Benchmarks Based on Anti-Parallel
Patterns for the Evaluation of GPUs

International Conference on Parallel Computing (Par Co)
2011, Ghent, Belgium

Jan G. CORNELIS, and Jan LEMEIRE

Vrije Universiteit Brussel (VUB), Dept. of Electronics and Informatics (ETRO),
Pleinlaan 2, B-1050 Brussels, Belgium.
Interdisciplinary Institute for Broadband Technology (IBBT), Dept. of Future Media
and Imaging (FMI), Gaston Crommenlaan 8 (box 102), B-9050 Ghent, Belgium.
email: {jgcornel, jan.lemeire} @vub.ac.be

Abstract. We put forward “anti-parallel patterns” to guide the parbfierformance
analysis process. Anti-parallel patterns or APPs are compaots of parallel pro-
grams that cause these programs to have less than ideatrpenice, where the
ideal speedup equals the number of processors. We preseitrbarks to model
the behavior of APPs on parallel platforms. Each benchmamkains only one APP
and is configurable to mimic all its instances. We show howcherarks can be
used to qualitatively and quantitatively understand andmare parallel hardware.
Experiments with NVIDIA and AMD GPUs reveal their differees

Keywords. performance analysis, performance modeling, patterns, gp

Introduction

This paper presents the use of benchmark programs basedtpéaallel patterns” to
evaluate the performance behavior of GPUs. Itis part of onggesearch around the use
of anti-parallel patterns to guide the performance analysicess.

Anti-parallel patterns or APPs are common parts of parallegrams that cause
these programs to have less than ideal performance, wherdgal speedup equals the
number of processors. For example, on SIMD platforms briagdl an APP, given that
all processing elements have to execute the same insinadtibe same time. On MIMD
platforms branching does not incur performance degradatio

GPUs provide a cost-effective manner to accelerate manicagipns and have be-
come increasingly easier to program thanks to generalgsarfpnguages like CUDA
and OpenCL. Nevertheless, creating a program that fulljoétspthe performance po-
tential of a GPU remains a challenging task. Furthermoralifications of the code that
might improve the performance on one GPU might have no impadieteriorate the
performance on another GPU.

The next section gives the global goals of anti-paralletigras.



1. Orthogonality and Goals of APPs
1.1. Orthogonality

The main hypothesis of our research is that the performahagoogram running on a
parallel platform is a combination of the effects of the ARR=ntains. Depending on
the orthogonality of the patterns this combination will lither a simple composition or
a more complicated function.

If our assumption (partly) holds, it makes sense to modelpldormance loss
caused by an APP on a given parallel platform. We will do thiscbmbining (i) the
platform specifications and (ii) the results of running demark programs.

We devise benchmark programs as programs that contain oehA®P and that
are configurable to mimic any instance of this APP. The first afssuch a benchmark
program is to model the behavior of an APP on a given pardig¢igrm. The second use
is to compare different parallel platforms by observing hbey behave in the presence
of APPs. This is where the focus of this paper lies.

1.2. Goals

We hope to achieve the following goals with anti-parallet@ans:

1. Compare different parallel platforms: running the benatk programs on differ-
ent parallel platforms allows us to compare the effect of &PAetween them.

. Model the performance behavior of one APP on a given guattform.

3. Obtain a qualitative and quantitative understandingnefgerformance loss of a
program running on a parallel platform by decomposing it itg APPs.

4. Improve the performance of parallel programs by applyémedies or solutions
that overcome the parallel overhead caused by the preséaoe?d®P.

5. Provide an umbrella concept to collect the results oteelaesearch. We intend
to create a catalog of APPs that serves as a central pointavfriation for par-
allel programmers.

N

We introduced anti-parallel patterns in [3]. It containetraad study of the con-
cept and showed its potential. The next section comparesafalds using benchmark
programs. It illustrates the first goal of APPs.

2. GPU Comparison

We used APPs to compare the behavior of two GPUs. We identifiedAPPs and com-
pared their behavior on each platform using our benchmargrams. For the NVIDIA
GTX 280 GPU the benchmarks were written in CUDA, for the AMDdean 5850 GPU
they were written in OpenCL.

2.1. APPs

We identified and wrote benchmarks for the following antighal patterns:



NVIDIA GTX280 AMD Radeon 5850

runtime [ms]

runtime ms]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
branching factor branching factor

Figure 1. Branching Kernel Runtime (array of 8388608 elements).

