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Abstract

Computer algorithms for game playing rely on
a state evaluation which is based on a set of fea-
tures and patterns. Such evaluation can, however,
never fully capture the full complexity of games
such as chess, since the impact of a feature or
a pattern on the game outcome heavily relies on
the game’s context. It is a well-known problem
in pattern-based learning that too many too spe-
cialized patterns are needed to capture all pos-
sible situations. We hypothesize that a pattern
should be regarded as an opportunity to attain a
certain state during the continuation of the game,
which we call the effect of a pattern. For cor-
rect game state evaluation, one should analyze
whether the desired effects of the matched pat-
terns can be reached. Patterns indicate opportuni-
ties to reach a more advantageous situation. Tes-
ting whether this is possible in the current con-
text is performed through a well-directed game
tree exploration. We hypothesize that this can be
done more efficiently than traditional tree search.
We argue that this approach comes closer to the
human way of game playing. An implementation
of this algorithm must, however, rely on a yet in-
existent pattern engine.

1 Introduction

The current successful chess playing computer algorithms
are based on a minimax tree exploration of all possible
game continuations. The analysis is performed up to a cer-
tain point in the future. An evaluation function estimates
the chance of winning at the leaves of the tree. Cognitive
scientists, however, consider brute-force approaches not at
all reflective of the way humans rationalize game playing.
Humans make abundantly use of patterns, for evaluating
game positions and for effectively pruning the search tree.

Explanation-based algorithms offer an alternative ap-
proach, which tries to mimic human game playing. In
explanation-based learning (EBL), prior knowledge is used
to analyze, or explain, how each observed training example
satisfies the target concept [MKKC86]. This explanation
is then used to distinguish the relevant features of the trai-
ning examples from the irrelevant, so that examples can be
generalized into patterns based on logical rather than sta-
tistical reasoning. But this approach suffers from the same
problem as other algorithms based on pattern-based eval-
uation functions. In EBL, the explanations must give the
sufficient and necessary conditions for a pattern to be suc-
cessful. For a complex game like chess, patterns that have
to capture all aspects of a game become too complex for
being applicable.

We propose an approach combining pattern-based EBL and
a tree exploration. It is based on a form of knowledge that
is yet unexploited by computer algorithms: the impact of
patterns on the game outcome is determined by a number
of future game states, called the effects. But, in contrast
with current approaches, the patterns should not contain
all necessary conditions for achieving the effects. A cor-
rect evaluation of the impact of a pattern on the game out-
come must check whether the effects of the pattern can be
reached during the continuation of the game. Patterns de-
note opportunities, a well-directed tree search is used to
confirm or falsify the opportunities.

The next section gives an overview of current chess algo-
rithms. Their major shortcoming, an incorrect evaluation,
is discussed in Section 3. Section 4 gives our hypothe-
sis about the information that can be used for evaluation.
Based on this new kind of knowledge, section 5 develops an
alternative approach to game playing. Section 6 shows how
this approach resembles the human way of chess playing.
Finally, Section 7 investigates how the hypothesis could be
verified.



2 Current Pattern-based Chess Algorithms

Besides the abundant game playing research in optimizing
the brute-force minimax search much work is done on lear-
ning algorithms. They try to mimic human game playing.
Evaluation functions are constructed based on patterns: the
weights of all matched patterns are combined into a single
evaluation function value. In the MORPH chess program
[GL91] for example, the system is responsible for finding
a useful set of features (patterns) for evaluating states and
for determining their significance (in the form of a weight).

Another application of patterns is in decision-making
[Mit97], patterns are used to map states to operators: a pat-
tern defines the region in the state space for which an oper-
ator leads toward the optimal solution. Hoyle is a pattern-
based program that learns to play two-person, perfect in-
formation, finite-board games [EGL96]. It learns patterns
that guide the decision-making of a pattern-based agent.
Based on experimental data, it seeks patterns that were per-
sistently associated with wins, losses and draws, or that
achieve a goal or subgoal.

