-
lution method [14]. Its goal is the prediction of the runtime of an application on an arbitrary
system. This requires the detection and definition of independent application and system
performance characteristics - called application signature and system profile - and a simple
functional relation to calculate from both the performance of an application running on a
system. The separation of signatures and profiles means that signatures need only be gathe-
red once to support prediction on multiple machines. Fig. 2 depicts the two extremes: does
one model and generic characteristics suffice for accurate performance estimation or does
every combination require a different model? A similar strategy is employed by Marin and
Mellor-Crummey [12]. They also try to separate the contribution of application-specific
factors from the contribution of architectural characteristics to overall application perfor-
mance. Results indicate, however, that the use of a single, simple synthetic metric, or a
linear combination of such simple metrics, to predict the performance of high-performance
application performs poorly [3]. Our research demonstrates that performance characteris-
tics depend on the patterns in application and system. Simple models can only be realized
when limited to specific regularities.

Our approach falls under the category of tools that monitor performance by collecting
statistical data of multiple experiments. It is concerned with counts and durations. Current
tools that support multiple experiment analysis plot performance variables (PMaC [15],

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

4 Parallel Processing Letters

PERFORM [8] and SCALEA [19]) and inefficiencies (Aksum [5]) as a function of appli-
cation and system parameters. The other approach is to study event traces, according to
which the exact sequence of actions that took place during a run is recorded. Statistical
data is more compact than event traces, but it is already noticed that the predictive power is
limited [3]. Better predictions can be acquired by simulating the recorded trace on a model.
This approach is limited since it doesn’t give parameterized models. It also provides little
insight into the factors that determine the overall performance.

Also in the study of the performance of the internet it is discovered that the development
of accurate models poses many problems. On the one hand is the interconnection topology
not random or a simple planar graph, but a constantly changing heterogeneous combination
of regular structures [6][21][2]. On the other hand, internet traffic at the level of IP packages
resembles more self-similar than Poisson processes [6]. Our results show that regularities
in network or traffic can give different quantitative and qualitative results. Modeling these
regularities is therefore required to obtain accurate simulations.

3. Causal Structure Learning

This section will briefly introduce causal models and the main learning algorithm.

Fig. 3. Example causal model.

3.1. Graphical Causal Models

Causal models [13] [16] [18] intend to describe with a Directed Acyclic Graph (DAG) the
structure of the underlying physical mechanisms governing a system under study. The state
of each variable, represented by a node in the graph, is generated by a stochastic process
that is determined by the values of its parent variables in the graph. They are the direct
causes.

Fig. 3 depicts a simple causal model in which A and D are the direct causes of B

and B is the direct cause of C. A and D are indirect causes of C. The theory is based
on the observations that a causal structure implies conditional independencies. This is best
understood by the Markov property. From the causal structure of Fig. 3 it follows that A is
independent from C by conditioning on B. A conditional independency is denoted by the
ternary operator .⊥⊥. | . and is defined as

A⊥⊥C | B ⇔ P (C | A, B) = P (C | B). (1)

The conditional independence expresses that learning the value of A does not provide addi-
tional information about C once the state of B is known. The same independency follows

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

Modeling the Performance of Communication Schemes on Network Topologies 5

from causal structures C → B → A and A ← B → C. A v-structure, on the other hand,
such as A→ B ← D in the model of Fig. 3 (the middle node, B, has two incoming edges),
is characterized by an unconditional independency of A and D, A⊥⊥D, and a conditional
dependency, A 2D | B. A and D are initially unrelated but become dependent when con-
ditioned on their mutual effect, B. Variable B is called a collider on the path between A

and D.
A graphical criterion, called d-separation, was defined which allows the retrieval of

all conditional independence that follow from a causal structure [7]. The principle of the
criterion is that two variables are dependent if they are connected in the graph with a path
in which no variables are members of the conditioning set and which does not contain
v-structures, unless the collider belongs to the conditioning set.

The conditional independencies that follow from a causal structure give the informa-
tion to infer causal models from data. These independencies are irrespective of the precise
parameterization of the causal mechanisms of the system.

