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Abstract

The principle of Kolmogorov Minimal Sufficient Statistic (KMSS) states that the
meaningful information of data is given by the regularities in the data. The KMSS
is the minimal model that describes the regularities. The meaningful information
given by a Bayesian network is the Directed Acyclic Graph (DAG) which descri-
bes a decomposition of the joint probability distribution into Conditional Proba-
bility Distributions (CPDs). If the description given by the Bayesian network is
incompressible, the DAG is the KMSS and is faithful. We prove that if a faith-
ful Bayesian network exists, it is the minimal Bayesian network. Moreover, if a
Bayesian network gives the KMSS, modularity of the CPDs is the most plausi-
ble hypothesis, from which the causal interpretation follows. On the other hand,
if the minimal Bayesian network is compressible and is thus not the KMSS, the
above implications cannot be guaranteed. When the non-minimality of the des-
cription is due to the compressibility of an individual CPD, the true causal model
is an element of the set of minimal Bayesian networks and modularity is still plau-
sible. Faithfulness cannot be guaranteed though. When the concatenation of the
descriptions of the CPDs is compressible, the true causal model is not necessarily
an element of the set of minimal Bayesian networks. Also modularity may become
implausible. This suggests that either there is a kind of meta-mechanism governing
some of the mechanisms or a wrong model class is considered.

1.1 Introduction
Inductive inference comes to modeling the patterns in the data. Patterns or regularities
in observations are - most likely - not coincidences, but give us valuable information
about the system under study. A regularity is identified by its ability to compress the
data, i.e. to describe the data using fewer symbols than the number of symbols needed
to describe the data literally. Compressiveness is objectively defined by the Kolmogorov
complexity. The concept is, however, not directly applicable since there does not exist
an algorithm that computes the shortest program for a string. Kolmogorov complexity is
therefore mainly used for giving preference within a given set of models. This has given
rise to different methods for inductive inference, such as Minimum Message Length
and Minimum Description Length. These methods are used for selecting the best model
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from a given set of models, the model class. The choice of model class, however, deter-
mines the regularities under consideration.

For analyzing the validity of causal inference, we do not want to stick to an a priori
chosen set of regularities, but search for all relevant regularities. This idea is captured
by the concept of Kolmogorov Minimal Sufficient Statistic (KMSS). The KMSS is the
minimal model such that the model together with the data is described minimally. The
model should capture all regularities and nothing more.

For causal inference, the set of Bayesian networks is used as a model class. The DAG
of a Bayesian network gives a minimal description of the conditional independencies
following from a causal structure. A system can, however, contain other regularities.
Then, the assumptions and implications of causal model theory, such as faithfulness,
modularity and the correctness of causal inference, may become invalid. It can give rise
to other independencies so that the DAG becomes unfaithful. We will show that the
presence of other regularities cannot be ignored.

In Section 2, we will introduce the concept of KMSS. In Section 3, we will give a
survey of causal model theory and the learning algorithms. Section 4 discusses related
work. In Section 5 we apply the principle of KMMS to inductive inference and show
that a Bayesian network captures dependencies between variables. Section 6 establishes
the link between minimality of Bayesian networks, compressibility and faithfulness.
In Section 7 we will argue that causal inference is plausible if the minimal Bayesian
network is the KMSS. Section 8 discusses various cases in which the minimal Bayesian
network does not provide the minimal description.

1.2 Meaningful Information
The Kolmogorov Complexity of a string x is defined to be the length of the shortest
computer program that prints the string and then halts (Li and Vitányi, 1997):

K(x) = min
p:U(p)=x

l(p) (1.1)

with U a universal computer and l(p) the size in bits of program p. Patterns in the string
allow for its compression, i.e. to describe the data using fewer symbols than the number
of symbols to describe the data literally.

The string “0001000100010001000100010010001000100010001” can be descri-
bed shorter by program REPEAT 11 TIMES "0001". But not all bits of this pro-
gram can be regarded as containing meaningful information. We consider meaningful
information as the properties of the string that allow for its compression (Vitányi, 2002).
Such properties are called patterns or regularities. The regularity of the example string
is the repetition. The number of repetitions ("11") or the substring "0001" is random
information. A random string, which is incompressible has no meaningful information
at all.

For inductive inference, we will look for a minimal description in 2 parts, one con-
taining the regularities or patterns of the data, which we put in the model, and one part
containing the remaining random noise. Such a description is called a two-part code.
This results in a generic approach for inductive inference, called Minimum Description
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FIG. 1.1. Kolmogorov structure function for n-bit string x, k∗ is the KMSS of x.

