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ABSTRACT. By applying the minimality principle for model selection, one
should seek the model that describes the data by a code of minimal length.
Learning is viewed as data compression that exploits the regularities or qual-
itative properties found in the data, in order to build a model containing the
meaningful information. The theory of causal modeling can be interpreted by
this approach. The regularities are the conditional independencies reducing a
factorization and the v-structure regularities. In the absence of other regular-
ities, a causal model is faithful and offers a minimal description of a proba-
bility distribution. The causal interpretation of a faithful Bayesian network is
motivated by the canonical representation it offers and faithfulness. A causal
model decomposes the distribution into independent atomic blocks and is able
to explain all qualitative properties found in the data. The existence of faith-
ful models depends on the additional regularities in the data. Local structure
of the conditional probability distributions allow further compression of the
model. Interfering regularities, however, generate conditional independencies
that do not follow from the Markov condition. These regularities has to be in-
corporated into an augmented model for which the inference algorithms are
adapted to take into account their influences. But for other regularities, like
patterns in a string, causality does not offer a modeling framework that leads
to a minimal description.

1 Introduction
This paper intends to broaden the view on causal modeling theory by interpreting
it with the principles of minimality, regularity extraction and meaningful infor-
mation. The principles follow from the two-part code version of the MML/MDL
approach to model selection. A good model offers a minimal description that con-
sists of the description of the model and the data with the help of the model. Both,
causal modeling and MML/MDL, share the general aim of statistical inference,
to ‘understand’ the system behind the studied phenomena via the observed data.
MML/MDL answers the question of how one should decide among competing
explanations of data by providing an objective definition of complexity, so that
Occam’s Razorcan be applied. The theory of causal models gives a probabilistic
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view on causation and is based on Bayesian networks. It intends to give a causal
interpretation to the edges of a Bayesian network. It is based on the minimality
principle, the causal Markov condition and the faithfulness property [SGS93]. The
causal interpretation of the edges and the validity of faithfulness are often criticized
[FH99, Car01, Wil05]. We will argue that faithfulness is an appealing principle in
modeling and will study the conditions under which it is violated. Our analysis
is based on the concept ofregularities, which are defined as properties allowing
data compression. They are regarded as meaningful information and should be
put in the model part of the two-part code. The regularities can be interpreted as
qualitative properties, as opposed to the quantitative information that is put in the
data-to-model part. For a Bayesian network, the directed acyclic graph (DAG) is
the model and describes the qualitative properties of the distribution, i.e. the con-
ditional independencies. The conditional probability distribution (CPDs) contain
the quantitative information. The faithfulness property can then be interpreted as
the ability of the model to explain all qualitative properties of the data.

The following two sections review the theories of MML/MDL and causal mod-
els. Section 4 discusses related work and section 5 connects both theories. Section
6 shows that faithfulness is correct in absence of other regularities and section 7
explains the canonical representation that causal models offer. Finally, section 8
discusses the implications of additional regularities to the validity of the causal
modeling framework and faithfulness.

2 Two-part code
Several related methods, such as Minimum Message Length (MML) [WD68,
Wal05] and Minimum Description Length (MDL) [Ris78], provide a generic so-
lution to the model selection problem: one has to decide among competing expla-
nations of data given limited observations. The central idea is that learning can be
equated with findingregularities in data. An objective property of a regularity is
identified by its ability tocompressthe data, i.e. to describe the data using fewer
symbols than the number of symbols needed to describe the data literally. The
more regularities there are, the more the data can be compressed. Learning has
to be viewed as data compression. A good model should capture the regularities.
This results in atwo-part code: the first part describing the model and the second
part describing the data with the help of the model [WD99, Ris89]. The total
description length is then:

description length = L(model) + L(data | model) (1.1)

By minimizing the total length of both descriptions, this approach inherently pro-
tects against overfitting and trade-offs goodness-of-fit on the observed data, quan-
tified by the second part, with complexity of the model, the first part. A minimal
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code contains no redundancy, every bit is information. However, only the regulari-
ties are regarded asmeaningful information. The random string ’110100100111010’
is incompressible, but contains no meaningful information. The regular string
’001001001001001’ can be described as 5 times repeating ’001’. The repetition is
the regularity and has to be described by the model, whereas the sequence ’001’
should be put in the data-to-model part. Consult the work of Vitanyi et al. for a
formal treatment of the distinction between meaningful and random information
[Vit02, Vit05, GTV01].