APP1, branching refers to code that contains conditional statements, suat) when
run in parallel, it causes different processing elemenfsltow different execution
paths.

APP2, lack of parallel data access refers to the lack of concurrent access by different
processing elements to shared memory.

APP3, synchronization points are points in the program at which threads should join
up to ensure that part of the work has been done.

APP4, partitioning and mapping refers to the way data is mapped to the processing
elements that execute the computation.

2.2. Benchmarks and Results

For the sake of brevity we will exclusively use CUDA termiagy in what follows.
More specifically we will speak about threads, warps andaithdglocks. These terms
corresponds to work items, wavefronts and work groups innQeterminology.

2.2.1. APP1, Branching

We want to measure the impact of branch divergence by vathimgumber of branches
followed by a warp. Therefore we created a benchmark ketredl dontains one big
switch statement that branches on the data element thabéegsed. Each branch exe-
cutes the same operation. The branching is parameterige@Bsing” the input array
as a map of thread indices and branch numbers, we can mimipaasjble branching
configuration.

The results are shown in figure 1 for both the NVIDIA and AMD GRr obser-
vations correspond with our expectations: the runtimediases in a linear fashion with
the average number of branches followed per warp.

Note that this benchmark may be used to determine the nunibeeads in a warp
as follows. Populate the input such that evegonsecutive elements have the same value
and determine the smallestfor which the runtime is minimal. We found the warp size
to be 32 for NVIDA and 64 for AMD.



NVIDIA GTX280 AMD Radeon 5850

b 4 L
08 / 4 08

06T 4 2 o6

0 10 20 30 40 50 60 70 0 10 20 20 40 50 60 7
offset [number of 4-byte elements] offset [number of 4-byte elements]

runtime [ms]

runtime ms]

Figure 2. Offset Copy Kernel Runtime (array of 8388608 elements).

2.2.2. APP2, Lack of Parallel Data Access

We created two benchmark kernels. Kernel 1 copies an inpay & an output array.
Kernel 2 copies an input matrix to an output matrix. Both lesrcan be configured by
the memory access pattern for reading and writing the datealse it is not possible to
measure or discuss all possible access patterns, we whlldba small number of them
that provide interesting results.

We use kernel 1 to test the effect of “offsetting”. We let aetiat copy the element
with an index equal to the thread index plus some offset. FSIDNA offsetting has
a negative effect given that different memory transactiaresnecessary for accessing
different memory segments. Indeed the runtime for the NYAEBPU is minimal for
multiples of 16 4-byte elements or 64 bytes. The AMD GPU eithi constant runtime
for all offsets (figure 2).

We use a square matrix that we regard as constituted of 16 »atiiatiles as input
to kernel 2. We run this kernel in a thread grid that consisti6ok 16 thread blocks. We
will have a look at 3 interesting access patterns. Patterafdsreach thread block to the
corresponding matrix tile and each thread to the correspgrelement. This constitutes
the best case. Pattern 2 maps each thread block to the camcksg matrix tile but the
thread rows of a thread block are mapped to the element calwina matrix tile. This
introduces strided access with the stride equal to the xatdth. Pattern 3 maps thread
block rows to matrix tile columns in addition to mapping thderows of a thread block
to element columns of a matrix column.

When we look at the runtime of our kernels as a function of tkarix width we
can make a number of interesting observations (figure 3t,kite expect the runtime to
be proportional with the square of the matrix width. Thishie tase for pattern 1 on the
NVIDIA GPU, but for the same pattern on the AMD GPU a peakedvédr is observed.
This peak is maximal for a matrix width of 4096 4-byte elensegmd corresponds to a
halving of the data throughput. Second, the slowdown duedess pattern 2 converges
to afixed value (more or less 10) for the NVIDIA GPU while it dlstes between 1 and 5
for the AMD GPU. Finally, access pattern 3 introduces a pedlehavior on both GPUs.
The NVIDIA GPU performs worst under these conditions. Heeedctual performance
degradation depends highly upon the actual matrix dimassio



NVIDIA GTX280

T T T T T T

200 T T
pattern 1 —+——
pattern 2 ---x--- *

180 - pattern 3 ---%--- : -

160 - i 1
140 -
120 -

100 |

runtime [ms]

80

60

40

20

¥ K X i
%txixixx%%*x*x*xwx%X%X%XTX%XX .
0 500 1000 1500 2000 2500 3000 3500 4000 4500

matrix width [4-byte elements]

Xtk

AMD Radeon 5850

20 T T T T T ™

T T
pattern 1 —+— |
gg::gm g "’;’" 93 ms for matrix width 4096 —————>!