Length (MDL), according to which we have to pick out the model Mmdl from model
classM where Mmdl is the model which minimizes the sum of the description length
of M and of the data D encoded with the help of M (Grünwald, 1998):

Mmdl = arg minM∈M{L(M) + L(D |M)} (1.2)

with L(.) the description length.
The MDL approach relies on the a priori chosen model class. It does not tell us

how to make sure the models capture all regularities of the data. The KMSS provides a
formal separation of meaningful and meaningless information. We limit the introduction
of KMSS to models that can be related to a finite set of objects, called the model set.
In the context of learning, we are interested in a model set S that contains string x and
the objects that share x’s regularities. All elements of a set S can be enumerated with
a binary index of length log2 |S| with |S| the size of set S. We therefore say that x is
typical for S if

K(x | pS) ≥ log2 |S| − β (1.3)

with K(x | pS) the conditional Kolmogorov complexity. pS denotes the shortest pro-
gram that describes S and β an agreed upon constant. Given set S, x cannot be described
shorter than by the set’s index. Atypical elements have regularities that are not shared
by most of the set’s members and can therefore be described by a shorter description.
Note that most elements of a set are typical, since, by counting arguments, only a small
portion of it can be described shorter than log2 |S|.

The construction of S can be understood with the Kolmogorov structure function
KSF . KSF (k, x) of x is defined as the log2-size of the smallest set including x which
can be described with no more than k bits (Cover and Thomas, 1991):

KSF (k, x) = min
p:l(p)≤k
U(p)=S

x∈S

log2 |S| (1.4)
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A typical graph of the structure function is illustrated in Figure 1.1. By taking k = 0,
the only set that can be described is the entire set {0, 1}n containing 2n elements, so
that the corresponding log set size is n. By increasing k, the model can take advantage
of the regularities of x in such way that each bit reduces the set’s size more than halving
it. The slope of the curve is smaller than -1. When k reaches k∗, all regularities are
exploited. There are no more patterns in the data that allow for further compression.
From then on each additional bit of k reduces the set by half. We proceed along the line
of slope -1 until k = K(x) and the smallest set that can be described is the singleton
{x}. The curveK(S)+log2 |S| is also shown on the graph. It represents the descriptive
complexity of x by using the two-part code. With k = k∗ it reaches its minimum and
equals to K(x). When k < k∗, S is too general and is not a typical set for x. x is only
typical for S if k ≥ k∗. For random strings the curve starts at log2 |S| = n for k=0 and
drops with a slope of -1 until reaching the x-axis at k = n. Each bit reveals one of the
bits of x, and halves the model set.

The Kolmogorov Minimal Sufficient Statistic (KMSS) of x is defined as the shortest
program p∗ which describes the smallest set S∗ such that the two-stage description of
x is as good as the minimal single-stage description of x (Gács et al., 2001; Vitányi,
2002):

p∗ = arg minp{l(p) | U(p) = S∗, x ∈ S∗, K(S∗) + log2 |S∗| ≤ K(x)} (1.5)

The descriptive complexity of S∗ is then k∗. Program p∗ minimally describes the mea-
ningful information present in x and nothing else. The definition ensures that x is a
typical element of S∗.

1.3 Graphical Causal Models
This chapter will introduce graphical causal models and the accompanying learning
algorithms (Pearl, 2000; Spirtes et al., 1993).

1.3.1 Representation of Causal Relations
Graphical causal models intend to describe with a Directed Acyclic Graph (DAG) the
structure of the underlying physical mechanisms governing a system under study. The
state of each variable, represented by a node in the graph, is generated by a stochastic
process that is determined by the values of its parent variables in the graph. All variables
that influence the outcome of the process are called causes of the outcome variable. An
indirect cause produces the state of the effect indirectly, through another variable. If
there is no intermediate variable among the known variables, the cause is said to be a
direct cause.

Each process represents a physical mechanism. In its most general form it can
be described by a conditional probability distribution (CPD) P (X | Pa(X)), where
Pa(X) is the set of parent nodes of X in the graph and constitute the direct causes of
the variable. A causal model consists of a DAG over all variables and a CPD for each
variable. The combination of the CPDs results in a joint probability distribution:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Pa(Xi)) (1.6)
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For a discrete variable, the CPD is encoded by means of a tabular representation:
for each possible assignment of values to the parents of Xi, we need to specify a dis-
tribution over the values that Xi can take. This is called a conditional probability table.
For continuous variables, one often relies on prior knowledge or assumptions about the
structure of the distribution. If one assumes linearly-related variables, the CPDs can be
described by the following structural equations:

P (Xi | Pa(Xi)) =
∑

Xj∈Pa(Xi)

ai,j .Xj + Ui + ci (1.7)

where Ui represent the stochastic variations which cannot be explained by the model
and ci a constant term. One often assumes that Ui is normally distributed.

1.3.2 Modularity and the Effect of Changes to the System

A causal model represents a collection of processes that could account for the genera-
tion of the observed data. Each process is a stable and autonomous physical mechanism.
It is then conceivable to change one such relationship without changing the others. This
modularity permits one to predict the effect of external interventions or local recon-
figurations of the mechanisms (Pearl, 2000). An intervention is defined as an atomic
operation that fixates a variable to a given state and eliminates the corresponding fac-
tor (CPD) from the factorization (Eq. 1.6) (Pearl, 2000). Applied on a causal graph, an
intervention on variable X sets the value of X and breaks all of the edges in the graph
directed into X and preserves all other edges in the graph, including all edges directed
out of X . This is called the Manipulation Theorem (Spirtes et al., 1993, p. 51). Inter-
vening on a variable only affects its effects. Causes have to be regarded as if they were
levers which can be used to manipulate their effects.