3.2. Causal Inference

The PC algorithm is the basic constraint-based learning algorithm [16]. It is part of the
TETRAD tool [17], developed by the Dept. of Philosophy of Carnegie Mellon University
and freely available. The algorithm consists of two steps. First it constructs an undirected
graph by finding the direct relations. Thereafter, the algorithm tries to direct the edges using
orientation rules. The flexibility of the algorithm allows for the insertion of background
knowledge. The user can specify edges that are required or forbidden. He can also put
constraints on orientations. In the context of performance models, application and system
parameters are designated as input nodes that can only have outgoing edges.

The first step, called adjacency search, is based on the property that direct relations
cannot become probabilistically independent upon conditioning on some other set of nodes.
Adjacent variables share exclusive information, while indirectly related variables become
independent by conditioning on some other variables which lie on the causal paths between
both variables. The different steps in the learning of the model of Fig. 3 are illustrated in
Fig. 4. The algorithm starts with a fully-connected undirected graph (3a). First it removes
all edges between uncorrelated variables (3b). Then all edges for which a conditioning
set can be found that renders both variables independent (3c). All subsets of variables are
checked for conditional independencies. If a test is successful, the edge is removed. The
algorithm starts by checking unconditional dependencies and then gradually adding nodes
to the conditioning set up to a certain maximal number (set to 2 in our experiments). It
selects the nodes in such a way as to minimize the number of tests it has to perform. This
result in an undirected graph (3d).

In the second step the PC algorithm tries to direct the edges using orientation rules.
These rules are based on the detection of v-structures. If three variables are connected by
two edges, for example U − V −W , there are four possibilities to orient both edges. The
v-structure, U → V ← W , is unique among these, since U and W are initially indepen-
dent, but become dependent by conditioning on V . The opposite is true for the three other

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

6 Parallel Processing Letters

Fig. 4. Inference of the example causal model of Fig. 3 by the conditional independencies it entails.

orientations. Applied on the undirected graph of Fig. 4, v-structure A → B ← D is de-
tected (3e). Finally, the B − C relation can be oriented as B → C (3f), since an opposite
orientation leads to v-structure A → B ← C that cannot be confirmed by the indepen-
dencies found in the data. In absence of enough v-structures, it might be that there is not
enough information to direct all edges. The learning algorithm leads to a set of observa-
tionally indistinguishable models, which have the same undirected graph and v-structures.
Fortunately, the orientation of the relations in performance models is straightforward in
most cases. Knowledge of the input and output variables allows orientation of the edges
connected to it. Any further doubt about the orientation of some edges should be resolved
by a human expert.

3.3. Independence Test

The learning algorithms are based on the information provided by the conditional indepen-
dencies found in the data. TETRAD uses Pearson’s correlation coefficient for calculating
the dependency of continuous variables. It gives a measure of how close a relationship
approximates linearity. Correlations can measure non-linear relations, as long as they are
quasi-monotonically increasing or decreasing. Partial correlations, however, fail if the re-
lations diverge too much from linearity. As correlations in computer systems performance
metrics are strongly non-linear, the utility of Pearson’s coefficient is of limited use. The
solution lies in the information-theoretic concept of mutual information [4]. It quantifies,
independently of the form of the relation, the degree of association between variables. We
also extended the TETRAD toolset such that data consisting of a mixture of continuous

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

Modeling the Performance of Communication Schemes on Network Topologies 7

and discrete variables can be treated, which is currently not possible. The estimation of
the underlying probability distribution for continuous variables is based on a kernel density
estimation [20]. After having quantified the degree of association, a threshold is employed
in order to decide upon dependence or independence. Details about the calculation of the
mutual information and the calibration of the kernel density estimator are given in [11].

3.4. Deterministic Relations

Fig. 5. Example model with a deterministic relation, Y = f(X).

