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Abstract

Causal models are proposed for the representation of re-
lational information of a performance analysis of computer
systems. Performance models fulfill many requirements.
Causal models offer a formalization and unification of the
properties that we expect. Causal structure learning algo-
rithms attempt to construct such models from experimental
data. Existing algorithms have been extended to incorpo-
rate the variety of variable types and relations encountered
in real performance data. To handle a combination of con-
tinuous and discrete variables with possibly non-linear re-
lations, we use the more general conditional independence
test based on the mutual information between probabilistic
variables. The underlying probability distribution of exper-
imental data is estimated by kernel density estimation. The
estimate is constructed by centering a scaled kernel at each
observation. Deterministic relations imply that variables
contain equivalent information about other variables and
cannot be represented by a faithful model. To handle this,
the complexity of the relations is used as a criterion to de-
cide upon which of the equivalent variables directly relates
to the target and conditional independency is redefined to
reestablish the faithfulness of the graphs. Experiments with
sequential and parallel programs show that accurate mod-
els are inferred. They provide insight in how each variable
affects overall performance measures and the analysis can
be used to validate independence assumptions and find po-
tential explanations for outliers.

1. Introduction

The design and implementation of high-performance
computer applications requires knowledge of many factors
that influence performance. This task can be facilitated by
tools that support the performance analysis and offer mul-

tifunctional performance models. The models should ful-
fill many requirements. They should provide information
on the expected performance, offer insight in the causes of
performance degradation, should be constituted of reusable
submodels, tell which variables should be known for pre-
dicting others, should make it possible to estimate the ef-
fects of optimizations and enable to reason under uncer-
tainty. Causal models offer an elegant formalization of
these properties. Causality is widely used in social sci-
ences such as economy or sociology, in biology, machine
learning, . . . A causal model represents theindependency
relations among variables. It reduces a model to indepen-
dent submodels in which the directly related variables of
a variable contain all information about that variable. Be-
sides the encoding of the joint distribution and the explicit
representation of dependency information, a causal model
aims at representing the underlying physical mechanisms
that generated the data. This enables a user to reason about
modifications - calledinterventions- such as algorithm or
system optimizations.

This paper reports on experiments with existing learn-
ing algorithms for finding the causal structure of perfor-
mance variables. Experimental data were obtained from
distributed computer systems. A causal model represents
the conditional independence relations among the variables
by a Directed Acyclic Graph (DAG). The correspondence
of the conditional independencies in the graph and the data
is calledfaithfulness. Causal structure learning algorithms
try to construct a faithful graph based on the conditional in-
dependencies found in the experimental data. Real perfor-
mance data are more complex than data typically encoun-
tered in the academic examples used for research about
causal analysis. They contain a mixture of continuous
and discrete variables. The relationships between the vari-
ables are not always linear, as assumed in most research.
All these aspects are handled by the extensions we devel-
oped and integrated into the tool Tetrad [24], developed
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by the Dept. of Philosophy of Carnegie Mellon Univer-
sity. To measure form-free dependencies we applied the
information-theoretic definition of mutual information of
two stochastic variables [9]. It is based on the entropy of
a stochastic variables. A Gaussian kernel density estima-
tor is used for the reconstruction of the underlying proba-
bility distribution from experimental data. The traditional
learning algorithms fail on data containing deterministic re-
lations since these models violate the faithfulness assump-
tion. The latter implies that two variables that are determin-
istically related can contain equivalent information about a
third variable, in which case either of both becomes con-
ditionally independent of the third variable by condition-
ing on the other. This cannot be represented by a faithful
graph. Hence it poses a problem for current learning algo-
rithms. We solved this by redefining the faithfulness prop-
erty and using the complexity of the relations as a criterion
to choose among equivalent relations.

The next section gives an overview of related work,
causal models are defined in section 3 and the utility for
performance analysis is described in section 4. Section
5 explains the structural learning algorithms and the im-
plemented extensions and finally, the experimental results
from a performance analysis of the Aztec benchmark par-
allel application are given.

2. Related Work

Many tools exist for automated performance analysis.
They are integrated in frameworks for coordinated moni-
toring and control of computer applications. It is widely
recognized that the complexity of deployed systems sur-
passes the ability of humans to diagnose and respond to
problems rapidly and correctly. Research on automated di-
agnosis and control - beginning with tools to analyze and
interpret instrumentation data - should provide the means
to guide the developer and user with understandable infor-
mation.