This approach does not directly define causality, but defines the implications of ha-
ving a thorough knowledge of the mechanisms that make up a system. Manipulability
puts a constraint of independentness on the mechanisms. The accuracy of the mutilated
model relies on autonomy or modularity; a mechanism can be replaced by another with-
out affecting the rest of the system. It is defined by Hausman and Woodward (1999, p.
545) as follows. They relate each CPD to a structural equation (Eq. 1.7).

Definition 1.1 (Modularity) For all subsets Z of the variable set V, there is some non-
empty range R of values of members of Z such that if one intervenes and sets the value
of the members of Z within R, then all equations except those with a member of Z as a
dependent variable (if there is one) remain invariant.

1.3.3 Representation of Independencies

The key for causal inference is the conditional independencies entailed by the system’s
causal structure. They are based on the property of Markov chains and v-structures. IfX
is affected by Y and Z, then we do not expect that X is independent of Y conditional
on Z, except if Y affects X via Z. This is represented by a Markov chain. Random
variables X , Z, Y are said to form a Markov chain in that order, denoted by X → Z →
Y , if the joint probability mass function can be written as
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P (X,Z, Y ) = P (X).P (Z | X).P (Y | Z) (1.8)

which is equivalent to the conditional independence of X and Y given Z. Conditional
independence of X and Y given Z, written as X⊥⊥Y | Z, is defined as

P (X,Y | Z) = P (X | Z).P (Y | Z) (1.9)

The conditional independence expresses that learning the value of X does not provide
additional information about Y once the state of Z is known. We say that Z ‘screens
off’ X from Y . Once the state of Z is observed, the state of Y no longer depends on
that of X . For a v-structure on the other hand, for example X → Z ← Y , X and Y are
independent, but become dependent when conditioned on Z.

For a causal model, the Causal Markov Condition gives us the independencies that
follow from the causal structure: each variable is probabilistically independent of its
non-effects conditional on its direct causes. This condition is defined by Spirtes et al.
(1993) as follows:
Definition 1.2 (Causal Markov Condition) Let G be a causal graph with vertex set
V and P be a probability distribution over the vertices in V generated by the causal
structure represented by G. G and P satisfy the Causal Markov Condition if and only
if for every W in V, W is independent of V \ Descendants(W ) \ Parents(W ) given
Parents(W ).
These independencies are irrespective of the nature of the mechanisms, of the exact
parameterization of the conditional probability distributions P (Xi | Pa(Xi)). Pearl
and Verma constructed a graphical criterion, called d-separation, for retrieving, from
the causal graph, all independencies following from the Causal Markov Condition.

A graph is called faithful to a distribution if all conditional independencies of the
distribution correspond to a d-separation in the graph and vice versa. In other words,
faithfulness means that if a graph represents a causal structure, all conditional indepen-
dencies follow from the system’s causal structure.

1.3.4 Correspondence with Bayesian networks
Graphical causal models provide a probabilistic account of causality (Spohn, 2001).
This resulted in a close correspondence with Bayesian networks. In contrast to causal
models, Bayesian networks are only concerned with offering a dense and manageable
representation of joint distributions. A joint distribution over n variables can be factori-
zed relative to a variable ordering (X1, . . . , Xn):

P (X1, . . . , Xn) =
n∏
i

P (Xi | X1, . . . , Xi−1) (1.10)

Variable Xj can be removed from the conditioning set of variable Xi if it becomes
conditionally independent from Xi by conditioning on the rest of the set:

P (Xi | X1 . . . Xi−1) = P (Xi | X1 . . . Xj−1, Xj+1 . . . Xi−1). (1.11)

Such conditional independencies reduce the complexity of the factors in the facto-
rization. The conditioning sets of the factors can be described by a Directed Acyclic
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FIG. 1.2. Factorization of the same distribution according to variable ordering (A, B,
C, D, E) and reduction by three independencies (a), and according to variable or-
dering (A, B, C, E, D) and five independencies (b).

Graph (DAG), in which each node represents a variable and has incoming edges from
all variables of the conditioning set of its factor. The joint distribution is then described
by the DAG and the conditional probability distributions (CPDs) of the variables condi-
tional on their parents. A Bayesian network is a factorization that is edge-minimal, in the
sense that no edge can be deleted without destroying the correctness of the factorization.

Although edge-minimality of a Bayesian network, the graph depends on the cho-
sen variable ordering. Some orderings lead to the same networks, while others result in
different topologies. Take 5 stochastic variables A,B,C,D and E. Figure 1.2(a) shows
the graph that was constructed by simplifying the factorization based on variable or-
dering (A, B, C, D, E) by the three given conditional independencies. However, the
Bayesian network, describing the same distribution, but based on ordering (A, B, C, E,
D), depicted in Fig. 1.2(b) contains 2 edges less because of 5 useful independencies.
Both networks represent the probabilities just as well, except that the first one is more
complex. We call the minimal factorization as the factorization which has the least total
number of variables in the conditioning sets. The corresponding Bayesian network is
called the minimal Bayesian network of a probability distribution.

