
Benchmarks Based on Anti-Parallel
Patterns for the Evaluation of GPUs

International Conference on Parallel Computing (ParCo)
2011, Ghent, Belgium

Jan G. CORNELIS, and Jan LEMEIRE

Vrije Universiteit Brussel (VUB), Dept. of Electronics and Informatics (ETRO),
Pleinlaan 2, B-1050 Brussels, Belgium.

Interdisciplinary Institute for Broadband Technology (IBBT), Dept. of Future Media
and Imaging (FMI), Gaston Crommenlaan 8 (box 102), B-9050 Ghent, Belgium.

email: {jgcornel, jan.lemeire}@vub.ac.be

Abstract. We put forward “anti-parallel patterns” to guide the parallel performance
analysis process. Anti-parallel patterns or APPs are common parts of parallel pro-
grams that cause these programs to have less than ideal performance, where the
ideal speedup equals the number of processors. We present benchmarks to model
the behavior of APPs on parallel platforms. Each benchmark contains only one APP
and is configurable to mimic all its instances. We show how benchmarks can be
used to qualitatively and quantitatively understand and compare parallel hardware.
Experiments with NVIDIA and AMD GPUs reveal their differences.

Keywords. performance analysis, performance modeling, patterns, gpu

Introduction

This paper presents the use of benchmark programs based on “anti-parallel patterns” to
evaluate the performance behavior of GPUs. It is part of ongoing research around the use
of anti-parallel patterns to guide the performance analysis process.

Anti-parallel patterns or APPs are common parts of parallelprograms that cause
these programs to have less than ideal performance, where the ideal speedup equals the
number of processors. For example, on SIMD platforms branching is an APP, given that
all processing elements have to execute the same instruction at the same time. On MIMD
platforms branching does not incur performance degradation.

GPUs provide a cost-effective manner to accelerate many applications and have be-
come increasingly easier to program thanks to general-purpose languages like CUDA
and OpenCL. Nevertheless, creating a program that fully exploits the performance po-
tential of a GPU remains a challenging task. Furthermore, modifications of the code that
might improve the performance on one GPU might have no impactor deteriorate the
performance on another GPU.

The next section gives the global goals of anti-parallel patterns.

1. Orthogonality and Goals of APPs

1.1. Orthogonality

The main hypothesis of our research is that the performance of a program running on a
parallel platform is a combination of the effects of the APPsit contains. Depending on
the orthogonality of the patterns this combination will be either a simple composition or
a more complicated function.

If our assumption (partly) holds, it makes sense to model theperformance loss
caused by an APP on a given parallel platform. We will do this by combining (i) the
platform specifications and (ii) the results of running benchmark programs.

We devise benchmark programs as programs that contain only one APP and that
are configurable to mimic any instance of this APP. The first use of such a benchmark
program is to model the behavior of an APP on a given parallel platform. The second use
is to compare different parallel platforms by observing howthey behave in the presence
of APPs. This is where the focus of this paper lies.

1.2. Goals

We hope to achieve the following goals with anti-parallel patterns:

1. Compare different parallel platforms: running the benchmark programs on differ-
ent parallel platforms allows us to compare the effect of an APP between them.

2. Model the performance behavior of one APP on a given parallel platform.
3. Obtain a qualitative and quantitative understanding of the performance loss of a

program running on a parallel platform by decomposing it into its APPs.
4. Improve the performance of parallel programs by applyingremedies or solutions

that overcome the parallel overhead caused by the presence of an APP.
5. Provide an umbrella concept to collect the results of related research. We intend

to create a catalog of APPs that serves as a central point of information for par-
allel programmers.

We introduced anti-parallel patterns in [3]. It contained abroad study of the con-
cept and showed its potential. The next section compares twoGPUs using benchmark
programs. It illustrates the first goal of APPs.

2. GPU Comparison

We used APPs to compare the behavior of two GPUs. We identifiedfour APPs and com-
pared their behavior on each platform using our benchmark programs. For the NVIDIA
GTX 280 GPU the benchmarks were written in CUDA; for the AMD Radeon 5850 GPU
they were written in OpenCL.