Deterministic relations pose a problem for constraint-based algorithms. Take the model
of Fig. 5. The relation between X and Y is a function: Y = f(X). Deterministic varia-
bles are usually depicted with double-bordered circles. The model implies, by the Markov
property, that

X ⊥⊥ Z | Y (2)

but from the function it also follows that

Y ⊥⊥ Z | X (3)

for, by the functional relation, X contains all information about Y .
We call variables X and Y information equivalent with respect to reference variable Z

if

X 2Z & X⊥⊥Z | Y & Y⊥⊥Z | X (4)

Either variable becomes conditionally independent from Z by conditioning on the other.
Models from systems containing information equivalences will not be learned correctly

by the PC algorithm. The first condition of Eq. 4 implies that X and Z should be related.
The second condition states that X is only indirectly related to Z via Y . Yet the third condi-
tion implies the opposite, that Y should be related to Z via X . Consequently, the adjacency
search step of the PC algorithm will fail in constructing such a model; it would remove
both edges X − Z and Y − Z. The solution we opt for is to connect among information
equivalent variables the one with has the simplest relation with the reference variable [10].
From the perspective of information, X and Y are equivalent with respect to Z. Connecting
both to Z would represent redundant information and in this manner disrupt the minimality
condition. If complexities match, as in the case of a linear relation between X and Y , the
one that is the cause of the other is taken. If this does not lead to a definite choice, it is left
over to the human expert.

The complexity of relations is measured with a regression analysis, which makes a
trade-off between model complexity and error. Details of our extension to the PC algorithm
are explained in [10].

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

8 Parallel Processing Letters

4. Experimental Setup

We will experimentally investigate the execution time of an ensemble of messages, called
communication scheme (CS), on network topologies (NT). The experimental data is re-
trieved from simulations. Random schemes and random topologies will be considered, but
also schemes and topologies having a certain structure. To concentrate on the effect of
structure on the performance we will make some simplifying assumptions. Our research
is limited to homogeneous network topologies with bidirectional links all having identi-
cal latency and bandwidth. The time a message takes to make one hop is approximated by
latency+messagesize/bandwidth. The simulation model of the network is described by
a graph in which each node represents a processor and each edge a communication link. A
communication scheme is a set of messages with a certain source, destination and message
size. The message size is chosen to be the same for all messages, since its influence on the
execution is not a part of our investigation. The message hop time is thus a constant. It is
set to 1 time unit. Messages take the shortest path to go from source to destination. Mes-
sages are queued if the link through which they have to pass is occupied. The simulator is
a discrete event simulator [1], the operation of a system is represented as a chronological
sequence of events. Each event occurs at an instant in time and marks a change of state. In
simulating network traffic, each hop a message makes is an event.

The following graph types are considered for the network topologies, each of them
having specific parameters:

• Random graph: is constructed by probabilistically adding edges to a given set
of nodes. Parameters are the number of nodes, nodes, and the relative node con-
nection degree, relConnect, defined by the average number of links of a node
divided by the total number of nodes. It is ensured that, indirectly, all nodes are
connected so that there exists a path between any two nodes.

• Ring: is a graph in which all nodes are connected so that they form a ring. Its
parameter is the number of nodes, nodes.

• Torus: is a closed surface defined as the product of two rings. Parameters are the
number of nodes of the first ring, nodesR1, and that of the second ring, nodesR2.

• Star: is a graph that consists of one node in the middle which is connected to all
other nodes. Its parameter is the number of nodes, nodes.

• Neighbor graph: is a graph in which nodes are randomly positioned in a plane
and randomly connected but with a higher probability for neighbor nodes. The
probability of having an edge between two nodes decreases quadratically with
the distance between them. The parameter is the relative node connection degree,
relConnect. It is the same to that of a random graph.

• Planar graph: is a graph in which nodes are randomly positioned in a plane and
randomly connected, but in such way that none of the edges intersect. The sole
parameter is the relative node connection degree, relConnect.

Each type is represented by a set of instantiations, generated by randomly chosen pa-
rameter values. The values are picked out of the following ranges according to a uni-

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

Modeling the Performance of Communication Schemes on Network Topologies 9

form distribution: nodes ∈ [20, 100], relConnect ∈ [0.05, 0.9] and, for the torus,
nodesR1 ∈ [4, 14], nodesR2 ∈ [4, 14].

Considered communication schemes and their parameters are:

• Random communication: each node sends a number of messages, randomly cho-
sen with average nodeMsgs, to randomly selected destinations. The range of the
parameter is: nodeMsgs ∈ [20, 100].