Analogous to the Causal Markov Condition, the Markov Condition gives the con-
ditional independencies that follow from the structure of a Bayesian network: each va-
riable is independent from all its non-descendants by conditioning on its parents in
the graph. The equivalence of the Markov Condition and factorizability can be proven
(Hausman and Woodward, 1999, p. 532). This ensures the correspondence: causal mo-
dels are also Bayesian networks. The difference lies in the causal component; causal
models attribute a causal interpretation to the edges of the graph and are therefore called
causally interpreted Bayesian networks.

1.3.5 Causal Inference

The goal of causal inference is to learn the causal structure of a system based on obser-
vational data. Causal structure learning algorithms fall apart in two categories: scoring-
based and constraint-based algorithms.

Scoring-based algorithms are based on an optimized search through the set of all
possible models, which tries to find the minimal model that best describes the data. Each
model is given a score that is a trade-off between model complexity and goodness-of-fit.
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Different scoring criteria have been applied in these algorithms, such as a Bayesian sco-
ring method (Cooper and Herskovits, 1992)(Heckerman et al., 1994), an entropy based
method (Herskovits, 1991), a Minimum Message Length (MML) method (Oliver et al.,
1992), and one based on the Minimum Description Length (MDL) (Suzuki, 1996). As
explained in the introduction, we are not investigating how to select the minimal model
from the a priori chosen model class, but the model class which should be considered.

Constraint-based learning algorithms rely on the conditional independencies de-
tected that follow from the system’s causal structure. It is a kind of evidence-based
construction, the decisions to include an edge and on the edge’s orientation is based
on the presence or absence of certain independencies. The algorithms assume the exis-
tence of a faithful graph, i.e. that all independencies follow from the causal structure.
They also assume that the correct model is the minimal model. Minimality, faithfulness
and the Causal Markov Condition give the 3 assumptions that ensure correct learning
(Spirtes et al., 1993). The minimality condition is an edge-minimal condition on the true
causal graph.

It must be noted that some algorithms, such as the PC algorithm, also require causal
sufficiency, i.e. that all common causes should be known: variables that are the direct
cause of at least two variables. More sophisticated learning algorithms exist that are
capable of detecting latent common causes. For now we will not take the presence of
latent variables into consideration and discuss the consequences of this in Section 1.8.

1.4 Related Work
The causal interpretation of a Bayesian network and the validity of faithfulness are of-
ten criticized (Freedman and Humphreys, 1999; Cartwright, 2001; Williamson, 2005;
Hausman and Woodward, 1999). This paper would like to contribute to the discussion
by giving an additional viewpoint through the concept of the KMSS. Some of the exam-
ples on which criticism on the possibility of causal inference is based will be discussed
in Section 1.8. Hausman and Woodward (1999) on the other hand are strong defenders
of linking the causal interpretation of models to modularity. They defend the equiva-
lence of modularity and the Causal Markov Condition (Hausman and Woodward, 1999,
p. 554). We will contribute to the discussion by motivating why and when modularity is
a valid assumption, and showing the limitations of assuming faithfulness.

Pearl and others use stability as the main motivation for the faithfulness of causal
models (Pearl, 2000, p. 48). Consider the model of Fig. 1.2(b). In general, one expects
A to depend upon D. A and D are independent only if the stochastic parameterization
is such that the influences via paths A → B → E → D and A → C → D cancel out
exactly. This system is called unstable because a small change in the parameterization
results in a dependency. The unhappy balancing act is a measure zero event, the pro-
bability of such a coincidence can therefore be regarded as zero. Hence, the majority
of distributions compliant with a DAG are faithful (Pearl, 2000, p. 18). We argue that
indeed typical distributions are faithful, but that nonetheless, unfaithful distributions
appear.

Milan Studeny was one of the first to point out that the Bayesian networks cannot re-
present all possible sets of independencies. He constructed a different framework, called
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imsets (Studeny, 2001), which is capable of representing broader sets of independen-
cies. We advocate a different approach. We will not look for a different representation
of conditional independencies, but stick to Bayesian networks. Yet, we will try to find
explanations (referring to regularities) for the presence of conditional independencies
not coming from the system’s causal structure.

1.5 Minimal Description of Distributions
In this section we start the analysis of causal inference by applying the KMSS princi-
ple on observed data of a collection of independent and identically distributed random
variables. A minimal description for the data corresponds to the construction of a effi-
cient code which on its turn corresponds to the description of a probability distribution
(Grünwald et al., 2005)[Chapter 2]. We thus have to investigate how distributions can
be described compactly.