Learning has thus to be viewed as a process of building a model by squeezing
out all regularities from the data. The model then defines a set of objects all sharing
the same regularities, which we call themodel set. The set defined by the model
of string ’001001001001001’ contains the 8 strings that repeat a 3-bit substring.
The string is calledtypical for this set, because it shares all its regularities with
the other elements of the set [LV97](sec. 1.9). It is however not typical for the
model set of a random string. This set contains all215 string of 15 bits. For
learning the two-part code, one should pick the minimal model for which the data
is typical and which results in a minimal two-part code. Atypicalness is measured
by therandomness deficiencyof the element with respect to the set [Vit05]. To
identify an element from the set of random strings, we need an index of 15 bits
(the logarithm of the size of the set). The regular string can, however, be described
with a shorter code than 15 bits and is therefore not typical for the set. A random
string cannot be described with a shorter code. The large majority of the elements
of a model set is incompressible, while only a few exhibit additional regularities
that allow further compression. When picking an element from the set, it will be
a typical element with high probability. Thus, if the observed data is typical, the
minimal model corresponds to the correct model. This is a necessary condition for
the correctness of learning methods.

3 Causal Models
We elaborate the theory of causal models in three steps. First, we show how a
Bayesian network describes a probability distribution. Secondly, a faithful model
is defined as describing all independencies of a distribution. Ultimately, a causal
interpretation is given to the network.

3.1 Representation of Distributions

A causal model is fundamentally a Bayesian network, which offers a dense rep-
resentation of ajoint distribution. A joint distribution is defined over a set of sto-
chastic variablesX1 . . . Xn and defines a probability (P ∈ [0, 1]) for each possible
state(x1 . . . xn) ∈ X1,dom×· · ·×Xn,dom, whereXi,dom stands for the domain of
variableXi. The joint distribution can befactorizedrelative to a variable ordering
(X1, . . . , Xn) as follows:
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Figure 1.1. Factorization based on variable ordering (A, B, C, D, E) and reduc-
tion by three independencies.

P (X1, . . . , Xn) =
n∏
i

P (Xi | X1, . . . , Xi−1) (1.2)

VariableXj can be removed from the conditioning set if it becomes conditionally
independent fromXi by conditioning on the rest of the set:P (Xi | X1 . . . Xi−1) =
P (Xi | X1 . . . Xj−1, Xj+1 . . . Xi−1). Such conditional independencies reduce
the complexity of the factors in the factorization. The conditioning sets of the
factors can be described by a Directed Acyclic Graph (DAG), in which each node
represents a variable and has incoming edges from all variables of the conditioning
set of its factor. The joint distribution is then described by the DAG and the condi-
tional probability distributions (CPDs) of all variables conditioned on its parents,
P (Xi | parents(Xi)). A Bayesian networkis a factorization that is minimal, in
the sense that no edge can be deleted without destroying the correctness of the
factorization.

Although a Bayesian network is edge-minimal, it depends on the chosen vari-
able ordering. Some orderings lead to the same networks, but others result in
different topologies. Take 5 stochastic variablesA,B,C, D and E. Fig. 1.1
shows the graph that was constructed by simplifying the factorization based on
variable ordering (A, B, C, D, E) by the three given conditional independencies.
The Bayesian network based on ordering (A, B, C, E, D) depicted in Fig. 1.2,
however, contains 2 edges less because of 5 useful independencies.