¥

runtime [ms]
=
o
T

1 h L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500
matrix width [4-byte elements]

Figure 3. Matrix Copy Kernel Runtime.

These results make explicit the different memory architecof NVIDIA and AMD
GPUs. Furthermore, they can serve as an aid to the develpenisiate the memory
performance guidelines of both AMD and NVIDIA to concretetiaand figures.

2.2.3. APP3, Synchronization Points

GPUs offer two possibilities to synchronize computatiahseads of the same thread
block may be synchronized using a barrier; all threads apéidgitly synchronized across
kernel calls. We will refer to the former as internal synafiration and to the latter as
external synchronization. We test internal synchroniretising a kernel that executes a
fixed number of operations that are interspersed with symthation calls. The number
of operations between two synchronization calls and theisthmber of synchronization
calls is configurable. We test external synchronizatiomgigi kernel that executes a
configurable number of operations. We run this kernel the lbemof times necessary



NVIDIA GTX280 AMD Radeon 5850
T T

runtime [ms]
5
8
runtime [ms]

0 10 20 30 40 50 60 7 80 % 100 0 10 20 30 40 50 60 70 80 % 100
number of synchronization points number of synchronization points

Figure 4. Synchronization Kernels Runtime (array of 8388608 eles)ent

to execute a fixed number of operations in total. In this chsenumber of operations
executed during one kernel call determine the number offeypmézation points.

The results for both GPUs are similar: the runtime is prdpodl to the number
of synchronization points during execution. The runtimé¢haf NVIDIA GPU seems to
decrease slightly less than the AMD GPU (figure 4).

2.2.4. APP4, Partitioning and Mapping

The size of the thread blocks and the mapping of threads toalatments can greatly
influence the performance of a kernel on both NVIDIA and AMDW&P However, it
would be very difficult to create a benchmark that measuregfttect of both variables.
This is because the effect of this APP is highly dependenherkérnel and the data it
processes. This combination will determine the amountefiley that is created - mainly
due to data access - and the potential of latency hidingshabiduced. To get an idea of
this phenomenon we have adapted a one-dimensional copglleerch that each thread
copies more than one element. With this adapted kernel we alge to achieve the best
throughput at thread blocks consisting of no more than 6&atifs. In this case we have
increased the data parallelism within one thread. In amaihge we might also increase
the instruction level parallelism within one thread. In gl the exact configuration
determines both the resource usage and the potential éochahiding.

The above discussion suggests that this anti-paralledneit not orthogonal to the
other patterns. We will discuss the first orthogonality tessoext.

2.2.5. Orthogonality Results

APP1 is clearly orthogonal for both GPUs. The overhead igfetident from the oc-
currence of other patterns. APP3 and APP4 determine to wdeghee the latency of
memory access can be hidden. Furthermore, APP4 immeddetdymines the memory
access patterns (APP2) and thus the amount of latency thatdshe hidden. As such
we ask ourselves the question whether APP4 should be coedids an APP or as a
parameter of the other APPs. It is however clear that latéiding should be modeled
explicitly, as has recently been done by [10].



3. Discussion of Related Work

Traditional approaches and tools for performance analfi@igxample [4], [6] and [7],
help programmers by finding the main bottlenecks caused lwnhaimg program that
result in a less than ideal performance. Mapping thesednattks to parts of the pro-
gram that should be optimized is done by a tool or left to tregpmmer. We analyze
performance in the opposite direction by mapping parts efgfogram’s source code
corresponding to APPs to sources of overhead. We hypothtgirthe relevant program
characteristics can be determined from the APPs it contains

Our contribution to current work is the addition of an extrmension, namely the
viewpoint of program patterns. These patterns play an itaporole in GPU programs
because the execution of the different threads is greatytimined. On the other hand,
the anti-parallel patterns of message-passing prograenstrer trivial: the interaction
of the programs is explicitly encoded by send and receivis.cihese calls generate
communication and idle overhead, where the latter mightugetd message delays, load
imbalances etc. The patterns of message-passing progeasinglan impact on the per-
formance are therefore limited in complexity and well-urstieod. The same conclusion
holds for multi-threaded programs when each thread runsdinidual cores.