In explanation-based learning (EBL) [MKKC86], a pattern
denotes an advantageous situation. The learning module
then tries to define the states that can lead to the pattern.
These states are called explanations for the pattern. Con-
sider the task of learning to recognize chess positions - the
explanations - in which “one’s queen will be lost within the
next few moves” - the pattern [MT96]. In a particular ex-
ample, the queen could be lost due to a fork, in which “the
white knight is attacking both the black king and queen”.
A fork is, however, hard to define correctly. One has to
capture all situations in which the pattern leads to a suc-
cessful outcome. All counter-plans that are available to
the opponent for saving both its threatened pieces have to
be excluded. In its review of computer chess approaches,
Fürnkranz also reports on the difficulty of formalizing com-
mon chess concepts such as the fork [Für01, p. 25]:

“However, even simple patterns like a knight
fork are non-trivial to formalize. The basic pat-
tern for a knight fork is a knight threatening two
pieces, thereby winning one of them. In the
endgame, these might simply be two unprotected
pawns (unless one of them protects the other).
In the middle game, these are typically higher-
valued pieces (protected or not). However, this
definition might not work if the forking knight is
attacked but not protected or even pinned. But
then again, perhaps the attacking piece is pinned
as well. Or the pinned king can give a discovered
check...”

Minton [Min84] and Epstein [EGL96] highlight the same
problem of learning too many too specialized rules with
explanation-based learning. Even in simple games, such

Figure 1: Fork situation, the move is with black

as tic-tac-toe, 45 concepts were learned with 52 exception
clauses [FU91]. To tackle this problem, pattern-learning al-
gorithms insert mechanisms to limit the number and com-
plexity of the induced rules.

For complex games like chess, exact definitions of success-
ful patterns must include an abundant number of excep-
tions, caused by the many possible configurations of the
other pieces on the chessboard. All possibilities that are
generated by the other pieces on the chessboard need to be
described by as many exception clauses. We argue that in
complex games such patterns become too complex if they
want to capture all conditions that guarantee a favorable po-
sition. Explanation-based algorithms rely on explanations
(eg. a successful fork) that inevitably lead to a pattern (eg.
a rook capture). This is based on the following assumption:

state ⊥⊥ pattern | Explanationspattern(state) (1)

with Explanationspattern(state) the explanations of
pattern that apply for state. A⊥⊥C | B stands for the
independence of A and C given B. It says that A has no
more information about C once B is known.

Our hypothesis is based on a problem with state evaluation.
In this paper we develop an approach that overcomes this
problem.

3 Evaluation fails

All game-playing algorithms rely in one way or another on
an evaluation of game states. Either to measure the advan-
tageousness of state or to select the most promising move
The problem with complex games such as chess is that a
correct evaluation cannot be cannot reduced to a linear (or
non-linear) combination of features or patterns. Evaluation
of pattern combinations heavily depends on game context.
There will always be exceptions that contradict the evalua-
tion.

Take the example of Fig. 1. It represents a position where
black can make a fork with move 1. A fork is when a piece



threatens to capture two pieces, not all of which can be
blocked. This is advantageous for black, since one of the
two white pieces will be lost. On the other hand, white
has an advantageous move to its disposal. He can make
chess with the bishop on f5, by move 2 in Fig. 1. It is
not immediately clear which player improves its situation.
It depends on the specific combination of both patterns. If
the white player can move a piece out of the fork position
by making chess, black is obliged to protect his king and
white will be able to retreat the other piece too. Analogous
situations can even be more complex, possibly black can
react on the chess by threatening another piece, so that he
keeps a double threat. We argue that for a pattern indicating
a good move, there are many patterns that could interfere
and counter the advantage. In the fork example, it could
be possible that even after the retreat of white pieces, black
still got a positional advantage, because of having chased
both pieces from their positions.

As shown by the example, a quasi-unlimited number of
counter moves, generated by the context in which the pat-
tern appears, exist that can neutralize the effects. Assume
that multiple patterns co-occur. The total evaluation de-
pends on the interaction of the patterns: the influence of one
pattern on the other determined by the context (or instanti-
ation) in which they appear. If the total evaluation cannot
be expressed by a function that simply combines the in-
fluences of each pattern, we call them interfering patterns.
Fig. 2 shows the possible situations for two patterns, p1 and
p2, where P1 and P2 represent the states in which the pat-
terns occur respectively. Each pattern defines a region of
the state space. Assume that no other patterns are present.
For example, P1 can be a fork and P2 the possibility of the
opponent to give check. The context in which both patterns
appear determine whether the fork threat can be countered
by the check. A pattern can be classified as beneficial if the
other player has no counter moves, as in P1 \P2 or P2 \P1.
On the other hand, the evaluation of the intersection P1∩P2