3.2 Representation of Independencies

Pearl, Verma, and others started to interpret the DAG of a Bayesian network as a
representation of the conditional independencies of a joint distribution [Pea88].
They constructed a graphical criterion, calledd-separation, for retrieving indepen-
dencies from the graph that follow from theMarkov condition, which states that a
node becomes independent of its non-descendants by conditioning on its parents.

DEFINITION 1.1. (d-separation) Letp be a path between a nodeX and a node
Y of a DAG G. (By a path we mean any succession of edges, regardless of their
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Figure 1.2. Bayesian network based on variable ordering (A, B, C, E, D) and five
independencies.

directions.) Pathp is calledunblockedgiven subsetZ of nodes inG if every node
w onp satisfies:

1. if w has two converging arrows alongp, w or any of its descendants is inZ.

2. and ifw has no converging arrows, it is not an element ofZ.

X andY are calledd-connectedgiven Z, if there is an unblocked path between
them inG. Conversely,Z is said tod-separateX fromY in G, denotedX⊥Y | Z,
iff Z blocks every path fromX to Y . Z blocksa path if the above condition is not
valid for one of the nodes on the path.

Take the graph of Fig. 1.2. Thed-separation criterion tells us that variableB
separatesA from E, sinceB blocks the pathA → B → E. On the other hand,
the pathA → C → D ← E is blocked byC → D ← E, which is called a
v − structure. This path gets unblocked givenD.

A graph is anIndependence Map, or I-map for short, of a joint distribution if
every independency found in the graph appears in the distribution. The DAG of a
Bayesian network is a minimal I-map, removing an edge from the graph destroys
its I-mapness. It is called aperfect mapif it represents all conditional indepen-
dencies of the distribution. The Bayesian network is then calledfaithful to the
distribution.

3.3 Representation of Causal Relations

Where Bayesian networks are mainly concerned with offering a dense and man-
ageable representation of a joint distribution, causal models intend to describe
graphically the structure of the underlying physical mechanisms governing a sys-
tem under study. In a causal model the state of each variable, represented by a node
in the graph, is generated by a stochastic process that is determined by the values
of the parent variables in the graph. The model then corresponds to a joint distribu-
tion defined over the variables and results in a close connection between causal and
probabilistic dependence [Spo01]. For a causal model, theCausal Markov condi-
tion tells us how variables depend on each other: each variable is probabilistically
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independent of its non-effects conditional on its direct causes. The probabilistic
aspect is similar to the Markov condition. Hence, a causal model can be regarded
a Bayesian network in which all edges are interpreted as representing causal influ-
ences between the corresponding variables.

4 Related Work
Related work use the MML and MDL approach for selecting the best model from
a given set of models. Scoring-based algorithms for learning causal models from
data, for example, use them to give an objective score to the models of the model
class [CD03, CD05, LB94]. The choice of the model class determines the regu-
larities that are considered. During our discussion, we try not to stick to an a priori
chosen set of regularities, but search for the relevant regularities.

By Theorem 1.2.4 of [Pea00], Pearl describes for which distributions faithful
graphs exist and can be learned: ”the absence ofd-separation implies dependence
in almost all distributions compatible with the graphG. The reason is that a precise
tuning of the parameters is required to generate independency along an unblocked
path in the diagram, and such tuning is unlikely to occur in practice.” Pearl solves
this problem by imposing astability restriction on the distribution [Pea00](sec.
2.4). The occurrence of any independency must remain invariant to any change in
the distributional parametrization of the graph. This corresponds with regularities
in the CPDs, as will be proved by theorem 1.3. A change of the CPDs would break
the regularity. Pearl claims that there exists at least 1 distribution faithful with the
model, while we show that all typical models of the DAG model set are faithful.

Milan Studeny was one of the first to point out that the Bayesian networks can-
not represent all possible sets of independencies. He constructed a more general
framework, calledimsets [Stu01]. We advocate a different approach. Instead of
looking for a broader representation form or a set of conditions (like Pearl), we
consider that some of the violations of faithfulness are due to local regularities that
can be added to an augmented model.