We point out that APPs are not in itself a novel idea. A lot ofrkv(for example
[8] and [9]) has already been done identifying disadvardagepatterns and proposing
solutions or remedies to alleviate their effect on the pentnce. However the results of
these efforts are scattered. As mentioned before, APPsecasdd to collect this work
and offer programmers a central point of information.

Rodinia [2] provides a benchmark consisting of applicati@md kernels which
choice is inspired by Berkeley's dwarf taxonomy. Our benahirkernels focus on
individual patterns, while their kernels will typically ntain combinations of several
patterns. GPUBench [1] provides a number of benchmarks &sore performance char-
acteristics of a GPU such as the floating-point memory baditwidata upload and
readback, instruction rate and numerical precision. lafbthey test peak performance
while we test conditions in which the peak performance cabeoattained. Similarly
to GPUBench, [10] use microbenchmarks to measure perfarenarspecific situations.
Finally, [5] presents a similar idea. They include both @ats that work against available
parallelism and patterns of inefficient computation.

4. Conclusion

We presented the concept of anti-parallel patterns andisied its potential in the do-
main of parallel performance analysis. We discussed beadhprograms to model the
behavior of an APP on a given platform and to compare diffigo&iforms qualitatively

and quantitatively. In particular we compared an NVIDIA akidD GPU and revealed

both differences (memory access) and similarities (braagcand synchronization). Fi-
nally we showed that our approach is complementary with thesdollowed in tradi-

tional performance analysis, but the benchmarks shoulktemeéed to model latency
hiding.



Acknowledgements

This work was supported by the GUDI project, “A combined GREHPGA Desktop
System for accelerating Image Applications”.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(9]

(20]

lan Buck, Kayvon Fatahalian, and Pat Hanrahan. Gpuhediediuating gpu performance for numerical
and scientific applications. IRroceedings of the 2004 ACM Wbrkshop on General-Purpose Computing

on Graphics Processors, 2004.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, Sl-ek, and K. Skadron. Rodinia: A bench-
mark suite for heterogeneous computing.Phocs of the IEEE International Symposium on Workload
Characterization (I1SWC), pages 44-54, 2009.

Jan Cornelis. Anti-parallel patterns in fine-grain dptaallel programs. Master’s thesis, Vrije Univer-
siteit Brussel, Belgium, 2010.

Mark E. Crovella and Thomas J. LeBlanc. Parallel perfanee prediction using lost cycles analysis. In
Proceedings of Supercomputing ' 94, pages 600-609, 1994.

Dominic Eschweiler, Daniel Becker, and Felix Wolf. Ratis of inefficient performance behavior in
gpu applications. IrProc. of the 19th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), Ayia Napa, Cyprus, pages 262—-266. IEEE Computer Society,
February 2011.

A. Espinosa, F. Parcerisa, Tomas Margalef, and Emiliquel Relating the execution behaviour with
the structure of the application. Froceedings of the 6th European PVM/MPI Users' Group Mesting

on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages 91-98, London,
UK, 1999. Springer-Verlag.

Barton P. Miller, Mark D. Callaghan, Jonathan M. CamgilDeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam, and Tia Nelvh@he paradyn parallel performance
measurement tool, November 1995.

Shucai Xiao and Wu-chun Feng. Inter-Block GPU Commutidcavia Fast Barrier Synchronization. In
Proceedings of the 24th |EEE International Parallel and Distributed Processing Symposium (IPDPS),
Atlanta, Georgia, USA, April 2010.

Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, and Xipeng Shetre&nlining gpu applications on the fly:
thread divergence elimination through runtime threa@damapping. InCS’10: Proceedings of the
24th ACM International Conference on Supercomputing, pages 115-126, New York, NY, USA, 2010.
ACM.

Yao Zhang and John D. Owens. A quantitative performaaradysis model for GPU architectures. In
Proc. of the 17th |EEE Int. Symposium on High-Performance Computer Architecture (HPCA 17), pages
382-393, February 2011.