Our research focuses on dependency analysis, when the
model is not known a priori. The most common approach
is to incorporate a priori models, which explicitly or im-
plicitly represent how variables relate to each other. Other
approaches let the user himself discover the interrelational
structure incrementally. Current tools that support multiple
experiment analysis plot performance variables (SCALEA
[26]) and inefficiencies (Aksum [12]) as a function of ap-
plication and system parameters. Others provide regression
analysis (AIMS [30]).

We advocate applying statistical learning techniques to
induce models automatically. This approach assumes lit-
tle or no domain knowledge, is therefore generic and has
the potential to adapt to changes in the system and its envi-
ronment. Cohen and Chase use Tree-Augmented Bayesian

Networks (TANs) to identify combinations of system-level
metrics and threshold values that correlate with high-level
performance states in a three-tier Web service under a vari-
ety of conditions [8].

Our approach provides support for extending current
tools and automating certain tasks by exploiting the auto-
matic causal learning facilities.

Most research does not consider models that contain
such a wide variety of variables and relations as encoun-
tered in real performance models. They focus on one type
of variables, discrete or continuous, where the continuous
are most often expected to be quasi-linearly related. In case
of deterministic relationships, one should exclude variables
from the dataset that are definable in terms of other vari-
ables in the set [21].

3. Causal Models

This chapter will briefly introduce causal models. See
[20, 23, 25] for a complete theoretic elaboration. A causal
model consists of a Directed Acyclic Graph (DAG) and the
Conditional Probability Distributions (CPDs) of each node.
The DAG is defined over a setV = V1, . . . , Vn of nodes,
representing the variables of interest, and a setE of di-
rected edges, or arrows, representing the relations among
the variables. The interpretation of such a graph has two
components: a probabilistic and a causal one [25]. But
causal models are best defined in three steps. The first is
reflected by a Bayesian network. Its relevance is based on
the qualitative property of conditional independence.

3.1. Conditional Independence

Two stochastic variablesX and Y with distributions
P (X) and P (Y ) are probabilistically independentwhen
the joint distribution P (X, Y ) can be decomposed as
P (X, Y ) = P (X).P (Y ). On the other hand, whenX
and Y depend on eachother,P (X, Y ) = P (X).P (Y |
X) or P (X, Y ) = P (Y ).P (X | Y ). One can equiva-
lently say thatX andY are independent ifP (Y | X) =
P (Y ) or likewise P (X | Y ) = P (X). Dependence
implies that by knowing the state of one variable, some-
thing is known about the state of the other variable. In
information-theoretic terms [9], it is due to a dependency
that the entropy, the uncertainty, of the unknown variable
decreases when the other is known. The mutual informa-
tion I(Y ;X) = H(Y ) − H(Y | X) quantifies the de-
pendency by the decrease of the entropy ofY , it is strictly
positive. Both properties are defined in section 6.2.

A conditional distribution defines the probabilities of
a set of variables when some other variables are known,
what is called conditioning. VariablesX andY are called
conditionally independent by conditioning onZ if P (Y |
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X, Z) = P (Y | Z). The knowledge of the stateX adds no
information to the knowledge ofZ aboutY . Conditional
independence is denoted by the ternary operator.⊥⊥. | .

X⊥⊥Y | Z ⇔ P (X | Y, Z) = P (X | Z) (1)

The above definitions also apply for sets, by simply re-
placing the variables by sets.

3.2. Bayesian Networks

A Bayesian network offers a dense representation of a
joint distribution. A joint distribution is defined over a
set of stochastic variablesX1 . . . Xn and defines a prob-
ability (P ∈ [0, 1]) for each possible state(x1 . . . xn) ∈
X1,dom × · · · × Xn,dom, whereXi,dom stands for the do-
main of variableXi.