2.1. APPs

We identified and wrote benchmarks for the following anti-parallel patterns:

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ru
nt

im
e

[m
s]

branching factor

NVIDIA GTX280

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ru
nt

im
e

[m
s]

branching factor

AMD Radeon 5850

Figure 1. Branching Kernel Runtime (array of 8388608 elements).

APP1, branching refers to code that contains conditional statements, such that, when
run in parallel, it causes different processing elements tofollow different execution
paths.

APP2, lack of parallel data access refers to the lack of concurrent access by different
processing elements to shared memory.

APP3, synchronization points are points in the program at which threads should join
up to ensure that part of the work has been done.

APP4, partitioning and mapping refers to the way data is mapped to the processing
elements that execute the computation.

2.2. Benchmarks and Results

For the sake of brevity we will exclusively use CUDA terminology in what follows.
More specifically we will speak about threads, warps and thread blocks. These terms
corresponds to work items, wavefronts and work groups in OpenCL terminology.

2.2.1. APP1, Branching

We want to measure the impact of branch divergence by varyingthe number of branches
followed by a warp. Therefore we created a benchmark kernel that contains one big
switch statement that branches on the data element that is processed. Each branch exe-
cutes the same operation. The branching is parameterized. By “abusing” the input array
as a map of thread indices and branch numbers, we can mimic anypossible branching
configuration.

The results are shown in figure 1 for both the NVIDIA and AMD GPU. Our obser-
vations correspond with our expectations: the runtime increases in a linear fashion with
the average number of branches followed per warp.

Note that this benchmark may be used to determine the number of threads in a warp
as follows. Populate the input such that everyx consecutive elements have the same value
and determine the smallestx for which the runtime is minimal. We found the warp size
to be 32 for NVIDA and 64 for AMD.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

ru
nt

im
e

[m
s]

offset [number of 4-byte elements]

NVIDIA GTX280

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

ru
nt

im
e

[m
s]

offset [number of 4-byte elements]

AMD Radeon 5850

Figure 2. Offset Copy Kernel Runtime (array of 8388608 elements).

2.2.2. APP2, Lack of Parallel Data Access

We created two benchmark kernels. Kernel 1 copies an input array to an output array.
Kernel 2 copies an input matrix to an output matrix. Both kernels can be configured by
the memory access pattern for reading and writing the data. Because it is not possible to
measure or discuss all possible access patterns, we will look at a small number of them
that provide interesting results.

We use kernel 1 to test the effect of “offsetting”. We let a thread copy the element
with an index equal to the thread index plus some offset. For NVIDIA offsetting has
a negative effect given that different memory transactionsare necessary for accessing
different memory segments. Indeed the runtime for the NVIDIA GPU is minimal for
multiples of 16 4-byte elements or 64 bytes. The AMD GPU exhibits a constant runtime
for all offsets (figure 2).

We use a square matrix that we regard as constituted of 16 x 16 matrix tiles as input
to kernel 2. We run this kernel in a thread grid that consists of 16 x 16 thread blocks. We
will have a look at 3 interesting access patterns. Pattern 1 maps each thread block to the
corresponding matrix tile and each thread to the corresponding element. This constitutes
the best case. Pattern 2 maps each thread block to the corresponding matrix tile but the
thread rows of a thread block are mapped to the element columns of a matrix tile. This
introduces strided access with the stride equal to the matrix width. Pattern 3 maps thread
block rows to matrix tile columns in addition to mapping thread rows of a thread block
to element columns of a matrix column.

When we look at the runtime of our kernels as a function of the matrix width we
can make a number of interesting observations (figure 3). First, we expect the runtime to
be proportional with the square of the matrix width. This is the case for pattern 1 on the
NVIDIA GPU, but for the same pattern on the AMD GPU a peaked behavior is observed.
This peak is maximal for a matrix width of 4096 4-byte elements and corresponds to a
halving of the data throughput. Second, the slowdown due to access pattern 2 converges
to a fixed value (more or less 10) for the NVIDIA GPU while it oscillates between 1 and 5
for the AMD GPU. Finally, access pattern 3 introduces a peaked behavior on both GPUs.
The NVIDIA GPU performs worst under these conditions. Here the actual performance
degradation depends highly upon the actual matrix dimensions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

ru
nt

im
e

[m
s]

matrix width [4-byte elements]

NVIDIA GTX280

pattern 1
pattern 2
pattern 3

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

ru
nt

im
e

[m
s]

matrix width [4-byte elements]

AMD Radeon 5850

93 ms for matrix width 4096
pattern 1
pattern 2
pattern 3

Figure 3. Matrix Copy Kernel Runtime.