From the theory of Bayesian networks (Section 1.3.4), we know that a joint distribu-
tion can be described shorter by a factorization that is reduced by conditional indepen-
dencies of the form of Eq. 1.11. The minimal factorization leads to P (X1, . . . , Xn) =∏
CPDi, with CPDi the CPD of variable Xi. The descriptive size of the CPDs is de-

termined by the number of variables in the conditioning sets. A two-part description of
a joint distribution is then:

descr(P (X1 . . . Xn)) = descr({Pa(X1), . . . , Pa(Xn)})
+ descr(CPD1) + · · ·+ descr(CPDn) (1.12)

With descr(x) the description of x. Note that the parents’ lists are described very com-
pact by a DAG. If the description according to eq. 1.12 is shorter than the literal descrip-
tion of the joint distribution, than the reduction of the factorization contains meaningful
information. This meaningful information is described by the parents’ lists or the DAG
of the Bayesian network.

Theorem 1.3 If the two-part code description of a probability distribution, given by
Eq. 1.12 in which the CPDs are described literally, results in an incompressible string
which is shorter than the literal description of the joint probability distribution, the first
part is the Kolmogorov minimal sufficient statistic.

Proof The CPDs do not contain meaningful information (regularities), since they are
literally described and they are incompressible. This last follows from the incompress-
ibility of the total description. Since the total description is shorter than the literal des-
cription, the reduction of the factorization outweighs the description of the parents’ lists.
The parents’ lists therefore contain meaningful information. Their incompressibility en-
sures that it is the KMSS. 2

Concluding, we end up with a three-part code for the description of the observations:

descr(data) = descr(DAG) + descr(CPD1) + · · ·+ descr(CPDn)
+ descr(data | distribution) (1.13)

The data is described with the help of a probability distribution, which on its turn is des-
cribed by a DAG and a list of CPDs. The regularities that allow the compact description
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of the data are the dependencies among the variables; knowing one variable gives in-
formation about the state of another variable. Conditional independencies, on the other
hand, reduce the model’s complexity. They reduce the number of variables to consider
when describing the dependencies among the variables.

1.6 Minimality of Bayesian Networks
The following two theorems show that the Bayesian network corresponding to the mi-
nimal factorization is the KMSS and faithful if its DAG and CPDs are random and
incompressible.

Theorem 1.4 If a faithful Bayesian network exists for a distribution, it is the minimal
Bayesian network, i.e. the Bayesian network with the minimal number of edges.

Proof Recall that the absence of an edge between two variablesX and Y in a Bayesian
network implies that there exists a set of variables S not containingX and Y that makes
X and Y conditionally independent: X⊥⊥Y | S. In case of faithfulness, the presence of
an edge forbids the existence of such a set. Let A be a graph that has fewer edges then
the faithful graph B. It follows that B contains an edge between two variables X and
Y that A does not contain. The absence of the edge in A implies that X and Y become
independent by conditioning on some set of the other variables. But this contradicts with
the faithfulness of B which implies that X and Y cannot become independent. 2

Neapolitan (2003)[p. 107] provides a proof for edge-minimality, while here mini-
mality in the global sense is considered.

The DAG of a Bayesian network corresponds to a set of conditional independencies.
Intuitively we would expect that two variables are dependent if they are not d-separated.
When this is true, the DAG is faithful to the probability distribution. The next theorem
proves that two variables that are not d-separated can only be independent if there is
a constraint between the probabilities. To illustrate the theorem, consider the model of
Fig. 1.2(b) and the set of distributions compatible with the DAG. For typical distribu-
tions, dependencies D 2E and A 2E hold. There are, however, specific parameteriza-
tions which lead to independencies D⊥⊥E or A⊥⊥E. Such independencies only follow
if specific equations between the free parameters are satisfied.

Theorem 1.5 A Bayesian network for which the concatenation of the descriptions of
the conditional probability distributions (CPDs) is incompressible, is faithful.

Proof Recall that a Bayesian network is a factorization that is edge-minimal. This
means that for each parent pai,j of variable Xi:

P (Xi | pai,1, . . . pai,j , . . . pai,k) 6= P (Xi | pai,1, . . . pai,j−1, pai,j+1, . . . pai,k)
(1.14)

Variables cannot be eliminated from the factors of the factorization. The proof will show
that any two variables that are not d-separated are dependent, unless the probabilities of
the CPDs are ‘related’, in the sense that some probabilities can be calculated from others
and the set of CPDs is compressible. We derive the relations for discrete variables. For



Minimality of Bayesian Networks 11

continuous variables, the analysis results in relations among the free parameters of the
CPDs.

We have to consider the following possibilities. The two variables can be adjacent
(a), related by a Markov chain (b) 1, a v-structure (c), a combination of both or con-
nected by multiple paths (d).

First we prove that a variable marginally depends on each of its adjacent variables
(a). Consider adjacent nodes D and E of the Bayesian network of Fig. 1.2(b). We will
demonstrate that P (D | E) = P (D) results in a regularity. We expand the first term
with all other parents of D:

P (D | E) =
∑

c∈Cdom

P (D | E, c).P (c | E) (1.15)

C is also a parent of D, thus, by Eq. 1.14, there are at least two values of Cdom for
which P (D | E, c) 6= P (D | E) 2. Take c1 and c2 being such values for which

P (D | E, c1) 6= P (D | E, c2). (1.16)

There are also at least 2 such values of Edom, take e1 and e2. Eq. 1.15 should hold for
all values of E and equal to P (D) to get an independency. This results in the following
relation among the probabilities:

P (D | e1, c1).P (c1 | e1) + P (D | e1, c2).P (c2 | e1)
= P (D | e2, c1).P (c1 | e1) + P (D | e2, c2).P (c2 | e1) (1.17)

Note that the equation cannot be algebraically simplified: the conditional probabilities
are not equal to P (D) (Eq. 1.14) nor to each other (Eq. 1.16). The proof can easily be
generalized for variables having more parents.