The distribution can befactorizedrelative to a variable
ordering[X1, . . . , Xn] as follows:

P (X1 . . . Xn) =
n∏
i

P (Xi | X1 . . . Xi−1) (2)

Variables can be removed from the conditioning sets if they
get conditionally independent of the probability variable by
conditioning on the rest of the set. This follows directly
from the definition: ifP (Xi | X1 . . . Xi−1) = P (Xi |
X1 . . . Xj−1, Xj+1 . . . Xi−1), thenXj can be eliminated
from the factor ofXi. Such conditional independencies
reduce the complexity of the factors in the factorization.
The conditioning sets of the factors can be described by a
Directed Acyclic Graph (DAG), in which each node has
an incoming edge from all variables of the conditioning
set of its factor. The joint distribution is then described
by the DAG and the conditional probability distributions
(CPDs) of all variables conditioned on its parents,P (Xi |
parents(Xi)). A Bayesian networkis a factorization that
is minimal, in the sense that no edge can be deleted without
destroying the correctness of the factorization. Note that a
graph still depends on the variable ordering. Some order-
ings lead to the same graphs, but others result in different
graph that possibly contain more edges.

A simple example can illustrate the theory. Take 4
stochastic variablesA,B,C and D. Their joint distrib-
ution is written asP (A,B,C, D) and defines a proba-
bility (P ∈ [0, 1] for each possible state(a, b, c, d) ∈
Adom × Bdom × Cdom × Ddom. Fig. 1 shows how the
factorization is simplified by a conditional independency
found in the distribution.

We constructed the definition of the Bayesian network
by the conditional independencies. On the other hand,
the independencies can be read from the graph by the
Markov condition. TheMarkov conditionstates that all
non-descendants become independent from a variable by

Figure 1. Reduction by conditional indepen-
dencies of a factorization, based on variable
ordering {A, B, C, D}.

Figure 2. Minimal factorization, based on
variable ordering {A, D, C, B}.

conditioning on the parents of that variable. Combining
the independencies that follow from the Markov condition
result in other independencies. Pearl developed a graph-
ical criterion, calledd-separation, to retrieve all indepen-
dence relations that follow from the Markov condition from
a DAG [13]. The DAG is called anIndependence Map(I-
map), since all independencies are present in the distribu-
tion. The converse is however not true for all factorizations.
This is discussed in the next section.

3.3. Faithful Bayesian Networks

In the second step of the construction of causal models,
we seek for Bayesian Networks that representall condi-
tional independencies of a joint distribution. A model is
calledfaithful to a distribution if all and no more indepen-
dencies found in the graph with thed − separation crite-
rion appear in the distribution. It is proven that if there ex-
ists a faithful graph, it is the factorization based on a vari-
able ordering that leads to the minimal number of edges.
Fig. 2 shows the factorization with the fewest edges that
results from a different variable ordering. Thed-separation
criterion tells us, for example, that variableC separatesA
from B and alsoA from D. C blocks the path fromA to
B. On the other hand,A is initially independent fromD,
but becomes dependent when conditioned onC. A faithful
model is a dense representation of the conditional indepen-
dencies of a distribution. Note that the graph of Fig. 1 has
2 edges more due to a worse variable ordering.A must for
example be connected withD becauseA 2D | C, unless
A⊥⊥D. Both independencies can be read from the graph of
Fig. 2: A→ C ← D form av − structure.
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3.4. Causally interpreted Bayesian Networks

A causal relation is an irreflexive, transitive and asym-
metrical (rain creates mud, but mud will not create rain)
relation. It has the properties of productivity (the effect
is ’produced’ by the cause) and locality [7]. It obeys
the markov condition (for modelA → B → C, if B is
blocked, thanA does not causeC) and represents a stable
and autonomous physical mechanism (”which is conceiv-
able to change one relationship without changing the oth-
ers”) [20].

A causal modelis a Bayesian network in which the
arrows are viewed as representing causal influences be-
tween the corresponding variables. This interpretation, at-
tributed to the edges of a faithful model, is based on a
reductionist motivation. The model breaks up into the
submodelsP (Xi | parents(Xi)) for each variableXi.
Each submodel represents a stochastic process by which
the values ofXi are chosen in response to the values of
parents(Xi), and the stochastic variation of this assign-
ment is assumed independent of the variations in all other
assignments. Moreover, each assignment process remains
invariant to possible changes in assignment processes that
govern other variables in the system. This modularity as-
sumption enables us to predict the effect of interventions,
whenever interventions are described as specific modifica-
tions of some factors in the product of the factorization.
Pearl defines an intervention as ’surgically’ setting a vari-
able to a certain state, resulting in a mutilated model in
which all links from the parents are removed [20]. Here,
the asymmetry comes into play, since only the effects re-
main connected to the variable.