depends on the specific context of the patterns. In one con-
text p1 can neutralize p2, while in another the advantages of
p2 win over those of p1. Evaluation by a weighted sum of
the advantages of both patterns is clearly inadequate. The
intersection can be divided in subsets denoting each inter-
action mode of both patterns. For correct evaluation, all
subsets should be identified and described. The number of
combinations increases in an exponential way with an in-
creasing number of interfering patterns. We will propose
an alternative way of evaluating these combinatorial situa-
tions correctly.

For adequate evaluation functions the features or patterns
on which they are based must contain all information on
the outcome of the game. This condition can be written as:

state ⊥⊥ outcome | Patterns(state) (2)

where Patterns(state) stands for the patterns that apply

Figure 2: Evaluation of two interfering patterns P1 and P2,
with W advantageous for white, B for black and 0 for a
balanced position

for state. For any evaluation function based on a set of pat-
terns or features, Eq. 2 must hold. No matter what kind of
function is used, such as neural networks by NeuroChess
[Thr95], the optimal function relies on the informative
quality of the features. Many research is done on finding
the optimal evaluation function, such as reinforcement lear-
ning or temporal-difference learning [Sut88]. Most appli-
cations use a linear function of features and try to find a set
of weights that correctly classify game states.

In contrast, if only a few pieces are left on the chess board,
called an endgame, a set of relatively simple rules can de-
termine who will inevitably win the game.

4 Hypothesis

Our analysis is based on the observation that the outcome
of a game is determined by the exact interaction of the pat-
terns and heavily depends on the context of the game state.
Trying to describe all the interactions leads, by the com-
plexity of the game, to an enormous amount of rules or pat-
terns. We hypothesize that the influence of a pattern on the
game outcome depends on the achievement of certain states
during the continuation of the game. We call these states
the effects of the pattern. We define a pattern as represen-
ting a set of resembling situations that can be described by
a generic definition. The elements of the set share some
attributes. So, a pattern can be evaluated by their effects:

pattern ⊥⊥ outcome | Effects(pattern) (3)

with Effects(pattern) indicating whether the effects of
the pattern become true during the continuation of the
game. The influence of a pattern on the game outcome is
completely described by its positive and negative effects,
The difference with the explanation-based approach is that
we do not expect the game always to reach the effect in
the presence of the pattern. Note the difference in termi-
nology. What Explanation-Based Learning (EBL) calls an
‘explanation’ corresponds to our ‘pattern’ and what they
call ‘pattern’ is for us an ‘effect’.

The game can be analyzed by the set of existing patterns
and whether their effects can be achieved. This is expressed



by the following independence:

state ⊥⊥ outcome | Effects(Patterns(state)) (4)

This equation also states that whether a state leads to an ef-
fect depends on the set of patterns that apply for that state.
Note that the evaluation of the effects can depend on the
specific context too. By attacking a piece for example, the
piece is forced to move to a safer position. The effective-
ness of the attack depends on which position is more be-
neficial for the opponent. In such cases, the effects of the
effect should be evaluated in a similar way - by evaluating
the interaction with other patterns.

Patterns denote opportunities of the form pattern →
effect, where the statement should be read as ‘in absence
of interfering patterns, the pattern leads to the effect’. A
pattern interferes with another pattern, if, in the context of
a particular game state, the pattern affects the achievement
of the effect of the other:

effect(patternstate
1 ) 2 patternstate

2 (5)

where patternstate
i stands for the specific configuration of

the pattern in the context of state. Take the fork, the pattern
instantiation denotes the particular piece that threatens two
specific pieces of the opponent and on which locations this
occurs.

Hypothesis 1 For complex, but non-chaotic games, the
evaluation of a game state can be based on a set of generic
patterns and their effects, as expressed by equations 3 and
4.

This hypothesis applies for the game of chess, while othello
is a chaotic game for which the evaluation of a state can
not rely on a set of generic patterns [Gin98]. In Othello
it is very difficult to foresee the effects of a move. Moves
that look very similar can result in total different positions,
differences that cannot be explained by generic patterns.