Next, by the same arguments it can be proved that variables connected by a Markov
chain are by default dependent (b). Take A → B → E in Fig. 1.2(b), independence of
A and E requires that

P (E | a) =
∑

b∈Bdom

P (E | b).P (b | a) = P (E) ∀a ∈ A. (1.18)

and this would also result in a regularity among the CPDs.
In a v-structure, both causes are dependent when conditioned on their common ef-

fect (c), for C → D ← E, P (D | C,E) 6= P (D | E) is true by Eq. 1.14. Finally, if
there are multiple unblocked paths connecting two variables, then independence of both
variables implies a regularity as well (d). Take A and D in Fig. 1.2(b):

P (D | A) =
∑

b∈Bdom

∑
c∈Cdom

∑
e∈Edom

P (D | c, e).P (c | A).P (e | b).P (b | A).

1Recall that a Markov chain is a path not containing v-structures.
2P (D | E) is a weighted average of P (D | E, C). If one probability P (D | E, c1) is different than this

average, let’s say higher, than there must be at least one value lower than the average, thus different.
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Note that P (c, e | A) = P (c | A).P (e | A) follows from the independence of C and E
given A. All factors from the equation satisfy Eq. 1.14, so that, again, the equation only
would equal to P (D) if there is a relation among the probabilities. 2

From the theorem it follows that a Bayesian network with random CPDs is the
minimal factorization. Bayesian networks not based on a minimal factorization, such as
the one of Fig. 1.2, are compressible, namely by the regularities among the CPDs that
follow from the independencies not represented by the graph. Pearl hypothesizes that
there is no bounded set of conditions that would ensure the existence of a faithful graph
(Pearl, 1988, p. 131). Indeed, as shown by the theorem, every dependence can be turned
into an independence by a balanced parameterization of some CPDs.

It must be noted that if there exists a faithful Bayesian network, it is not necessarily
unique. Multiple faithful models can exist for a distribution. These models represent
the same set of independencies and are therefore statistically indistinguishable. They
define a Markov-equivalence class. It is proved that they share the same skeleton and
v-structures. They only differ in the orientation of some edges (Pearl, 2000). This set
can be represented by a partially-directed acyclic graph in which some of the edges are
not oriented. The corresponding factorizations have the same number of conditioning
variables and thus all models of a Markov-equivalence class have the same complexity.

1.7 When the Minimal Bayesian Network is the KMSS
In this section we will discuss the case in which there is exactly one minimal Bayesian
network which is also the minimal description. This means that there are no other re-
gularities and no other independencies than the conditional independencies represented
by the model. The DAG is then the KMSS and minimally represents all regularities. It
is also faithful.

The minimal Bayesian network decomposes the description of a joint distribution
into a list of CPDs. This means that the minimal description of the system is a concate-
nation of descriptions, namely the description of the individual CPDs. In other words,
we have found a unique and minimal decomposition of the model. This brings us to
modularity and manipulability. We have discovered that the minimal description is a
concatenation of unrelated components. The CPDs are independent; the concatenation
of their descriptions cannot be compressed. Then, among all possible explanations, the
simplest is that each CPD corresponds to an independent part of reality. Thus, following
Occam’s Razor, modularity is the most likely hypothesis about the system under study.
The correctness of Occam’s razor cannot be proven, the principle must be interpreted
as the most effective strategy for deciding among competing explanations (Grünwald,
1998). Modularity of the minimal Bayesian network must be regarded as the top-ranked
hypothesis, which can be verified with background knowledge or experiments with in-
terventions. Thus, the three conditions for causal inference are valid (Section 1.3.5): mi-
nimality and faithfulness are fulfilled, and the Causal Markov Condition follows from
modularity. Description minimality is linked to causality through modularity.

Occam’s razor is contradicted when the real system is more complex than sug-
gested by the complexity of the observations. Take the impact of Tax rate increase on
Tax revenue as shown in Fig. 1.3(a). A Tax rate increase has a negative effect on the
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FIG. 1.3. Model in which the impact of Tax rate increase on Tax revenue is neu-
tralized by the negative effect on the Economy (a). The minimal Bayesian network
describing the system(b).

FIG. 1.4. Decomposition of the system represented by the causal model of Fig. 1.2(b)
into independent components.

Economy which could neutralize the increase of the tax revenues, such that Tax rate
⊥⊥Tax revenue. If so, the system is minimally described by the model of Fig. 1.3(b).
This model is faithful, incompressible and simpler than the true model. From observa-
tions alone, one cannot find indications for the more complex true model. Although not
minimal in the global sense, the model of Fig. 1.3(a) is edge-minimal: no edge can be
removed without destroying the correctness of the model.