• One-to-all broadcast: one node, the node with index 0, sends a personalized mes-
sage to each of the other nodes.

• All-to-all broadcast: each node sends a personalized message to each of the other
nodes.

• Shift: each node i sends a message to the node with index i + indexShift. Para-
meter indexShift is chosen from range [1, 5].

Variables that are measured during each experiment are the following:

• Graph properties: average distance, avgDistance, between two nodes (distance
is the minimal number of hops required to get from one node to another) and
diameter, which is the maximal distance between any two nodes.

• Communication properties: average number of messages per node,
avgNodeMsgs.

• Overall performance: total time to complete all communication, commT ,
the runtime divided by the average number of messages per node,
timePerNodeMsgs, average time it takes for a message to arrive at its desti-
nation, avgTravelT , average number of hops of a message, avgHops, maximal
number of hops of a message, maxHops, and average time a message is queuing,
avgQueueT .

5. Qualitative Performance Models

In this section we apply the PC learning algorithm on the experimental data from simulation
of the execution of a communication scheme on a network topology. First a causal model
is inferred from the data of a set of 200 couples of random CSs and random NTs. Next, the
models for all combinations of CS types and NT types are explored.

5.1. Random Communication Schemes on Random Network Topologies

Experimental data of random communication on random interconnection networks results
in the model shown in Fig. 6. The communication time is linearly dependent on the num-
ber of messages per node, avgNodeMsgs, hence it made sense to introduce the ratio
timePerNodeMsgs. It gives a quantity that is independent of the number of messages
and therefore reduces the complexity of the model. Deterministic variables, which are a
function of its parents in the graph, are depicted with double-bordered circles. The average
number of hops, avgHops, is determined by the average distance, avgDistance, of the
graph. The model also reveals that the variable avgDistance gives maximal information

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

10 Parallel Processing Letters

Fig. 6. Model of communication performance of random communication on a random topology.

about the time per node message. avgDistance is, however, almost completely determined
by relConnect, except for low values of relConnect. With a low number of links, the
graph’s randomness makes that the average distance can vary a lot from graph to graph. Va-
riable relConnect thus also greatly influences timePerNodeMsgs, but does not capture
all information about it. Variable avgDistance does. This illustrates the Markov property
(Section 3.1): relConnect⊥⊥timePerNodeMsgs | avgDistance.

Fig. 7. Communication time per number of messages per node versus average distance for random Network
Topologies and random Communication Schemes.

Fig. 7 shows the statistic timePerNodeMsgs as a function of avgDistance. For any
given parameter configuration, nodes, relConnect and avgNodeMsgs, there is still a
high uncertainty on the communication time. In the next section, a quantitative model is
proposed to characterize individual NTs and CSs so that the uncertainty can be reduced.

5.2. Regular Communication Schemes on regular Network Topologies

The models that are learned for the combinations of CS and NT classes give models that are
sometimes quite different than that of complete randomness (Fig. 6). The following table

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

Modeling the Performance of Communication Schemes on Network Topologies 11

summarizes these qualitative differences. Symbol ‘=’ denotes that the model corresponds
with the model for random communication on random networks, symbol ‘#’ that they are
different. When different, the numbers in brackets explain the differences.

random graph torus neighbor planar star ring
random CS reference # = = = =

model (6) (1)
broadcast # # # = # =

(1)(3)(4) (4) (5) (1) (8) (2)
all2all = # = = # =

(6) (9)
shift = # = = # #

(1)(3) (7) (5) (8) (7)

Explanation of the differences:

• (1) The relations have the same shape, but there is a higher uncertainty on the
relations.

• (2) All relations are deterministic.
• (3) The relation avgDistance - avgHops is not deterministic.
• (4)The number of nodes, nodes, also influences timePerNodesMsgs.
• (5) Identical to model of random communication with the same CS.
• (6) Besides avgDistance, the communication time is less optimal the more

nodesR1 and nodesR2 differ. If nodesR1 is low, there exist only a few paths
connecting the circles of the second dimension. This leads to congestion in
these paths. A variable corresponding to the absolute difference between both,
|nodesR1 − nodesR2|, was added to verify this.