5 MDL Models of Multivariate Systems
Now that we have reviewed the theory, we will apply it in designing minimal mod-
els of multivariate systems. The MDL approach tells us to exploit the regularities
of the data. The primary regularities in a distribution are the dependencies among
the variables and exploiting them will result in a Bayesian network. A code for
optimally describing the state of a stochastic variableX with domainXdom and
distributionP (X) will have an average code length that can be no shorter than
Shannon’sentropy:

H(X) = −
∑

x∈Xdom

P (x).log2(P (x)) (1.3)
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The Huffman code comes optimally close to the minimal code length [CT91].
The same is valid for a set of variables and the corresponding joint distribution.
A minimal code can be constructed by a factorization, described by Eq. 1.2. The
expected code length ofXi will be the conditional entropyH(Xi | X1 . . . Xi−1).
By the dependence ofP (Xi) on the values of its parentsX1 . . . Xi−1, the average
code length is shorter than the entropy ofXi. This reduction in entropy is called
themutual information:

I(Xi;X1 . . . Xi−1) = H(Xi)−H(Xi | X1 . . . Xi−1) (1.4)

The code tells us how to encode the data optimally. The model, however, should
also include the description of the code. It contains the factorization ordering and
the codes used for describingXi with the help ofX1 . . . Xi−1, which are based on
P (Xi | X1 . . . Xi−1). The sizes of the conditioning sets of the CPDs thus greatly
determines the complexity of the model. These can be reduced by conditional
independencies as discussed in the previous section. A conditional independency
indicates that a variable is unprofitable for further compression of the description
of another. Omitting such variables from the factorization reduces the complexity
of the model. We therefore have to look for a factorization ordering that leads to a
Bayesian network with a minimal number of edges.

The resulting model is then:

model = DAG + CPDs + encoded data (1.5)

where the first two terms define the distribution. The dependencies and conditional
independencies are the regularities that compress the data.

The following theorem proves the minimality of a faithful Bayesian network.

THEOREM 1.2. If a faithful Bayesian network exists for a distribution, it is the
minimal factorization.

Proof. Oliver and Smith define the conditions for sound transformations of Bayesian
networks, where sound means that the transformation does not introduce extrane-
ous independencies [OS90]. No edge removal is permitted, only reorientation and
addition of edges. Additionally, if a reorientation destroys a v-structure or creates
a new one, an edge should be added connecting the common parents in the for-
mer or in the newly created v-structure. Such transformations however eliminate
some independencies represented by the original graph. Assume the existence of
a Bayesian network based on a different variable ordering that has fewer edges
than the faithful network. It must be possible to transform one into the other. But
since the network has fewer edges it must have more independencies, which is
impossible because the faithful network represents all independencies. �
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The graph of Fig. 1.2 can be transformed into that of Fig. 1.1 by reversing the
edgeD → E. However, this destroys the v-structureE → D ← C and creates a
new one,B → E ← D. To assure the I-mapness of the new graph,C should be
connected withE andB with D.

Multiple faithful models can exist for a distribution though - models that repre-
sent the same set of independencies - that are therefore statistically indistinguish-
able, they define a Markov-equivalent class. It is proved that they only differ in
the orientation of the edges, but share the same v-structures [Pea00]. They thus
all have the same complexity.

6 Faithfulness of a Random Bayesian Network
The main idea behind this paper is that models should capture the regularities ob-
served in the data. The relational regularities, appearing as (conditional) (in)dependencies,
where used to construct a Bayesian network. The following theorem shows that,
although faithfulness cannot be guaranteed,d-separation tells which independen-
cies can be ‘normally’ expected from a DAG of a Bayesian network, where normal
means that it holds for the typical elements of the model set of the DAG. This set
is created by generating distributions with randomly chosen CPDs.

THEOREM 1.3. A Bayesian network with unrelated, random conditional proba-
bility distributions (CPDs) is faithful.