The submodelsP (Xi | parents(Xi)) are the funda-
mental blocks that are able, by the faithfulness property,
to explain all relational regularities that can be observed.
The rationale is that if a model offering a minimal descrip-
tion of the data has the power to foresee all consequences,
it must come close to reality. Nevertheless, the causal in-
terpretation of the relations cannot be guaranteed, unless
experiments are performed studying the effects of changes
to the system.

4. Causal Performance Models of Comput-
ers

The model of parallel performance shown in Fig. 3 is
constructed by an expert in an intuitive way, for what he
expects as being a true and useful model. It shows the most
common variables involved in the performance analysis of
a parallel application. The parallel performance metric uses
an overhead quantification based on the lost-cycle approach
[10]. It aims at attributing each part of the overhead - the

Figure 3. General model of parallel perfor-
mance

Figure 4. Simplified Causal Model of Quick-
sort

so-calledlost cycles- to the purpose it was spent on. Pro-
gram parameters and computer system characteristics (gray
ovals) influence the overheads. Theworksize of the ap-
plication and the number of processors (#processors) are
input parameters. Other system parameters are depicted by
gray ovals. The performance variables at the right side re-
flect the output of the model. Intermediate variables like
the communication timeTcomm and idle timeTidle mea-
sure the overheads that can explain the performance re-
sults. Other variables can further explain the values for
the overheads. Most of them can be measured physically:
in the application (eg. the number of basic operations
#operationscomp performed by the algorithm), in the sys-
tem (like the cache misses) or by MPI profiling capabilities
(eg. the size of the communication datadatacomm or the
number of messages). Finally, the number of instructions
per operation (#instrop), thepartitioningand thecommu-
nication schemedenote characteristics of the application.
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Fig. 4 represents a causal model of performance related
data of a quicksort running on a sequential computer. It
represents a first-order performance model for the sequen-
tial runtimeTcomp. #op is the number of basic compare-
swap operations, which is determined by the array sizen
and theinitial order of the elements. The complexity of
thecompare andswap statements influence the a number
of basic instructions#instrop. Together with the proces-
sor’s clock frequencyfclock they determine the time for 1
operationT1op. In the example of Fig. 4, once we know the
number of operations#op, Tcomp becomes independent of
n or theinitialorder. This shows the reduction of the de-
pendency complexity of the model.

By analyzing of the properties attributed to this model,
we find that they correspond to those that define causal
models. A variable is expected to be determined by its
parents, this corresponds to the Markov condition. The
model is assumed not to contain redundant relations, thus to
be minimal. Furthermore, the paths between the variables
show the dependencies among the variables, which corre-
sponds to the faithfulness condition. In the formalization
employed by the research that led to the development of
the TETRAD tool [23], the 3 properties - the Markov con-
dition, minimality and faithfulness - are taken as axioms
for defining causality.

The questions that are supposed to be answered by a
performance analysis are of causal nature. Take the study
of network performance: communication delays should
be attributed to the different steps of the communication
process, like machine latency, transfer time, network con-
tention, flight time, etc [4]. A correct understanding of
the origins is indispensable. The task of identifying them
becomes even more difficult when implementation-specific
low level issues come into play, such as specific protocol
behavior, window delays or chatter [19], since these are not
always fully understood and often cannot be measured di-
rectly. The relations between quantities observed through-
out the application and computer system, and the overall
performance have a causal interpretation.

5. Utility

The utility of causal models is twofold: they support the
modeler as well as the user.

5.1. Support of the performance modeling
process

5.1.1. Model construction , in the first place.

5.1.2. Model validation: validation of the
(in)dependency assumptions made by the modeler.

5.1.3. Reuse of autonomous submodels:Causality
takes the position that the world is reducible. Models for
which the Markov Conditions is valid can be separated into
independent, local submodels of the formP (Xi | pai).
Independency results in autonomy, a submodel can be al-
tered without affecting the rest of the model. Causality in-
herently provide autonomous submodels that can be reused
in modeling systems in a different context. This approach
claims that the statistical analysis of a parallel application
running on a certain network, results in a reusable model
which correctly predicts the communication delays versus
the - application independent - message properties for ex-
periments with different applications.

