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Abstract

Constraint-based causal structure learning
algorithms rely on the faithfulness pro-
perty. For faithfulness, all conditional in-
dependencies should come from the sys-
tem’s causal structure. The problem is that
even for linear Gaussian models the pro-
perty is not tenable. In this paper, we
identify 4 non-causal properties that gene-
rate conditional independencies and inves-
tigate whether they can be recognized by
patterns in the conditional independencies.

1 Introduction

Constraint-based algorithms for learning the
causal structure from data rely on quite heavy as-
sumptions, such as faithfulness and the correctness
of independence tests. In contrast with the more
robust scoring-based algorithms which search for
the minimal model among all Bayesian networks,
the constraint-based algorithms rely on the con-
ditional independencies that follow from the sys-
tem’s causal structure, which is described by a
graph. They can be retrieved from it with the d-
separation criterion. If all the conditional indepen-
dencies found in the data can be retrieved from the
graph, the graph is called faithful to the data.

The faithfulness property is often criticized,
especially its validity. We will experimentally
show in the following section that, even for ‘nice’
linear Gaussian models, the assumption indeed
gets violated. Violation of faithfulness is regarded
as a measure zero event (Pearl, 2000). This is,
however, not true when working with real data.
Due to limited sample sizes, accidental correla-
tions occur and dependencies get ‘weak’ such that
they are observed as independencies.

2 Violation of faithfulness

To illustrate how the faithfulness property gets
violated, simulations were performed on linear
Gaussian models. Experiments were performed
on 50 randomly selected graphs with 50 nodes and
50 edges. For each such graph, a random struc-
tural equation model was constructed by selec-
ting edge coefficients uniformly from [0.5, 1.5] ∪
[−1.5,−0.5]. The standard deviation for the
Gaussian disturbance term of the equations was
selected uniformly from [0.01, 1]. The values of
input nodes are randomly chosen from [0, 1].

A random data set of 1000 cases was simu-
lated for each of the models, to which the standard
constraint-based PC algorithm was applied with
depth 2 and significance level α = 0.05 for the in-
dependence test based on partial correlation. The
output graph was compared to the Markov equiva-
lence pattern of the true DAG. The following table
shows the average number of errors.

Adjacency false negatives 6.36
Adjacency false positives 7.7
Arrowhead false negatives 1.9
Arrowhead false positives 16.34

(Ramsey et al., 2006) showed that the correct-
ness of the PC algorithm relies on adjacency and
orientation faithfulness. We tested the validity
of both assumptions on the simulated data. The
following table shows that both assumptions do
not hold. Orientation faithfulness is tested for all
triples of nodes in which exactly 2 pairs are adja-
cent.

Violations of adjacency faithf. 6.36 50
Violations of orientation faithf. 43.86 92.9

3 Reasons of learning errors

In our attempt to find good explanations of the
non-causal conditional independencies, we inves-
tigated the errors of the PC algorithm and (a) tried
to identify a property of the model responsible for



the error. Then we looked for (b) a rule, like the
d-separation criterion, to infer the conditional in-
dependencies that are generated by the property.
Next, we investigated if (c) the property can be
detected in the data and if so, (d) whether the right
causal relations can be identified.

The following properties were identified:

1. Undetectable weak edge: (a) is a direct
causal relation between 2 variables for which
the marginal dependency is not detected by
the independence test under the given sam-
ple size. (b) All influences through the causal
relation get undetected, as if the causal con-
nection is not present. (c) It is undetectable
since the adjacent variables do not become
marginally dependent or when conditioned
on another variable. It is a strong viola-
tion of adjacency faithfulness which cannot
be solved.

2. Detectable weak edge: (a) the adjacent va-
riables, say X and Y , are measured to be
marginally independent, but they become de-
pendent when conditioned on another varia-
ble, say Z. Moreover, (b) we demand, for
consistency reasons, that all d-connected va-
riables through X − Y become dependent
by conditioning on Z. It generates a viola-
tion of adjacency faithfulness and a violation
of orientation-faithfulness, see also (Ramsey
et al., 2006), (c) which is detectable, but
(d) independencies alone do not always pro-
vide enough information to identify the right
causal relations.

3. Accidental correlation: (a) a correlation be-
tween two variables is accidental, the varia-
bles are not causally connected in the model,
but (b) are qualified as being dependent, even
when conditioned on other variables. (c) An
accidental correlation cannot be detected by a
conditional independence test unless the sig-
nificance level is increased.

4. Information equivalent variables: (a) two
variables X and Y contain the same infor-
mation about another variable Z (Lemeire,
2007). This happens with deterministic va-
riables, but also with quasi-deterministic va-
riables. (b) D-separation tells us which con-
ditional independencies follow from a deter-
ministic relation (Geiger, 1990). (c) It is

easily detected by a violation of the inter-
section condition: X 2Z, X⊥⊥Z | Y and
Y⊥⊥Z | X and (d) can be solved by com-
paring the complexity between the relations
X − Z and Y − Z (Lemeire, 2007).

With this, the following errors could be related
to one of the 4 above properties. The same simu-
lations were made as in the previous section. The
first column gives the number of errors, the other
columns give the number of errors that can be ex-
plained by one of the 4 properties. The properties
are identified based on the true graph.

# 1 2 3 4
Adj. false neg. 6.4 0.28 0.5 0 2.9
Adj. false pos. 7.8 0 0 7.3 0
Arr. false neg. 2.1 0.06 0.1 0 0.9
Arr. false pos. 15 0 0 8.9 1.0

As shown in the table, accidental correla-
tions and information equivalences are responsi-
ble for almost all false positive arrowheads. The
(in)dependencies they generate lead to false v-
structures.

4 Conclusions

Faithfulness is violated by other than causal pro-
perties of the system under limited sample size.
We identified 4 properties that generate non-causal
conditional independencies. The goal is now to
detect these properties by patterns in the inde-
pendencies and integrate them with Bayesian net-
works so that together they can explain the ob-
served conditional independencies.
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