These results make explicit the different memory architecture of NVIDIA and AMD
GPUs. Furthermore, they can serve as an aid to the developer to translate the memory
performance guidelines of both AMD and NVIDIA to concrete facts and figures.

2.2.3. APP3, Synchronization Points

GPUs offer two possibilities to synchronize computations:threads of the same thread
block may be synchronized using a barrier; all threads are implicitly synchronized across
kernel calls. We will refer to the former as internal synchronization and to the latter as
external synchronization. We test internal synchronization using a kernel that executes a
fixed number of operations that are interspersed with synchronization calls. The number
of operations between two synchronization calls and thus the number of synchronization
calls is configurable. We test external synchronization using a kernel that executes a
configurable number of operations. We run this kernel the number of times necessary

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

[m
s]

number of synchronization points

NVIDIA GTX280

internal synchronization
external synchronization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

[m
s]

number of synchronization points

AMD Radeon 5850

internal synchronization
external synchronization

Figure 4. Synchronization Kernels Runtime (array of 8388608 elements).

to execute a fixed number of operations in total. In this case the number of operations
executed during one kernel call determine the number of synchronization points.

The results for both GPUs are similar: the runtime is proportional to the number
of synchronization points during execution. The runtime ofthe NVIDIA GPU seems to
decrease slightly less than the AMD GPU (figure 4).

2.2.4. APP4, Partitioning and Mapping

The size of the thread blocks and the mapping of threads to data elements can greatly
influence the performance of a kernel on both NVIDIA and AMD GPUs. However, it
would be very difficult to create a benchmark that measures the effect of both variables.
This is because the effect of this APP is highly dependent on the kernel and the data it
processes. This combination will determine the amount of latency that is created - mainly
due to data access - and the potential of latency hiding that is produced. To get an idea of
this phenomenon we have adapted a one-dimensional copy kernel such that each thread
copies more than one element. With this adapted kernel we were able to achieve the best
throughput at thread blocks consisting of no more than 64 threads. In this case we have
increased the data parallelism within one thread. In another case we might also increase
the instruction level parallelism within one thread. In general the exact configuration
determines both the resource usage and the potential for latency hiding.

The above discussion suggests that this anti-parallel pattern is not orthogonal to the
other patterns. We will discuss the first orthogonality results next.

2.2.5. Orthogonality Results

APP1 is clearly orthogonal for both GPUs. The overhead is independent from the oc-
currence of other patterns. APP3 and APP4 determine to whichdegree the latency of
memory access can be hidden. Furthermore, APP4 immediatelydetermines the memory
access patterns (APP2) and thus the amount of latency that should be hidden. As such
we ask ourselves the question whether APP4 should be considered as an APP or as a
parameter of the other APPs. It is however clear that latencyhiding should be modeled
explicitly, as has recently been done by [10].

3. Discussion of Related Work

Traditional approaches and tools for performance analysis, for example [4], [6] and [7],
help programmers by finding the main bottlenecks caused by a running program that
result in a less than ideal performance. Mapping these bottlenecks to parts of the pro-
gram that should be optimized is done by a tool or left to the programmer. We analyze
performance in the opposite direction by mapping parts of the program’s source code
corresponding to APPs to sources of overhead. We hypothesize that the relevant program
characteristics can be determined from the APPs it contains.