The ultimate goal of performance modeling is to be able
to predict the runtime of applications on unknown systems.
This requires the existence of independent application and
system characteristics and a simple functional relation to
calculate the overall performance. This is the case in the
simplified quicksort model of Fig. 4, where the perfor-
mance characteristics are#op, #cyclesop for the appli-
cation andfclock for the system. The runtime can be com-
puted by:

Tcomp = #op.#cyclesop.1/fclock (3)

However, the first-order approximation only holds for small
problem sizes. When memory overheads come into play, as
shown by the extended model of Fig. 5, the separation be-
comes more interesting [22]. Independency of submodels
and application or system characteristics is crucial in the
modeling process. Such independencies reflect precisely
what is studied by causality.

5.1.4. Detection of abnormal, unexpected dependen-
cies: Consider dynamic, complex or non-homogeneous
systems with exceptionally high overheads. A statistical
model of the communication performance can be used to
warn for exceptional communication delays, when above
the average, useful in for example GRID environments
[11].

5.1.5. Flexibility: additional information can easily be
integrated into the models. Even incomplete information
can give relatively accurate estimates. At each stage, it
should be possible to refine models [18]. Fig. 5 shows
an extended version of the quicksort performance model of
Fig. 4. Memory overheads, denoted byTmemory, were
added to the model. They are caused by the application’s
datasize, memory usage and the processor’smemory ca-
pacity and bandwidth.

The modeler can integrate additional information into
the model, like the cache miss frequencies (measured with,
for example, the PAPI tool for accessing hardware counters
on microprocessors [6]) or the processor type, as shown in

5



Figure 5. Detailed Causal Model of Quicksort
Performance

Fig. 5 . Through statistical analysis, the dependencies with
the other variables can be found and the predictive qualities
of this extra information can refine the performance model.

Not all variables should be known for performance pre-
diction. By the use of statistics, expectations can be cal-
culated for unknown variables. In this way, it should be
possible to create flexible, hierarchical models.

On the other hand, not all variables should be known for
performance prediction. The statistical expected value can
be used for unknown variables.

5.2. Presentation of a clear performance report

5.2.1. Structuring the variables In order to under-
stand complex situations with many variables and depen-
dencies, a structured representation of the relations is re-
quired. This is offered by causal models.

5.2.2. Filtering relevant information Causal models
correspond to physical mechanisms and enable the filtering
of relevant information, by the statistical analysis, which
reveals the impact of every factor, the most influential fac-
tors can be filtered.

5.2.3. Reasoning about interventions Besides the ex-
planatory facilities, causal models can be exploited to
reasonabout the performance and answer questions like:
Which part of the application gives space for adequate op-
timization? What is the most efficient upgrade of the sys-
tem?

6. Causal Structure Learning

Besides the formal treatment of causality by Pearl, an-
other important advance was the design of algorithms for
learning causal models from experimental data by [28, 23].
Various tools exist that implement these algorithms, for

Figure 6. First part of the learning algorithm:
edges are removed from the full-connected
undirected graph due to conditional indepen-
dencies.

an overview see [14] or [2]. TETRAD (free available
at [24]) is open source software, written in Java and con-
tains an extensive set of algorithms. There are two ba-
sic types of structure learning algorithms: constraint-based
and scoring-based. All learning algorithms of TETRAD
are of the constraint-based type [23]. The algorithms con-
sist of two parts: first they construct an undirected graph
by finding direct relations, which is the same for all al-
gorithms. Secondly, the algorithms try to direct the edges
using orientation rules.

The first step of the standard algorithm,adjacency
search, is based on the property that direct relations can-
not become probabilistically independent upon condition-
ing on some other set of vertices (see the Markov condi-
tion). Indirectly related variables become independent by
conditioning on some variables on the path between both
variables. The algorithm starts with a full-connected undi-
rected graph and removes all edges for which a condition-
ing set can be found that renders both variables indepen-
dent. The algorithm will go through all subsets of vari-
ables and check for conditional independence. If a test
is successful, the edge is removed. The algorithm starts
by checking unconditional correlations and then gradually
adds nodes to the conditioning set upto a certain maximal
number. It selects the nodes in an optimized way to mini-
mize the tests it has to perform. Fig. 6 shows this part of
the algorithm for learning the model of Fig. 2.