Proof. Recall that a Bayesian network is a factorization that is edge-minimal. This
means that for each parentpai,j of variableXi holds that

P (Xi | pai,1, . . . pai,j , . . . pai,k) 6= P (Xi | pai,1, . . . pai,j−1, pai,j+1, . . . pai,k)
(1.6)

The proof will show that any two variables that ared-connected are dependent,
unless the probabilities of the CPDs are related. We consider the following possi-
bilities. The two variables can be adjacent (a), related by a Markov chain (b)1, a
v-structure (c), a combination of both or connected by multiple paths (d).

First we prove that a variable marginally depends on each of its adjacent vari-
ables (a). Consider nodesD andE of the Bayesian network of Fig. 1.2. For not
overloading the proof, we will demonstrate thatP (D | E) 6= P (D), but the proof
can easily be generalized. The first term can be written as:

P (D | E) = P (D | E, c1).P (c1) + P (D | E, c2).P (c2) + . . . (1.7)

with c1 andc2 ∈ Cdom. C is also a parent ofD, thus, by Eq. 1.6, there are at least
two values ofCdom for whichP (D | E, ci) 6= P (D | E) 2. Takec1 andc2 being

1Recall that a Markov chain is a path not containing v-structures.
2P (D | E) is a weighted average ofP (D | E, C). If one individual probabilityP (D | E, c1) is

different than this average, let’s say higher, than there is at least one value lower than the average.
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such values, thusP (D | E, c1) 6= P (D | E, c2). There are also at least 2 such
values ofEdom, takee1 ande2. Eq. 1.7 should hold for all values ofE and equal
to P (D) to get an independency. This results in the following relation among the
probabilities:

P (D | e1, c1).P (c1) + P (D | e1, c2).P (c2)
= P (D | e2, c1).P (c1) + P (D | e2, c2).P (c2) (1.8)

Note that the equation can not be reduced, the conditional probabilities are not
equal toP (D) nor to each other.

Next, by the same arguments it can be proved that variables connected by a
Markov chain are by default dependent (b). TakeA → B → E in Fig. 1.2,
independence ofA andE requires that

P (E | a) =
∑
b∈B

P (E | b).P (b | a) = P (E) ∀a ∈ A. (1.9)

and this also results in a regularity among the CPDs.
In a v-structure, both causes are dependent when conditioned on their common

effect (c), forC → D ← E, P (D | C,E) 6= P (D | E) is true by Eq. 1.6. Finally,
if there are multiple unblocked paths connecting two variables, then independence
of both variables implies a regularity, too (d). TakeA andD in Fig. 1.2:

P (D | A) =
∑
b∈B

∑
c∈C

∑
e∈E

P (D | c, e).P (c | A).P (e | b).P (b | A). (1.10)

Note thatP (c, e | A) = P (c | A).P (e | A) follows from the independence ofC
andE givenA. All factors from the equation satisfy Eq. 1.6, so that the equation
only equals toP (D) if there is a relation among the CPDs. �

Table 6 gives an example distribution ofP (D | E,C) for which Eq. 1.8 holds
assumingP (C = 0) = P (C = 1) = 0.5. It results in the independence ofD and
E.

E C P (D | C,E)
0 0 0.4
0 1 0.3
1 0 0.2
1 1 0.5

Table 1.1. Example of a CPD for whichP (D | E) = P (D), assumingP (C =
0) = P (C = 1) = 0.5.
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A distribution can be described by several distinct Bayesian networks though,
which are based on different variable orderings (see subsection 3.2). The networks
build with a non-optimal variable ordering are however not minimal, the CPDs
are related. Take the distribution described by the Bayesian network of Fig. 1.2,
E⊥⊥C|B holds. But this independency does not follow from the graph of Fig. 1.1.
It follows from the exact cancellation of the influences through the pathsC → E
andC → D → E, given by equation:

P (E | B,C) =
∑
d∈D

P (E | B,C, d).P (d | B,C) = P (E | B). (1.11)

The regularities come from differences in v-structures, as explained in the proof
of theorem 1.2. We call themv-structure regularities. A causal model is thus an
factorization that has eliminated the v-structure regularities. The model is faithful
in absence of other regularities.