The fork is a combinatorial, tactical pattern. Our hypothe-
sis also applies for long-term strategic patterns. The sac-
rifice of a piece is advantageous if it give the player the
initiative which can lead to a decisive attack. The opponent
will try to neutralize the threats. A weak king’s defense
is bad if the opponent can take advantage of it. He could
for example try to get a succesful attack. Or he can try
to exploit the threat of attacking the king to get to a more
advantageous position on another part of the board.

Note that a pattern can have side effects. The move that
leads to a fork can be of great influence on the rest of the
game even if it did not result in the capture of a piece. How-
ever, such situations depend on random coincidences or on
other patterns that are implied by the move. Secondly, a
pattern incorporates other patterns having their own spe-
cific effects, like a ‘fork’ also is a ‘threat’ or an ‘attack’
pattern. These accidental and other effects have nothing to
do with the fork pattern as such.

5 Game playing

We will now propose a way of game playing based on the
hypothesis of the previous section. Eq. 4 states that the
effects of patterns suffice to evaluate a game state. The
effects describe future situations. Patterns that appear in
the current state denote which effects can possibly be at-
tained. However, to correctly identify whether the attempt
to achieve an effect is realistic the combination of all inter-
fering patterns should be evaluated by analyzing the con-
tinuation of the game. This corresponds to a game tree ex-
ploration that is only expanded for relevant moves, moves
that influence the pattern → effect plan. They are iden-
tified by the interfering patterns. The possible effects of the
patterns define exactly to what point the game tree should
be explored. This is expressed by Eq. 3.

Take the game tree of Fig. 3. Assume that the white player
considers playing move a by which he arrives at a position
in which pattern 1 is true. He hopes of achieving one of
the advantageous effects of the pattern. The black player
sees two possible counter moves. If he chooses for move
c, however, white can collect the benefits of pattern 1 with
move e. This is not possible if black chooses for move d.
White can then play f or g, but in both cases black neutrali-
zes the threat of pattern 1 with moves h and j respectively.
Both moves bring the game in a state in which the positive
effects of the pattern cannot be attained anymore.

The feasibility of this approach relies on a second hypo-
thesis. We hypothesize that the moves interfering with the
pattern can be identified so that only those have to be ex-
plored. Other moves can be classified as being irrelevant;
they do not approximate white to the achievement or falsi-
fication of pattern 1’s effect. The game tree can be pruned
effectively.

Hypothesis 2 We have an algorithm that can differentiate
between interfering and non-interfering patterns.

Our approach comes close to lazy explanation-based lear-
ning [Tad89]. Lazy EBL does not try to learn explanations
that include all conditions to guarantee that the pattern will
be achieved. It learns over-general, overly optimistic plans,
which are generated by simply not checking whether the
moves that led to the achievement of a goal were forced.
If one of these optimistic plans predicts that its application
should achieve a certain goal, but it is not achieved in the
current game, the opponent’s refutation is generalized to
a counter-plan that is indexed with the original, optimistic
plan. The next time this plan is invoked, the program is
able to foresee this refutation.

Our approach also resembles those used in complex
scheduling and planning problems [Min88], such as
PRODIGY [VCP+95]. They identify goals, decompose
them into subgoals, seek plans for attaining the goals, etc.



Figure 3: Game tree exploration by looking at patterns and
their possible effects

The difference is that we check through falsification which
goals (what we called the effects) are feasible in the context
of the current state.

6 Observations on human-like game
playing.

Our approach, which combines pattern-based evaluation
and a well-focused tree search, gives a strategy for game
playing that confirms observations on the way humans play
chess.

Psychological studies have shown that the differences in
playing strengths between chess experts and novices are not
so much due to differences in the ability to calculate long
move sequences, but to which moves they start to calcu-
late. Humans can effectively prune the game tree and avoid
waisting time on fruitless lines of investigation. For this
pre-selection of moves chess players make use of patterns
[Für01]. Cowley and Byrne showed that chess experts rely
on falsification [CB04]. There are two main ways people
can test the truth of their hypotheses. One can either seek
confirmation: evidence that is consistent with a hypothesis,
or falsification: evidence that is inconsistent with a hypo-
thesis. The results of the research show that chess mas-
ters were readily able to falsify their plans. They generated
move sequences that falsified their plans more readily than
novice players, who tended to confirm their plans.