The CPD of a variable is also called the variable’s causal Markov kernel. Note
that by representing a causal model with a graph, the representation suggests that the
edges - instead of the CPDs - are the basic components. This is however not true. A
graphical model can therefore be misleading. A better representation is shown in Fig.
1.4. It represents the same system as the causal model of Fig. 1.2(b), but emphasizes
that CPDs are the basic components.

Decomposition and thus also causality matches with a reductionist view, according
to which the world can be studied in parts. Indeed, if the system cannot be decomposed,
if there are no conditional independencies that simplify a factorization, then the DAG
does not contain meaningful information. We end up with a Holist system in which
everything depends on everything.

Note that uniqueness of the minimal Bayesian network is not essential. As discussed
in the previous section, if the minimal Bayesian network is not unique, the Markov-
equivalence class indicates exactly which parts are undecided (the orientation of some
edges). So, we know exactly for which parts of the model we do not have enough infor-
mation to decide upon the decomposition.
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1.8 When the Minimal Bayesian Network is not the KMSS
To study the validity of faithfulness and the modularity property, we will in this section
not assume incompressibility of the minimal Bayesian networks. They are denoted with
BNmin. Instead, we will study a wide variety of cases, appearing throughout literature, in
which regularities appear that are not described by a Bayesian network. We will analyze
the properties of the True Causal Model (CMtrue) and those of the BNmin.

Table 1 gives an overview of the answers for the next questions, which will be
discussed in the following.

• Is the CMtrue compressible? If so, is the compressibility due to the compressibility
of the description of a single CPD or the compressibility of the concatenation of
the descriptions of multiple CPDs?
• Is the compressibility of the minimal Bayesian networks due to the compressibi-

lity of the description of a single CPD or the compressibility of the concatenation
of the descriptions of multiple CPDs?
• Is the CMtrue present in BNmin? The answer to this and the next question deter-

mines the feasibility of causal inference.
• Is there a unique BNmin? Are the regularities under consideration responsible for

the presence of multiple minimal Bayesian networks?
• Is the true causal model faithful to the system?
• Are the minimal Bayesian networks faithful to the system?
• Does modularity holds for the true causal model?

Compress. Compress. CMtrue Unique CMtrue BNmin Modular
CMtrue BNmin ∈ BNmin BNmin faithful faithful CMtrue

1. Local single single Yes Yes Yes Yes Yes
2. PIM single single Yes No No No Yes
3. Determ single single Yes No No No Yes
4. Unfaithf concat. concat. Yes Yes No No No/Yes
5. Markov No’ concat. No No Yes’ No Yes’
6. Latent No* concat. No No Yes* No Yes*
7. OO-nets concat. concat. Yes Yes Yes Yes Yes

TABLE 1.1. Answers to questions for the different case studies. A ’ indicates that
Markov networks are considered. An asterisk (*) indicates that Bayesian networks with
latent variables are considered.

1.8.1 Compressibility of a single CPD

First we consider cases in which the description of an individual CPD is compressible.
Faithfulness and the uniqueness of the minimal Bayesian network are not guaranteed,
but the cases show that the modularity assumption still holds. The CPDs are indepen-
dent.
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Case 1. When individual CPDs can be compressed, we call this type of regularity
local structure (Friedman and Goldszmidt, 1996). For discrete variables, the conditional
probability tables are exponential in the number of parents of a variable X: for each
possible assignment of values to the parents of X , we need to specify a distribution
over the values X can take. When regularities among the probabilities appear these
tables can be described more compactly, for example by decision trees. The regularities
to construct the tree are called context-specific independencies (Boutilier et al., 1996).
On top of the independencies following from the causal structure, the system exhibits
additional regularities. But the model remains faithful and the decomposition is correct.

Case 2. Variables in pseudo-independent models are pairwise independent but col-
lectively dependent (Xiang et al., 1996). For example, consider a binary variable X3

that is determined by two other binary variables X1 and X2 by an exclusive or relation:
X3 = X1 EXORX2. This system can be represented by causal modelX1 → X3 ← X2.
Because of the pairwise independencies X3⊥⊥X1 and X3⊥⊥X2, the model is not faith-
ful. There are three minimal Bayesian networks: besides the correct X1 → X3 ← X2,
also X1 → X2 ← X3 and X2 → X1 ← X3. The CPD P (X3 | X1, X2) exhibits
a strict regularity. Yet, pseudo-independent models fit in the reductionist approach of
causal models. The only problem is that the conditional independencies do not provide
enough information to conclude about the causal connections.

Case 3. Deterministic or functional relations among variables result in CPDs with
a very specific form. Distributions with deterministic relations cannot be represented
by a faithful graph (Spirtes et al., 1993). Consider the system X → Y → Z in which
Y is a function of X: Y = f(X). From the model (Markov chain) it follows that
X⊥⊥Z | Y . By the functional relation, variable X got all information about Y , which
implies Y⊥⊥Z | X . Both independencies imply a violation of the intersection condition,
one of the conditions that Pearl imposes on a distribution in the elaboration of causal
theory and its algorithms (Pearl, 1988). In (Lemeire, 2007) we callX and Y information
equivalent with respect to Z, both variables have in some sense the same information
about Z. Then, the set of minimal Bayesian networks contains graphs that connect X
with Z and graphs that connect Y with Z. From the information about the conditional
independencies alone we cannot decide upon which variable,X or Y , directly relates to
Z. The solution we proposed for causal inference is to connect the variables that have
the simplest relation (Lemeire, 2007). We defined an augmented causal model which
also incorporates information of deterministic relations.