On the other hand, we want to know the conditions under which a joint prob-
ability distribution can be represented by a faithful model. In [Pea88](p. 128),
Pearl developed a set of necessary, but not sufficient, conditions, but adds that he
doubts if there exists an exhaustive list of conditions that can guarantee faithful-
ness [Pea88](p. 131). This is approved by the theorem. Any dependency among
non-adjacent variables that follows from the Markov condition can be turned into
an independency by properly chosen values for the CPDs.

7 Canonical Representation
A Bayesian network decomposes a joint distribution into submodels of the form
P (Xi | parents(Xi)). As shown in the previous section, the CPDs of the non-
minimal networks are related. The model is therefore not acanonical representa-
tion, in which the decomposition is unique, minimal and the elements are atomic
and independent. A causal model, based on a faithful Bayesian network, offers a
canonical representation. The submodels are independent and correspond to the
physical mechanisms that generate the data [Pea00]. Causal models thus have
more explanatory power than Bayesian networks. Each submodel represents a sto-
chastic process by which the values ofXi are chosen in response to the values of
parents(Xi), and the stochastic variation of this assignment is assumed indepen-
dent of the variations in all other assignments. Each assignment process remains
invariant to possible changes in assignment processes that govern other variables
in the system. Thismodularity assumptionenables the prediction of the effect of
interventions, which are defined as specific modifications of some factors in the
product of the factorization (Eq. 1.2). Moreover, all consequences of causality,
like inference and identifiability, solely depend on these building blocks. The dig-
ital circuit of Fig. 1.3 represents a causal model. It not only defines the binary
functionsc=f(x,y,z)ands=f(x,y,z), but makes it possible to reason about changes
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Figure 1.3. Digital Circuit.

to the system. The scheme tells us how the function will change if a digital com-
ponent is replaced by another. It can also serve for finding out which components
should be changed to become a desired function.

If the system is indeed build up by causal processes, they can be assumed to be
non-related. Following theorem 1.3, the model will be faithful. The chance of an
exact correspondence of probabilities so that two variables become independent is
quite small, as expressed by the stability property used by Pearl (see sec. 4).

All Bayesian networks representing the same joint distribution (build starting
from different variable orderings) can be used for predicting unknown variables
quantitatively. They are however not suitable forqualitative reasoning: for an-
swering questions about conditional independencies, such as ’does A affect B
when C is known’. A non-faithful model can only answer these questions correctly
by quantitative calculation of the probabilities. The model of Fig. 1.1 suggest that
B, C andE should be known to have maximal information aboutD. But from the
graph of Fig. 1.2 we know thatB has no additional information aboutD, once
we knowC andE. Qualitative reasoning based on the model only demands that
the model contains all meaningful information, that all qualitative properties can
be inferred from it without needing the quantitative information. This is exactly
what the faithfulness property stands for.

Following the MML/MDL principle, according to which modeling should be
based on the regularities, faithfulness motivates the ability to learn causal mod-
els from observations: if a unique, minimal model has the power to foresee all
consequences, it must come close to reality. The causal interpretation cannot be
guaranteed, but offers, in absence of counterexamples or background knowledge, a
plausible hypothesis. When we refer to the correct structure, we actually mean the
correct Markov-equivalence class, as the specific structure within the equivalence
class cannot be distinguished based on observational data solely. The constraint-
based learning algorithms are able to learn this equivalence class, which can be
represented by a graph in which some edges are not oriented. Thus, although the
model is not unique, we know which parts of the model are undecided.
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8 Additional Regularities
It follows from theorem 1.3 that if the minimal Bayesian network is not faithful,
there are regularities among the CPDs. This section discusses the implications
of such regularities. Following the MML/MDL principle, the regularities indicate
that a less complex model exists. We distinguish three possible implications:

1. The model remains faithful, the regularities do not ’interfere’ with the con-
ditional independencies. They can thus be regarded as regularities of a
lower level. A well-known example is when the description of individual
CPDs can be further compressed. This regularity is calledlocal structure
[BFGK96] and appears inside a building block. Another regularity is the
repetition of structures in the model. Identical components appear at differ-
ent locations in the model. This is partly covered by Object-Oriented nets
[KP97].