Our contribution to current work is the addition of an extra dimension, namely the
viewpoint of program patterns. These patterns play an important role in GPU programs
because the execution of the different threads is greatly intertwined. On the other hand,
the anti-parallel patterns of message-passing programs are rather trivial: the interaction
of the programs is explicitly encoded by send and receive calls. These calls generate
communication and idle overhead, where the latter might be due to message delays, load
imbalances etc. The patterns of message-passing programs having an impact on the per-
formance are therefore limited in complexity and well-understood. The same conclusion
holds for multi-threaded programs when each thread runs on individual cores.

We point out that APPs are not in itself a novel idea. A lot of work (for example
[8] and [9]) has already been done identifying disadvantageous patterns and proposing
solutions or remedies to alleviate their effect on the performance. However the results of
these efforts are scattered. As mentioned before, APPs can be used to collect this work
and offer programmers a central point of information.

Rodinia [2] provides a benchmark consisting of applications and kernels which
choice is inspired by Berkeley’s dwarf taxonomy. Our benchmark kernels focus on
individual patterns, while their kernels will typically contain combinations of several
patterns. GPUBench [1] provides a number of benchmarks to measure performance char-
acteristics of a GPU such as the floating-point memory bandwidth, data upload and
readback, instruction rate and numerical precision. In brief, they test peak performance
while we test conditions in which the peak performance cannot be attained. Similarly
to GPUBench, [10] use microbenchmarks to measure performance in specific situations.
Finally, [5] presents a similar idea. They include both patterns that work against available
parallelism and patterns of inefficient computation.

4. Conclusion

We presented the concept of anti-parallel patterns and discussed its potential in the do-
main of parallel performance analysis. We discussed benchmark programs to model the
behavior of an APP on a given platform and to compare different platforms qualitatively
and quantitatively. In particular we compared an NVIDIA andAMD GPU and revealed
both differences (memory access) and similarities (branching and synchronization). Fi-
nally we showed that our approach is complementary with the ones followed in tradi-
tional performance analysis, but the benchmarks should be extended to model latency
hiding.

Acknowledgements

This work was supported by the GUDI project, “A combined GPGPU/FPGA Desktop
System for accelerating Image Applications”.

References

[1] Ian Buck, Kayvon Fatahalian, and Pat Hanrahan. Gpubench: Evaluating gpu performance for numerical
and scientific applications. InProceedings of the 2004 ACM Workshop on General-Purpose Computing
on Graphics Processors, 2004.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.Lee, and K. Skadron. Rodinia: A bench-
mark suite for heterogeneous computing. InProcs of the IEEE International Symposium on Workload
Characterization (IISWC), pages 44–54, 2009.

[3] Jan Cornelis. Anti-parallel patterns in fine-grain data-parallel programs. Master’s thesis, Vrije Univer-
siteit Brussel, Belgium, 2010.

[4] Mark E. Crovella and Thomas J. LeBlanc. Parallel performance prediction using lost cycles analysis. In
Proceedings of Supercomputing ’94, pages 600–609, 1994.

[5] Dominic Eschweiler, Daniel Becker, and Felix Wolf. Patterns of inefficient performance behavior in
gpu applications. InProc. of the 19th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), Ayia Napa, Cyprus, pages 262–266. IEEE Computer Society,
February 2011.

[6] A. Espinosa, F. Parcerisa, Tomàs Margalef, and Emilio Luque. Relating the execution behaviour with
the structure of the application. InProceedings of the 6th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages 91–98, London,
UK, 1999. Springer-Verlag.

[7] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The paradyn parallel performance
measurement tool, November 1995.

[8] Shucai Xiao and Wu-chun Feng. Inter-Block GPU Communication via Fast Barrier Synchronization. In
Proceedings of the 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Atlanta, Georgia, USA, April 2010.

[9] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, and Xipeng Shen. Streamlining gpu applications on the fly:
thread divergence elimination through runtime thread-data remapping. InICS ’10: Proceedings of the
24th ACM International Conference on Supercomputing, pages 115–126, New York, NY, USA, 2010.
ACM.

[10] Yao Zhang and John D. Owens. A quantitative performanceanalysis model for GPU architectures. In
Proc. of the 17th IEEE Int. Symposium on High-Performance Computer Architecture (HPCA 17), pages
382–393, February 2011.