Secondly, the algorithm tries to direct the edges using
orientation rules. These rules are based on the detection of
v-structures. If three variables are connected by two edges,
for exampleA−B − C, there are four possibilities to ori-
ent both edges. Only the v-structure can recognized among
these. ForA → B ← C, A andC are initially indepen-
dent, but become dependent by conditioning onB. For all
three other orientation possibilities it is the opposite,A and
C are initially dependent, but become independent by con-
ditioning onB. Applied on the undirected graph of Fig. 6,
v-structureA → C ← D will be recognized. TheB − C
relation can be oriented asB ← C, since an opposite ori-
entation leads to v-structureA → C ← B that cannot
be recognized in the data. Absence of v-structures leads to
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edges that cannot be directed. Thus, in general, the learning
algorithm leads to a set of observationally indistinguishable
models. The orientation task is however simplified by the
knowledge of the input and output variables and any con-
fusion about the direction of some edges can be resolved
by an expert since the orientation of the relations in perfor-
mance models is in most cases trivial.

Under 6 assumptions the algorithm will find the correct
equivalence class of indistinguishable equivalent causal
models [21]. Models of the same class have the same undi-
rected graph, only the orientation cannot always be deter-
mined. But as we already explained, orientation is not our
primary concern. One assumption is that the experiment
should be typical, random. We will choose the input para-
meters randomly from a uniform distribution. Another as-
sumption states that the faithfulness condition should hold.
This property is violated when there are deterministic re-
lationships among the variables. Performance models con-
tain inevitably deterministic relations. This issue is dis-
cussed in section 6.4. The other 4 assumptions are valid.

6.1. Extensions

To capture the complexity of performance data, the ex-
isting models and algorithms had to be extended in three
ways:

• Mixture of discrete and continuous data, by the use of
the information-theoretic concept of mutual informa-
tion for measuring dependency. It measures the de-
crease of uncertainty of one variable by knowing an-
other variable.

• Another advantage of mutual information is that it
offers a form-free dependency measure, whereas the
widely used Pearson correlation coefficient measures
the closeness of a relation to linearity.

• Deterministic relations, by which a variable is a func-
tion of a set of variables, imply additional conditional
independencies that cannot be captured by faithful
models. Our work developed extensions of the defin-
ition and learning algorithm that is able to reestablish
the faithfulness.

Our approach to handle these types of variables and rela-
tions is elaborated in the next subsections.

6.2. Information-Theoretic Dependence

TETRAD uses Pearson’s correlation coefficient for cal-
culating the dependency of two continuous variables. It
gives a measure of how close a relation approximates lin-
earity. Conditional independencies are measured by par-
tial correlations, which can be calculated from the correla-
tion coefficients, but only if linearity holds. Correlations

can measure non-linear relations, as long as they are quasi-
monotonically increasing or decreasing. The partial corre-
lations will possibly fail. This was confirmed by our exper-
iments. This motivates the use of a form-free definition of
dependency.

Entropy is the amount of uncertainty of a stochastic vari-
able. For a discrete random variableX with alphabetA and
probability mass functionp(x), its entropy is defined as [9]

H(X) = −
∑
x∈A

p(x)logp(x) (4)

It represents the number of bits for the minimal code that
can describex and is maximal for the uniform distribution.
The conditional entropyH(Y | X) is defined as

H(X | Y ) =
∑
y∈B

H(X | Y = y) (5)

whereB is the alphabet of random variableY . Probabilis-
tic dependency can be defined as the mutual information
I(X;Y ) of X andY , which is the reduction in uncertainty
of X when knowingY :

I(X;Y ) = H(X)−H(X | Y ) (6)

It is zero when both variables are independent. The mutual
information can then be rewritten as

I(X;Y ) =
∑
x∈A

∑
y∈B

p(x, y)log
p(x, y)

p(x)p(y)
(7)

Conditional independence,I(X;Y | Z), is defined in
the same way. TheG2 independence test [5], used by
TETRAD for discrete variables, is of the same form:

G2 = 2
∑

observed.ln
observed

expected
(8)

For measuring the entropy of continuous variables, we
will use the entropy of the discretized distribution. For a
variableX with densityf(x) and dividing the range ofX
in bins of length∆ , the entropy of the quantized distribu-
tion is [9]

H(X∆) = −
∫ +∞

−∞
f(xi)∆log(f(xi)∆) (9)

The discretized definition of entropy and mutual informa-
tion are of the same form as respectively Eq. 4 and Eq.
7. This makes it possible to handle continuous and discrete
variables identically and to calculate entropies for a mix-
ture of continuous and discrete variables. The difference
with Pearson’s correlation coefficient is that mutual infor-
mation considers each value ofX independently: it sums
for every x the decrease in uncertainty ofY . The rela-
tion betweenX andY can be arbitrary, whereas correlation
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seeks for a linear relation between the points. The main dis-
advantage of our test is that larger sample sizes are needed.
The definition suggests that for every value ofX multiple
data points are needed. This approach would be the same as
discretizing the continuous variable and would also induce
a quantification error. Kernel density estimation overcomes
these problems. The reason is thatP (X = x) is influenced
by the data points in the neighborhood ofx. The number
of data points needed can be limited, the estimation only
assumes a smoothly changing distribution.

