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Abstract. The presence of deterministic relations pose problems for current algo-
rithms that learn the causal structure of a system based on the observed conditional
independencies. Deterministic variables lead to information equivalences; two sets
of variables have the same information about a third variable. Based on information
content, one cannot decide on the direct causes. Several edges model equally well
the dependencies. We call them equivalent edges. We propose to select among
the equivalent edges the one with the simplest descriptive complexity. This ap-
proach assumes that the descriptive complexity increases along a causal path. As
confirmed by our experimental results, the accuracy of the method depends on the
chance of accidental matches of complexities.

1 Introduction

The goal of this work is to infer from observations the causal structure of a system under
the presence of deterministic relations. Inferring causality consists of (i) detecting the
causal influences between the variables, i.e. the modularity aspect, and (ii) detecting the
orientation of these influences. The pioneering work of Spirtes, Glymour and Scheines
[1] showed how the causal graph can be learned from the conditional independencies
observed in the system. Consult this work for the basic concepts of independence-based
structure learning used in this text. For inferring the causal orientation, independence-
based algorithms rely on a pattern of (in)dependencies: X → Z ← Y is recognized
by X⊥⊥Y and X 2Y |Z, which define a v-structure. This remains true if some of the
relations are deterministic.

Inferring the causal decomposition (modularity) on the other hand, relies on the
stochastic nature of the relations among the variables. Indirect causes can be identified
since they can be screened off from the effect through direct causes. If X → Y →
Z reflect the true causal structure, X and Z are dependent, but become independent
when conditioned on Y . In the probabilistic case, Y and Z remain dependent when
conditioned on X . This let us decide that Y and Z must be adjacent. If, on the other
hand, Y = f(X) for some deterministic function f , then also Y⊥⊥Z|X holds. So Z
depends on bothX and Y , but bothX and Y become independent when conditioned on
the other. One cannot decide on whetherX−Z or Y −Z1 form a direct causal relation.
The solution we propose is to compare the descriptive complexities ofX−Z and Y −Z

1With an undirected edge we denote that we have not yet identified the orientation.
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(P (Z|X) and P (Z|Y ) respectively) and identify the one with the least complexity as
the direct cause.

The complexity criterion is motivated by the property that causal relations express
independent mechanisms of the system. In our example, P (Y |X) and P (Z|Y ) re-
present the causal mechanisms. P (Z|X) is ‘generated’ by P (Y |X) and P (Z|Y ). It
follows that P (Z|X) will be more complex than P (Z|Y ), unless the complexities of
P (Y |X) and P (Z|Y ) cancel out when generating P (Z|X). Consider the quadratic
function for f : Y = X2. Only if P (Z|Y ) has the form of a square root function, as
for instance Z =

√
Y + U with U an independent disturbance term, then P (Z|X)

will be significantly simpler than P (Z|Y ). Consider systems for which the causal me-
chanisms are chosen independently. It follows that a match is a matter of chance: an
accidental cancellation of the complexities. Then the criterion applies. As we will show
experimentally, the probability of a match will always be lower than 0.5 and decreases
drastically with wider ranges of curve forms.

We first discuss how deterministic relation lead to information equivalences and
equivalent edges, then we show how and when complexities can help us to decide on
the true causal edges. We provide an empirical estimator and use it to validate the
method on simulated data.

2 The problem

Property 1 Given f a deterministic function: Y = f(X) ⇒ Y⊥⊥Z|X,U ∀Z,U ∈ V

Note that single stochastic variables are denoted by capital letters, sets of variables by
boldface capital letters. If a conditional independence of Property 1 does not follow
from Markov, it leads to violations of the intersection condition, one of the necessary
conditions for faithfulness [2]. The non-Markovian independencies can be character-
ized as information equivalences.

2.1 Information equivalences

We call X and Y information equivalent with respect to Z, which we call the target
variable, when:

X, Y 2Z | W & X⊥⊥Z | W, Y & Y⊥⊥Z | W, X. (1)

where W is disjoint with X and Y, and not containing Z. The interpretation is that
knowledge of either X or Y is completely equivalent from the viewpoint of Z. We
write an information equivalence as Z|X eq Y. The motivation is that P (Z|Y) =
P (Z|f(X)) = P (Z|X) [3].

If for an information equivalence, no set U exists that screens of one of the equiva-
lent sets from the target variable without also being information equivalent, we call it a
basic information equivalence. To exclude special cases [3], we assume the following:

Assumption 1 For a basic information equivalence, Eq. 1 holds for any W disjoint
with X and Y, and not containing Z.
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The next property shows that if a set U exists that screens off one of the equivalent
sets from the target variable, it also screens off the other set.