• (7) The index shift, indexShift, also determines performance. Moreover, for
a ring network it is the only parameter affecting the performance variables
timePerNodesMsgs, avgHops and maxHops.

• (8) All performance variables have a constant value.
• (9) timePerNodesMsgs is a constant, nodes affects avgQueueT .

These results show clearly that the model of Fig. 6 becomes invalid. But it is difficult
to draw general conclusions. Random communication behaves quite similar for all kinds
of graphs, except for a torus, in which case the average distance is not the sole direct cause
of timePerNodesMsgs. The neighbor graph gives the same models as for the random
graph. But the table shows that specific regularities in the communication can result in very
specific matches, such as on star or ring graphs. The correctness of the learned models can
be verified when one reasons about how the execution of a specific regular communication
on a structured topology behaves. For instance, consider a shift collective communication
performed on a ring which results in a very efficient execution. The transmission happens
synchronously. Each transmission channel is occupied by exactly one message at each time
instance. No message has to queue before arriving at its destination. indexShift deter-

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

12 Parallel Processing Letters

mines the number of hops each message has to make and thus also the communication
time.

6. Quantitative Performance Models

The previous section was devoted to qualitative models, providing insight into the perfor-
mance. In this section we are interested in the prediction of the communication time. We
will build a generic model, in the sense of Fig. 2(a) and the convolution method (see related
work section), that adequately estimates the runtime of random communication on random
topologies. A generic performance property is defined that characterizes individual NTs
and CSs, and a simple function that calculates the runtime of any combination of NT and
CS. In the subsequent subsection we investigate whether this quantitative model is also
valid for combinations of regular CSs and NTs.

6.1. Random Communication Schemes on Random Network Topologies

We propose a definition of a Performance Factor for characterizing individual NTs and
CSs, called respectively NTPF and CSPF . Its value will be experimentally measured on
a benchmark. The benchmark consists of 50 random graphs having 25 nodes and varying
relConnect and 50 random communication schemes having 25 messages per node. The
benchmark average runtime, denoted refT , is the average runtime of all 50 × 50 com-
binations of the benchmarks NT and CS. It serves as a reference for characterizing the
performance of NTs and CSs. The performance factor of topology i, NTPFi, is defined as

NTPFi = benchmarkT (NTi)/refT (5)

with benchmarkT (NTi) the average runtime of running graph i on the 50 benchmark
communication schemes. This factor lies around 1. If it is smaller, it means that the com-
munication finishes faster than on the benchmark graphs. If higher, the communication
needs more time to complete. Likewise is the performance factor of CSj defined by
the average runtime of the simulation of the CS on the benchmark topologies, denoted
benchmarkT (CSj):

CSPFj = benchmarkT (CSj)/refT (6)

The function to calculate the runtime of running CSj on NTi is defined as follows:

prediction(CSj , NTi) = refT × CSPFj ×NTPFi (7)

Fig. 8 present the results for the comparison of the estimated with the real runtime
for a test set of 100 random NTs and 100 random CSs. Although there is a difference, a
correlation coefficient of 0.98 indicates that a good estimation is achieved.

6.2. Regular Communication Schemes on regular Network Topologies

Random communication on random topologies results in statistical values. Deviations of
the average for specific instantiations are accurately modeled by the CS and NT perfor-
mance factors. This section will uncover that the method based on the benchmark NTs and

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

Modeling the Performance of Communication Schemes on Network Topologies 13

Fig. 8. Real versus estimated communication time for random communication on random topologies.

CSs is not always successful in predicting the performance of regular NTs and CSs. NTs
containing 25 nodes are considered. The same equations, Eq. 5 and Eq. 6, were used for
experimentally attributing a value to each CS and NT type. A set of instantiations for each
type (see section 4) was benchmarked. The results are shown in the following table. The
numbers come from averaging over the results of 50 different sets measured on 10 different
benchmarks. It gives the average benchmark runtime, the average factor and the average
standard deviation of the factor for the different instantiations in each set. The latter is an
indication of how much the performance factor varies from one instantiation to another. Its
value is not filled in if there is only one instantiation. The average runtime of the benchmark
(random graphs), refT , is 46.9 time units. Recall that the benchmark consists of random
graphs containing 25 nodes and 25 messages per node are communicated. 1 time unit is
needed for a message to perform 1 hop.