6.3. Kernel Density Estimation

For applying the information-theoretic definition of de-
pendency, it is necessary to have an estimation of the prob-
ability distributions from the data. For discrete variables
the distribution can be estimated by simply counting the
number of occurrences of each state and divide them by
the number of data pointsn. For continuous variables,ker-
nel smoothingmakes it possible to estimate the distribu-
tion with limited sample sizes. The kernel estimate is con-
structed by centering a scaled kernel at each observation.
The value of the estimate at pointx is the average of then
kernel ordinates at that point. The idea is to spread a ’prob-
ability mass’ of size1/n associated with each data point
about its neighborhood. See [3] for a gentle introduction.
The estimated distribution is the result of a convolution of
the data points with a well-chosen kernel [29]:

p(x) =
1
nb

n∑
i=1

K(
x− xi)

b
) (10)

with n the sample size andK(.) the multivariate kernel
function, which is symmetric and satisfies

∫
k(x)∆x = 1.

The factorb is the smoothing bandwidth and determines
the width of the kernel. Theoretic analysis and simulation
have shown that the choice of the kernel is not crucial, but
that bandwidth is the determining factor for having good
estimations. We chose the Gaussian function for kernel and
for the bandwidth 4 times the range divided by the number
of data points.

For estimating a multivariate distribution, a multidimen-
sional Gaussian is used with a specific bandwidth for each
dimension.

6.4. Deterministic Relations

The existence and construction of faithful causal models
are based on the property that adjacent nodes share unique
information. This treatment becomes invalid if some vari-
ables contain the same information about a target variable.
We call the variablesinformation-equivalentfor the target,
if they have information about the target. ConsiderX and

Y being equivalent forZ, it follows that

I(X;Z) > 0 ∧ I(X;Z|Y ) = 0 ∧ I(Y ;Z|X) = 0 (11)

either of both variables become conditionally independent
from Z by conditioning on the other. Models containing
such conditional independencies cannot be represented by
a faithful graph. The adjacency search (section 6) will
fail in constructing such a model, since it would remove
both edgesX − Z andY − Z. Situations of information-
equivalence are mostly entailed by deterministic relation-
ships. A variableX is determined by a set of variables
(Y1, Y2, . . . , Yn), denoted byY, if X = f(Y) is a function.
The variablesY contain all information aboutX, the con-
ditional entropy ofX becomes zero due to the knowledge
of Y. This implies thatX gets conditionally independent
from any other variable by conditioning onY:

I(X;Z | Y) = H(X | Y)−H(X | Y, Z) = 0 (12)

for anyZ. The second term is also zero, since conditioning
can never increase the entropy.X cannot contain additional
information about any other variable. For variables from
which Y also gets independent by conditioning onX, X
andY are information-equivalent, as expressed by Eq. 11.

Our research developed an approach for defining and
learning faithful models containing information-equivalent
variables [16]. The main idea is that one of the equiva-
lent variables is selected to be directly related to the tar-
get variable. The criterion we propose is thecomplexityof
the relation, by which the simplest relation should be pre-
ferred. In our paper [16] we show that faithfulness can be
reestablished by extending the definition of conditional in-
dependence with the complexity criterion for information-
equivalent relations. It is shown that this leads to consistent
models under the assumption that the complexity of rela-
tions do not decrease along a causal path. Take the model
A → B → C, the relation betweenA andC will not be
simpler than the relationsA−B andB−C. The adjacency
search procedure was modified for finding equivalent vari-
ables by comparing the conditional independence tests ac-
cording to 11. An extra step was added to the algorithm
in which the direct edge among the equivalent edges was
decided.