Property 2 Z|X eq Y : X⊥⊥Z|U ⇔ Y⊥⊥Z|U

P (Y|Z,U) =
∑

X

P (Y|X, Z,U).P (X|Z,U) (2)

=
∑

X

P (Y|X,U).P (X|U) = P (Y|U) (3)

The first factor of Eq. 2 leads to the first factor of Eq. 3 by the independence following
from the information equivalence which holds for any U by Assumption 1. Z can
be removed from the conditioning set of the second factor by the given independence
X⊥⊥Z|U.

The next property is necessary for the theorem.

Property 3 Z|X eq Y & X⊥⊥Y|U ⇒ X⊥⊥Z|U,W ∀W

Now we show that basic information equivalences lead to edges that equally well
represent the distribution.

2.2 Equivalent edges

Definition 1 Consider distribution P and two disjoint sets of edges E1 and E2. Both
sets are called equivalent edge sets if for any DAG G which is not Markovian for P :

G ∪ E1 is Markovian for P

⇔ G ∪ E2 is Markovian for P (4)

and that this is not true if we would remove an edge from E1 or E2.

Theorem 4 Given a distribution P that can be modeled by a Markovian DAG. Con-
sider X and Y a basic information equivalence for Z in P , then EX = ∪X∈XX → Z
and EY = ∪Y ∈YY → Z form equivalent edge sets for P .

Proof Assume G any DAG Markovian to P including EX and EY . Then the DAG
G/EX∪EY (G without edges EX and EY) is not Markovian to P , since X and Y should
be d-connected to Z when conditioned on all other variables (Assumption 1). We prove
that if G/EY is Markovian then G/EX is Markovian. The reverse is proven similarly.
When each dependency in P is modeled by a d-connection in G/EY , this should also
be modeled in G/EX . We can limit us to dependencies that are represented in G/EY but
not in G/EX∪EY since dependencies present in the last one are by definition present in
G/EX . Assume A 2B|C and thus A 0B|C in G/EY , but not in G/EX∪EY . This means
that all active paths go through edges of EX. It follows that for one such edge Xi → Z,
Xi 2Z|C (*) must hold since otherwise the d-connection does not give a dependency.
For this dependency Y 6⊆ C must hold (Assumption 1). It follows thatA 0B|C inG/EX :
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path Z ← Yj−Xi−C is created which gives a d-connection due to the following. Since
(1) at least one Yj in Y is not in C, and (2) all members of X are d-connected to all mem-
bers of Y. If there is a set d-separating them, it cannot be a subset of C since it would
turn dependency (*) into an independency by Property 3. And, finally, (3) a v-structure
in Xi on the path can be excluded. By the independencies B⊥⊥Z|Yi,C, Yi⊥⊥Z|X,C
and B⊥⊥X|C (v-structure) it follows that Z⊥⊥B|C, which excludes the possibility of
dependency A 2B|C.

3 The complexity criterion

In [4] we provided an extension to the PC algorithm to detect information equivalences
based on the conditional independencies. The algorithm returns sets of equivalent
edges. Because of the information equivalence, the amount of information that one
variable conveys about another does not give us a criterion to decide upon adjacency.
We introduce the descriptive complexity of relationships as a criterion to decide which
one gives the direct causal relation. We define it very general with the conditional Kol-
mogorov complexity K(x | y) which is defined as the length of the shortest program
that given y as input prints x and then halts [5]. The complexity of the relationship be-
tweenX and Y , written asK(X | Y ), can then be quantified by estimatingK(xn | yn),
where xn and yn are the vectors of the observed data, with n the sample size.

3.1 Complexity Increase

The complexity criterion makes sense by the assumption that the complexities of the
relations “do not decrease along a causal path”.

Assumption 2 (Complexity Increase Assumption) Given a set of variables V whose
causal structure can be represented by a DAG G, for all disjoint subsets X, Y, Z of V:

X⊥Z | Y in G ⇒ K(X | Z) ≥ K(X | Y). (5)

3.2 Complexity extimator for structural equations containing continuous varia-
bles

A regression analysis is used for estimating K(xn | yn). It seeks the most appropriate
function that fits the data, such that the function minimizes

fmin = argmin
f∈F

{K(f) +K(en)}, (6)

withF the set of admissible functions and en the error vector defined as ei = xi−f(yi)
with i from 1 to n. The model class F is populated with the mononomials, polynomials
and root functions up to degree 5, the inverse, the power, the square root and the step
function. The description of the hypothesis then contains the values of the function’s
parameters, each needing d bits (the precision), and the function type, for which we
count 1 byte for each operation (addition, subtraction, multiplication, division, power,
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square root and logarithm) in the function2. A floating-point value is encoded with d
bits, whereas an integer value i requires log(i) bits.