benchmarkT factor stddev
random graph 50 1.0 0.9
torus 123 2.4 1.3
neighbor graph 141 2.8 2.1
planar graph 191 3.8 1.7
star 77 1.5 -
ring 190 3.7 -
random 50 0.99 0.09
broadcast 8.7 0.17 -
all2all 44 0.87 -
shift 25 0.49 0.27

Most graphs have a factor that is more than 1, which indicates that the communication
time is higher than that of random graphs. A low factor is not necessarily an indication of a
bad efficiency when the number of edges is taken as the cost of the network. The structured
graphs have fewer edges than the random graphs.

Similar results are obtained for graphs with a different number of nodes or a different
number of messages. Except that for bigger graphs or more messages the standard deviation
becomes smaller. Each experiment comes closer to the statistical average.

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

14 Parallel Processing Letters

Once the factors have been established, the quality of the estimated runtime calculated
with Eq. 7 can be verified for each combination of regularity type. We calculate the relative
estimation error according to the ratio of the average sum of squared errors with the average
runtime:

relative estimation error(NTi, CSj) =

√
SSQ/n

averageT (NTi, CSj)
(8)

with n the number of data points. The results are shown in the following table. The value in
brackets gives the relative difference between the average estimated time and average real
runtime:

random graph torus neighbor graph
random 14% (+0.8%) 7% (-0.3%) 9% (-0.5%)
broadcast 72% (+11%) 40% (-25%) 94% (-50%)
all2all 12% (-0.2%) 6% (-6%) 10% (+6%)
shift 61% (+5%) 270% (-160%) 97% (-46%)

planar graph star ring
random 8% (+0.2%) 8% (+1%) 6% (-0.4%)
broadcast 95% (-70%) 1150% (-1150%) 39% (39%)
all2all 9% (+6%) 37% (-37%) 5% (-5%)
shift 90% (-65%) 16% (-12%) 330% (-250%)

The standard deviation of the values over the 50 different experiments is about 7% of the
given values. This shows that there is a quite large 95%-confidence interval for the values
of about 15%. Nevertheless is there a big difference between combinations that give quite
good estimations and those for which the prediction is completely wrong (put in boldface).

The standard deviation of the estimation of random CS on random NT is 14%. But the
low value of 0.8% for the difference between average estimation and real time indicates
that the estimation is unbiased. On the contrary, a broadcast on a planar graph executes
consequently faster than expected. An average difference of -70% for a relative error of
95% shows that almost all estimations are too high. Several combinations lead to better
matches than expected by the benchmark. While other combinations are well predicted,
such as the all2all communication scheme. An all2all resembles random communication.

7. Conclusions

Besides the capacities of a communication channel, such as the latency and the bandwidth,
it is also the topology of the interconnection network that affects the time a set of mes-
sages needs to be transmitted. Especially when Network Topology (NT) or Communication
Scheme (CS) exhibit specific regularities. Causal inference algorithms were used to con-
struct, from experimental data, causal models revealing the relations among the variables
and the impact of every variable on the overall communication performance. The results
show that no general conclusions can be drawn. The causal models can be radically diffe-
rent for specific combinations of CS regularities and NT regularities.

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

REFERENCES 15

The same conclusion can be drawn for the prediction of the communication time. For
attaining genericity, it must be possible to characterize an individual NT with a set of pro-
perties such that it allows accurate prediction of the communication time for any commu-
nication scheme that is executed on it. And vice versa, a set of generic properties must
exist for characterizing any CS. We defined a property and a simple function to estimate
the communication time for a combination of CS and NT. The property is measured on
a benchmark which consists of a set of random CSs and random NTs. This method gives
accurate results when the NT corresponds to a random graph and the CS is adequately mo-
deled by messages with randomly chosen source and destination. Regular graphs also give
good results when confronted with random communication, but not when combined with
certain structured communication types.

Concluding, regularities in NTs and CSs cannot be ignored for effective understanding
and prediction of communication performance. Good predictions for new topologies or
communication schemes can only be made with models that apply for their structure.