7. Correct Model Construction (Aztec)

The learning algorithm will be validated by applying
it on performance data retrieved from experiments with
the Aztec benchmark library [27, 1]. It provides an it-
erative algorithm for parallel solving of partial differen-
tial equations, defined over a 3-dimensional grid. It sup-
ports 2 sparse matrix formats, a point-entry modified sparse
row (MSR) format and a block-entry variable block row
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(VBR) format. Experiments are run on a dedicated cluster
of 8 PentiumII computers connected by a 100MHz non-
blocking switch. The number of equations is varied be-
tween 100 and 400 and the number of grid points be-
tween53 and203. The same experiments are performed for
both matrix formats. Our performance analysis tool EPPA
[18, 17] uses the MPI profiling facilities to automatically
trace the MPI calls and writes them to a database. A tool is
used to retrieve data from the database, write it to a TAB-
separated files, which are readable by TETRAD. ThePC
algorithm, extended with our modules as described in the
previous sections, is applied with default options.

7.1. Overall performance

Fig. 7 shows the model of Aztec’s performance con-
structed by TETRAD. The variables are ordered from in-
put to output, starting with the 4 input parameters at the
left and the parallelruntime andspeedup at the right. It
is immediately clear that the orientation of the edges are
not correct, since we expect them to be directed from left
to right. As explained before, this is not our main con-
cern. At the time of writing the paper, the knowledge of
the input and output variables could not be inserted yet
and the effects of deterministic relations on the orienta-
tion rules were still unclear. The undirected graph that
was learned is more interesting, since it shows how the
performance is generated. In order to understand better
the overall performance, two additional variables, which
the algorithm returns at the end of the execution, were
also registered: the total number of floating point oper-
ations needed for the computation (totalF lops) and the
number of iterations (totalIterations) that the algorithm
performed. The model (Fig. 7) reveals that the variable
totalIterations is completely determined by the number
of grid points and does not affect thespeedup in a direct
way. It is totalF lops that incorporates all information of
totalIterations about theruntime, communication time
Tcomm and idle timeTidle. We also added the variable
eqXpoints, which is simply the product ofnbrEquations
and nbrGridPoints. It is a useful variable since it ex-
plains how totalF lops depends onnbrEquations and
nbrGridPoints. totalF lops gets much bigger for the
VBR matrix format as for the MSR format. Finally, the
speedup depends on the number of processors, the compu-
tation, communication and idle time.

7.2. Communication performance

Fig. 8 shows the learned model of the communica-
tion performance. The 4 input parameters are at the
left side and the total communication timeTcomm at
the top right. The figure shows the result of the adja-

Figure 7. Causal model of Aztec’s perfor-
mance

cency search step only, we omitted the orientation step
because the results were unreliable as in the previous
model. Nevertheless, the undirected graph shows how
Tcomm is generated, when we imagine the relation go-
ing from left to right and down to top. The commu-
nication performance is completely defined by the num-
ber of processors, the number of messages and the size
of the communicated data. We registered 4 variables
that are calculated by the algorithm when the partition-
ing of the matrices is finished. TheinternalUnknowns
are the elements that can be updated using only infor-
mation on the current processor.externalUnknowns
refers to the off-processor elements that are required
during the calculations by theborderUnknowns ele-
ments.unknownsSentToNeighbors represents the num-
ber of elements actually sent. These definitions con-
firm the model. The communication is primarily af-
fected by unknownsSentToNeighbors, which on its
turn is influenced byborderUnknowns and this by
externalUnknowns. The VBR matrix format gener-
ates more messages than the MSR format. The variable
eqXpoints, which is the product ofnbrEquations and
nbrGridPoints, determinesinternalUnknowns in com-
bination with the number of processors. On the contrary,
the relation ofexternalUnknowns with nbrEquations
and nbrGridPoints cannot be replaced byeqXpoints
alone.

8. Conclusions

Causal modeling provides a theoretical framework for
capturing relational regularities in performance data of
computer systems and for dividing a complex model into
independent submodels. Algorithms can detect these regu-
larities in experimental data and construct causal models.
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Figure 8. Causal model of Aztec’s communi-
cation time

We enlarged the scope of existing structure learning al-
gorithms by using the form-free information-theoretic con-
cept of mutual information and by introducing the com-
plexity criterion for selecting direct relations among equiv-
alent relations.

Experiments with the Aztec benchmark application
show that accurate models are learned. Causal modeling
make explicit what is done by the scientist when analyzing
performance and allow further automation.
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