2. The causal model is unfaithful, but is still applicable. The unfaithfulness is a
result of interference of the regularities with the conditional independencies
- the regularities generate independencies not resulting from the Markov
condition alone. The distributions can however be described minimally by
a causal model augmented with a description of the additional regularities.
We argue that it is indispensable to know these regularities for being able
to learn the correct model and for performing the right inferences from it.
Examples are given in the next subsection.

3. Causal models do not provide a minimal description. The minimality princi-
ple views causality as describing a type of regularities. This does not exclude
that other regularities need other modeling frameworks, like in the model of
a pattern. Take the set of strings ofn bits for whichm consecutive bits are
1 and the others are 0. Every bit can be regarded as a discrete variable. By
picking elements from the set randomly, the joint distribution is observed.
The correct model for a(n, m) pair contains a latent variable, denoting the
start position of the non-zero bit sequence, which determines all bits. The
graph is thus trivial, highly compressible and adds no meaningful informa-
tion to the model. For minimality, the graph should not be explicitly added
in the description. Next, it is questionable if the latent variable can be inter-
preted as the root cause of the bits.

8.1 Interfering Regularities

Regularities among the CPDs result in independencies that are not entailed by
the Markov condition. The causal model is still an I-map, ie. all independencies
implied by the Markov condition are present in the distribution, but the models are
no longer faithful.
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Figure 1.4. Causal model in whichZ equalsX (Taken from SGS [SGS93], Fig.
3.23)

The most-known example of unfaithfulness is when in the model of Fig. 1.2
A andD appear to be independent [SGS93]. This happens when the influences
along the pathsA→ B → E → D andA→ C → D exactly balance, so that they
cancel each other out and the net effect is an independence. The dependency of
the paths forms a regularity that is not ‘expected’ by the causal model as explained
by case (d) in the proof of theorem 1.3.

A similar phenomenon appears in the coder-decoder example shown by Fig.
1.4, taken from SGS (Fig. 3.23) [SGS93]. VariableY encodes the values of both
R andX, andZ decodesY to match the value ofX. X is therefore deterministi-
cally related toZ, though not adjacent.X is related toZ throughY . It however
does not represent the shortest description of the corresponding distribution nor
the model that would follow logically from observation.Z would be related toX
and not toY . It is impossible to learn the correct model from observations only.
This is a general and inevitable problem of learning, since one must rely on the
available data. A too simple model is learned if the data does not exhibit the total
complexity of the system. Note that the exact correspondence ofX → Y and
Y → Z is not accidental, but intentionally build in by the engineer.

Variables inpseudo-independent modelsare pairwise independent but collec-
tively dependent [XWC96]. Take for example three variables,X1, X2 andX3,
that are pairwise independent, but become dependent by conditioning on the third
variable. Such distributions exhibit strict regularities. Yet, pseudo-independent
models fit in the reductionist approach of causal models. We still can try to find
out which variables are the causes and which the effects. Possibly, the model
X1 → X3 ← X2 generates a pseudo-independent distribution if only the knowl-
edge ofX1 andX2 together says something aboutX3. This is examined by case
(a) in the proof of theorem 1.3.