1.8.2 Compressibility of a set of CPDs

When the description of some CPDs taken together can be compressed, the CPDs are
in some way related.

Case 4. The most-known example of unfaithfulness is when in the model of Fig. 1.5
(a), A and D appear to be independent (Spirtes et al., 1993). This happens when the
influences along the paths A → B → D and A → C → D exactly balance, so that
they cancel each other out and the net effect results in an independence. For continuous
variables this happens when an exact correspondence of the free parameters is fulfilled.
The model is not faithful. This balancing act can give an indication of a global mecha-
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FIG. 1.5. O-structure in which A is independent from D (a). A Markov network (b)
and one of the minimal Bayesian networks describing the same system (c).

nism or meta-mechanism, such as evolution (Korb and Nyberg, 2006), controlling the
mechanisms such that the parameters are calibrated until they neutralize. Modularity
and autonomy of the CPDs depends on the meta-mechanism. Evolution works on the
long-term, so modularity holds for a limited time period. For meta-mechanisms control-
ling the mechanisms instantly, the CPDs cannot be considered as being independent.

Case 5. Consider a system that is minimally described by a Markov network, as
shown in Figure 1.5 (b). Variables which are connected by a path in the network are
dependent, unless each path is blocked by the conditioning variables. So is B 2C | A,
but B⊥⊥C | {A,D}. For describing the same network with a DAG, we have to orient
the edges of the network. For acyclicity, we have to create at least one v-structure. We
can choose for example B − D − C. But then, for keeping the same dependencies,
we have to add an edge, as shown in Figure 1.5 (c). Without B → C we would have
B⊥⊥C | A. Clearly, this Bayesian network is not minimal; the description is longer than
that of a Markov network. The parameterizations of the CPDs contain redundancies.
In the model of 1.5 (c), the parameterizations must ensure that B⊥⊥C | {A,D}, an
independency which is not captured by the DAG. The causal interpretation of the CPDs
(modularity) is not correct for the minimal Bayesian networks.

Case 6. Causal sufficiency, the knowledge of all common causes, is an important
property for correct causal learning. Take the system depicted in Fig. 1.6(a) in whichL is
an unknown variable which is the cause ofB and C. This gives rise to multiple minimal
Bayesian networks, none of which models the system correctly. One of them is depicted
in Fig. 1.6(b).B andC are correlated, but none of the other known variables is the cause
of both, so either B should be oriented towards C or vice versa. A should be connected
to C to reflect dependency A 2C | B. But A⊥⊥C, thus there is a dependency between
P (B | A) and P (C | A,B,D). The Bayesian network is therefore compressible and
not faithful (A⊥⊥C is not represented). The solution is to look for an alternative model
class. Spirtes et al. (1995) propose the use of a Partially-oriented Acyclic Graph (PAG)
by which one can express the possibility of latent variables.

Case 7. Another regularity is the repetition of similar mechanisms in a system. This
results in a causal model in which identical CPDs appear. The model is therefore com-
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FIG. 1.6. Learning the model of a system with a latent variable L (a) and one of the
minimal Bayesian networks (b).

pressible. The compressibility does not, however, result in a dependence of the CPDs
in terms of manipulability. One mechanism can still be replaced by another without
affecting the rest of the model. Modularity still holds. Object-Oriented nets provide
a representation format that explicitly capture similarities of mechanisms (Koller and
Pfeffer, 1997).

1.9 Conclusions
A Bayesian network decomposes the description of a joint probability distribution into
Conditional Probability Distributions (CPDs). If a Bayesian network provides the Kol-
mogorov Minimal Sufficient Statistic (KMSS) of a system, it gives the most plausible
hypothesis about the causal structure of the system. The CPDs can be matched up with
mechanisms of the underlying system. Decomposition reflects the causal component of
graphical causal models.

Causal model theory expresses what typically can be expected from a causal struc-
ture. Typical distributions that are compatible with a causal structure are faithful. How-
ever, atypical distributions contain additional regularities and may invalidate the above
conclusions. The minimal Bayesian networks of a probability distribution are then com-
pressible and do not represent the KMSS.

If the description of a single CPD is compressible, this can result in unfaithfulness of
the causal model. Causal inference is still possible, since the true model is an element of
the set of minimal Bayesian networks and modularity is plausible. If on the other hand
the concatenation of the CPDs is compressible, then the CPDs are no longer independent
and the mapping of CPDs onto independent mechanisms becomes invalid. This can be
due to a kind of meta-mechanism governing other mechanisms, or the incorrectness of
considering the set of Bayesian networks as model class.
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