It is shown that the optimal precision d for each parameter is given by d = 1/2 log2 n+
c, with n the sample size and c some constant [6]. Hence

K(f) = #parameters.
log2(n)

2
+ 8.#operations+K (7)

with K a constant term that does not depend on f . Therefore it does not play any
role in finding the minimal description. The second part of Eq. 6, K(en), reflects
the goodness-of-fit of the curve Y = f(X). By choosing the normal distribution as
probability distribution of the errors (the deviances of the data with respect to the curve),
K(en) equals the sum of squared errors:

K(en) =
n∑

i=1

(yi − f(xi))2 (8)

A regression analysis thus has to minimize the sum of Eq. 7 and Eq. 8.

3.3 Linearity

If two variables X and Y are related by a linear bijection, the relation of X and Y with
any other variable will be completely similar, qualitatively and quantitatively. Both
variables contain the same information about any other variable and in the same form.
So, in the absence of background knowledge and when no considering scaling, they
represent equivalent quantities. The variables are indistinguishable, they are redundant
and one could be removed from the data.

4 Experiments

We considered 100 artificial data sets generated by sets of randomly created structural
equations. For each dataset, we first generate 5 variablesX1, . . . , X5 with a distribution
randomly chosen from two options with equal probability: either the uniform distribu-
tion on [0, 1] or a Gaussian mixture distribution. Then 10 variables X6, . . . , X15 were
defined according to the structural equationXi = fi(Xj , . . . , Xj+k)+λiEi. The varia-
bles Xj , . . . , Xj+k are chosen randomly from X1, . . . , Xi−1 (“the causally preceding
variables”). We only used k ≥ 0 when the linear function is chosen for fi. For non-
linear functions we only consider one dependent variable. λi has the probability of 0.5
to be zero, and is otherwise chosen uniformly between [0, 0.1], where 0.1 means that
the Gaussian noise termEi has a standard deviation which is 10% of the maximal value
of the function. We did experiments by choosing fi randomly from a set of functions
(the first column in the table below) and randomly chosen parameters. For the root,
mononomial and polynomial functions, the maximal exponent is set to 5.

2This choice of description method attributes shorter description lengths for simpler function, but nev-
ertheless is somewhat arbitrary. The objectivity of the Kolmogorov complexity is based on the Invariance
Theorem. The shortest programs that output a given string written in different universal computer languages
are of equal length up to a certain constant [5]. A complete objective measure does not exist.
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Our inference method is applied for each basic information equivalence found in
the data. We assumed that all conditional independencies are correctly identified. The
inferred orientation is checked with the true orientation. When the complexities differed
by less than 8 bits, no decision was taken. Except when the term of Eq. 8 is the same,
then the complexities should differ by at least one bit. The experimental results are
shown in the Table 1. The second column gives the total number of equivalences that
were found, the last column gives the percentage of undecided edges that were actually
correct inferences.

Number Correct Undecided Undec. OK
Quadratic and square root 630 51% 7% 53%
Monomials and root functions 819 75% 25% 73%
Polynomials 609 86% 32% 61%
Polynomials and linear functions 440 73% 48% 46%

Table 1: Accuracy results for the experiments with simulated data.

The first row results in equivalences with a 50% chance of complexity cancellation.
This explains the accuracy. The following rows show what happens when the varia-
tion and the complexity of the functions increases. The presence of linear functions
increases the number of indecisions, but also decreases the accuracy.

5 Conclusions

Deterministic relations generate conditional independencies not coming from Markov.
It results in graphs that equally well represent the independencies of the distribution.
The graphs can be characterized by equivalent edges; edges that can be interchanged.
We proposed to compare the descriptive complexity of relations to choose among equi-
valent edges the one that reflects the direct causal relation. A better-than-random guess
is provided for non-linear functions.

References
[1] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. Springer Verlag,

2nd edition, 1993.

[2] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo,
CA, Morgan Kaufman Publishers, 1988.

[3] Jan Lemeire. Learning Causal Models of Multivariate Systems and the Value of it for the Performance
Modeling of Computer Programs. PhD thesis, Vrije Universiteit Brussel, 2007.

[4] Jan Lemeire, Stijn Meganck, and Francesco Cartella. Robust independence-based causal structure lear-
ning in absence of adjacency faithfulness. In Procs of European Workshop on Probabilistic Graphical
Models (PGM), Helsinki, Finland, 2010.
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