A deterministic or functional relation between variableY and set X reflects
a non-random, thus atypical, conditional distribution, in whichP (Y | X) is 1 for
exactly one state ofX and 0 for the complement. Such relations among variables
imply conditional independencies that cannot be represented by a faithful graph
[SGS93]. X has all information aboutY . If Y is related to another variable, they
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become independent by conditioning onX . Take the model of Fig. 1.4.X andZ
are related by a bijection. Either of them becomes independent ofY by condition-
ing on the other. We say that both variables containequivalent informationabout
Y . This cannot be represented by a faithful graph. In [LMMD06] we show that
this is related to the violation of theintersection condition, one of the conditions
that Pearl imposes on a distribution in the elaboration of causal theory and algo-
rithms [Pea88]. The solution is to incorporate this information in an augmented
causal model. We propose that in cases when several variables contain equivalent
information about a target variable, we should connect the variable with the least
complexity with the target [LMMD06]. This however does not solve the prob-
lem for the equalityZ = X in the model of Fig. 1.4 since the relation with other
variables, likeY , will be identical. But by the equality, both variables behave com-
pletely identical and without background knowledge no distinction can be made
between both variables. Finally, the definition ofd-separation has to be extended
to find the independencies that are implied by the deterministic relations [Gei90].

The weak-transitivity conditionis also violated in the model of Fig. 1.4.R
depends onY andY depends onZ, butR is independent ofZ and does not become
dependent by conditioning onY (the latter would imply v-structureR→ Y ← Z).
Its violation implies that the information thatY shares withR is independent of
the information thatY shares withZ. Inspection of the CPDs show thatR only
influences the first bit ofY , but thatZ is only determined by the second bit.

The previous examples provide no arguments against the causal interpretation
of the graph. This, however, means that such regularities can coexist with causa-
tion. It can not be excluded that they appear in real data.

9 Conclusions
This paper confronted the principles of causal modeling theory, in which faithful-
ness plays an important role, with those of the two-part code, according to which
the model should capture all the regularities of the data. We proved that without
regularities in the DAG and the CPDs, a Bayesian network is faithful and minimal.
The causal model corresponds to the edge-minimal Bayesian network. Unfaith-
fulness comes from a non-minimal factorization variable ordering or regularities
‘interfering’ with the independencies that follow from Markov. Additional reg-
ularities of a lower level can easily be added to the model, while for interfering
regularities the model should be augmented to incorporate their effect on the inde-
pendencies. But for other regularities, like patterns in a string, Bayesian networks
do not offer a modeling framework that provides a minimal description. We argued
that those regularities cannot be neglected.

On the other hand, the faithfulness property states that a model, the part of the
two-part code containing the meaningful information, should represent all qualita-
tive properties of the data. Faithfulness, together with minimality, guarantees that
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the model offers a canonical representation that is able to explain all observable
regularities. This motivates the causal claim that the model represents the under-
lying physical mechanisms by which the data is generated. The theory of causal
models is therefore audacious, it claims to know something about the inner by just
observing the outer. A claim attacked by many. But isn’t it a problem of all scien-
tific research that tries to understand the world? A problem we therefore may not
neglect.
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[Vit02] Paul M. B. Vitányi. Meaningful information. In Prosenjit Bose and Pat Morin, editors,ISAAC,
volume 2518 ofLecture Notes in Computer Science, pages 588–599. Springer, 2002.



16

[Vit05] P. Vitanyi. Algorithmic statistics and kolmogorov’s structure functions. InIn Advances in Minimum
Description Length: Theory and Applications, P.D. Grünwald, I.J. Myung, and M.A. Pitt, Eds. MIT
Press, 2005.

[Wal05] Chris S. Wallace.Statistical and Inductive Inference by Minimum Message Length. Springer, 2005.
[WD68] Chris S. Wallace and David L. Dowe. An information measure for classification.Computer Journal,

11(2):185–194, 1968.
[WD99] Chris S. Wallace and David L. Dowe. Minimum message length and kolmogorov complexity.

Computer Journal, 42(4):270–283, 1999.
[Wil05] Jon Williamson. Bayesian Nets And Causality: Philosophical And Computational Foundations.

Oxford University Press, 2005.
[XWC96] Yang Xiang, S. K. Wong, and N. Cercone. Critical remarks on single link search in learning belief

networks. InProceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-96), pages 564–571, San Francisco, CA, 1996. Morgan Kaufmann Publishers.

Jan Lemeire
jan.lemeire@vub.ac.be
Erik Dirkx
erik.dirkx@vub.ac.be
ETRO dept., Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.