References

[1] Jerry Banks, John Carson, Barry L. Nelson, and David Nicol. Discrete-Event Simu-
lation - fourth edition. Prentice Hall, 2005.

[2] Kenneth L. Calvert, M. B. Doar, and Ellen W. Zegura. Modeling internet topology.
IEEE Communication Magazine, pages 160–163, 1997.

[3] Laura C. Carrington, Michael Laurenzano, Allan Snavely, Roy L. Campbell, and
Larry P. Davis. How well can simple metrics represent the performance of HPC ap-
plications? In Proc. of the 2005 ACM/IEEE conference on Supercomputing, page 48,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley
& Sons, Inc., 1991.

[5] Thomas Fahringer and Clovis Seragiotto. Automatic search for performance problems
in parallel and distributed programs by using multi-experiment analysis. In Sartaj
Sahni, Viktor K. Prasanna, and Uday Shukla, editors, HiPC, volume 2552 of Lecture
Notes in Computer Science, pages 151–162. Springer, 2002.

[6] Sally Floyd and Vern Paxson. Difficulties in simulating the internet. IEEE/ACM
Trans. Netw., 9(4):392–403, 2001.

[7] Dan Geiger, Thomas Verma, and Judea Pearl. d-separation: From theorems to algo-
rithms. In Max Henrion, Ross D. Shachter, Laveen N. Kanal, and John F. Lemmer,
editors, UAI, pages 139–148. North-Holland, 1989.

[8] Anthony J. G. Hey, Alistair N. Dunlop, and Emilio Hernández. Realistic parallel
performance estimation. Parallel Computing, 23(1-2):5–21, 1997.

[9] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to
Parallel Computing. Benjamin/Cummings, Redwood City, CA, 1994.

[10] Jan Lemeire. Learning Causal Models of Multivariate Systems and the Value of it
for the Performance Modeling of Computer Programs. PhD thesis, Vrije Universiteit
Brussel, 2007.

March 6, 2008 14:58 WSPC/INSTRUCTION FILE CSxNT˙PPL˙Paper

16 REFERENCES

[11] Jan Lemeire, Erik Dirkx, and Frederik Verbist. Causal analysis for performance mod-
eling of computer programs. Scientific Programming, 15(3):121–136, 2007.

[12] Gabriel Marin and John Mellor-Crummey. Cross-architecture performance pre-
dictions for scientific applications using parameterized models. In SIGMETRICS
’04/Performance ’04: Proceedings of the joint international conference on Measure-
ment and modeling of computer systems, pages 2–13, New York, NY, USA, 2004.
ACM Press.

[13] Judea Pearl. Causality. Models, Reasoning, and Inference. Cambridge University
Press, 2000.

[14] A. Snavely, N. Wolter, and L. Carrington. Modeling application performance by con-
volving machine signatures with application profiles. In WWC ’01: Proceedings of
the Workload Characterization, 2001., pages 149–156, Washington, DC, USA, 2001.
IEEE Computer Society.

[15] Allan Snavely, Laura Carrington, Nicole Wolter, Jesús Labarta, Rosa M. Badia, and
Avi Purkayastha. A framework for performance modeling and prediction. In SC,
pages 1–17, 2002.

[16] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and
Search. Springer Verlag, 2nd edition, 1993.

[17] Peter Spirtes, Clark Glymour, Richard Scheines, and Joseph Ramsey. The TETRAD
project. http://www.phil.cmu.edu/projects/tetrad/.

[18] Jin Tian and Judea Pearl. A general identification condition for causal effects. In
AAAI/IAAI, pages 567–573, 2002.

[19] Hong Linh Truong and Thomas Fahringer. SCALEA: A performance analysis tool
for distributed and parallel programs. In Burkhard Monien and Rainer Feldmann,
editors, Euro-Par, volume 2400 of Lecture Notes in Computer Science, pages 75–85.
Springer, 2002.

[20] M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman & Hall, London, UK, 1995.
[21] Ellen W. Zegura, Kenneth L. Calvert, and Michael J. Donahoo. A quantitative com-

parison of graph-based models for Internet topology. IEEE/ACM Transactions on
Networking, 5(6):770–783, 1997.