Another major difference with computer chess is the abi-
lity to analyse games and explain decisions. Humans can
easily answer the why questions. We can explain the im-
pact of a move, why a player won or why a pattern was
successful. We can exactly pinpoint the moves that were

decisive, determine whether the chosen tactic was success-
ful or not. This is more information than any current chess
program can provide. We postulated that all relevant as-
pects of a game state can be captured by a set of generic
patterns and their interference. This allows accurate evalu-
ations, which only get wrong when relevant patterns were
overlooked. Computer chess algorithms act in the opposite
way. They consequently generate all possible moves, but
their evaluations are only estimations. By the effect of pat-
terns we know exactly what to look for in the future, while
computer algorithms rely on guesses.

Finally, it’s well-known that humans have difficulties for-
mally defining the knowledge they use. Our approach can
explain this. A pattern only denotes an opportunity. A pre-
cise description of the states in which it is successful is not
necessary, a well-directed tree search is used to confirm or
falsify the hypothesis. Note that counter moves may be
added to the pattern definitions as exception clauses. But
this is not really necessary, because an analysis, based on
interfering patterns, will falsify ineffective patterns.

7 Hypothesis verification and
implementation.

4 ways can be explored to verify the hypotheses, but all
have them are difficult to perform.

7.1 Cognitive Study

The most important evidence for the hypotheses is the way
we, humans, play games, as demonstrated by the study of
Cowley and Byrne [CB04]. Using results from cognitive
science as evidence relies on the premise that if the human
brain is capable of calculating something, an algorithm ex-
ists for it. It is, however, difficult to measure the algorithm
the brain is using to perform a certain task.

7.2 Hypothesis 1 validation

We designed some experiments to test the first hypothe-
sis, as described by Eq. 3. Experiments were performed
with equality outcome positions by using the CAPA engine
[Ben], which is well-written code and easy modifiable in
order to design the experiments. We added a random ele-
ment, the engine chooses between the moves that are rated
the highest and therefore considered almost equivalent. We
tried to study the impact of the fork pattern on the outcome
of the game. After each move, the fork pattern is identified
and once a fork is detected, during the continuation of the
game, it is tested whether a piece could be captured..

We could, however, not get a decisive conclusion yet. It
was difficult to design random experiments and to only
measure the impact of 1 pattern.



7.3 Theoretical proof

If the hypotheses are true, there must exist a theoretical
proof for it. To my intuition, this must rely on the exact
definition of the pattern that caused an advantageous situa-
tion.

7.4 Implementation

The implementation of this algorithm must be based on an
advanced pattern detection engine. It should not only be
able to define and recognize patterns, but also to identify
which patterns interfere with each other. No such powerful
engine currently exists. Certainly not if we compare it to
the pattern engine humans have. We can learn and identify
patterns very fast and easily, and we also see in a glance
which patterns affect each other.

A fork pattern is relatively easy to implement, but how to
define ‘pressure’, a ‘weak defense’ etcetera. Moreover, pat-
terns heavily relate to each other; a fork pattern is related
to two threat patterns. How this should be taken into con-
sideration is not clear.

Finally, it is totally unclear how to reason with patterns.
Take the following sentence: “White attacks two black
pieces with a fork, one of the pieces can make chess. White
thus has to move its king and black can bring his second
piece into safety.”

It must be noted that an implementation might be possible
for a less complex game.

8 Conclusions

This paper developed an hypothesis about a new form of
generic knowledge that can be used for playing complex
games like chess. The knowledge is in the form of pat-
terns, where a pattern is a generic description - in terms of
configurations of interaction between squares and pieces -
that defines a set of states sharing some features. But evalu-
ations cannot rely on these patterns alone. The influence on
the outcome of the game depends on the exact interaction of
the patterns in the context of the game state. Trying to des-
cribe all these interactions will lead, by the complexity of
the game, to an enormous amount of rules or patterns. Cur-
rent pattern-based algorithms suffer from this complexity.
We hypothesize that the influence of patterns on the game
outcome can be evaluated by the achievement of their ef-
fects. The game playing strategy that follows from this
hypothesis combines an advanced pattern detection engine
with a well-focused tree search. Absence of such a pattern
engine, however, makes an implementation currently not
feasible. We showed that the proposed strategy strongly
resembles the human way of chess playing.
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