

UP2DATE – January 30th, 2009

Bayesian Networks

Jan Lemeire

Department of Electronics and Informatics

Vrije Universiteit Brussel

<u>jan.lemeire@vub.ac.be</u>

www.vub.ac.be

Commercially confidence – This presentation contains ideas and information which are proprietary of VERHAERT, Masters in Innovation®*, it is given in confidence. You are authorized to open and view the electronic copy of this document and to print a single copy. Otherwise, the material may not in whole or in part be copied, stored electronically or communicated to third parties without prior agreement of VERHAERT, Masters in Innovation®*.

* VERHAERT, Masters in Innovation is a registered trade name of Verhaert Consultancies N.V.

www.mastersininnovation.com

Confidential

www.mastersininnovation.com

30.01.2009 Slide 2

Belief Update during Medical Diagnosis

Information	P(cancer)	
Prior belief	0.001	
Short of breath (symptom)	0.002	
Smoker	0.008	
X-rays (clinical test)	0.04	
It is not bronchitis	0.5	

Unilever

ArcelorMittal

VERHAERT

PHILIPS

30.01.2009

Slide 4

Bayes' rule

Confidential

Types of questions

Probabilistic queries

"I've got a temperature of 101, I'm a 37-year-old Male and my tongue feels kind of funny but I have no headache. What's the chance that I've got bubonic plague?"

Take decisions about tests

- Utility of tests: which tests give me maximal information
- **Take decisions** about interventions
- Explain things in terms of **causal relations**
- How to represent this knowledge?

Confidential

www.mastersininnovation.com

Vriie

Universiteit

Bayesian Networks

- Intuitive graphical representation expressing the relations among the variables. Can be causal relations.
- Plus probabilities attached to each node.

30.01.2009

Slide 7

Confidential

Typical use of Bayesian networks

- to model and explain a domain.
- to update beliefs about states of certain variables when some other variables were observed,
 - e.g.: P(car breaks down | age of car = 16, changed oil = no).
 - ≈ prediction
- to find most probable configurations of variables
- to support decision making under uncertainty (a Bayesian Network is a probabilistic model)
- to find good strategies for solving tasks in a domain with uncertainty

Vriie

Universiteit Brussel

Typical use of Bayesian networks II

- Explain things in terms of causal relations
 - E.g.: smoking causes lung cancer?

- To answer qualitative questions
 - E.g.: if the national bank would lower interest rates, but the confidence remains low, would it help the economy?

Dynamic Bayesian Networks

- Models a dynamic system: the state at time t is affected by the state at time t-1
- Used in reliability analysis

Confidential

30.01.2009 Slide 10

Examples

- Norsys (<u>http://www.norsys.com/</u>)
 - http://www.norsys.com/netlibrary/index.htm
 - Coronary Risk: a Bayesian Network to predict risk of Coronary Heart Disease
 - Agricultural Yield
 - Car Diagnosis
 - Chest Clinic Decision: A graphical method for solving a decision analysis problem
 - Oil Wildcatter Extended: decision network
 - Win95pts: An expert system for printer troubleshooting in Windows 95.

30.01.2009

Slide 12

Confidential

Learning Bayesian networks

From data and expert knowledge

- Parameterization ('the probabilities')
 - Based on assumptions on the relations
 - e.g. linear with Gaussian errors
 - When the structure is known

Learning Bayesian networks II

- II. The structure of the graph
 - 1. Find minimal model that best explains the data

Trade-off between goodness-of-fit and model complexity

overfitting in regression

30.01.2009

Slide 14

- 2. Find model that explains the conditional independencies
 - A causal structure implies conditional independencies

Confidential

Confidential

30.01.2009 Slide 15

Statistical Learning

- Goal: learning from data, try to understand the underlying system that generated the data
- Supervised learning

Α	В	С	D	E
2	12	0,42	TRUE	blue
1	73	1,93	FALSE	green
4	8	0,03	TRUE	red
2	27	2,84	TRUE	??

learn to predict E from A, B, C & D

Classification of galaxies by Hubble telescope

Techniques for supervised learning

Regression

Support Vector Machines

Neural network

Statistical Learning II

Unsupervised learning

- there is no outcome measure
- the goal is to describe the associations and patterns of the data

Techniques for statistical learning compared

- Provide 'black box' models for the relation between the variables that we know and the ones we want to predict.
 - They are usually better in that task.
 - Bayesian networks model the relations among all variables.
 - Bayesian networks provide insight.
- Bayesian networks are not good in pattern recognition (e.g. recognizing characters from a printed text).

www.mastersininnovation.com

Knowledge representation

30.01.2009 Slide 20

Knowledge representation II

Knowledge representation techniques compared

- Bayesian networks can be regarded as the underlying (causal) structure, from which (fuzzy) rules can be extracted
- While the graph describes the relations among the variables, other techniques describe the *type* and *structure* of the relations better.

Confidential

30.01.2009 Slide 23

Conclusions

- A lot of data is available nowadays + a lot computing power
 - Data mining and statistical learning becomes interesting
 - Academic researchers are in need of real-world data and problems!
- A Bayesian network provides an intuitive graphical representation
 Knowledge representation
- Learning algorithms exist that can learn the models from data
 - Extract knowledge from data
 - Useful when the relations among the variables matter
 - Not when the (causal) relations are trivial

References

- My research: <u>http://parallel.vub.ac.be</u> => research => causal inference
- Norsys: <u>http://www.norsys.com/</u>
 - <u>http://www.norsys.com/netlibrary/index.htm</u> (examples)
 - tutorials
- Bayesia: <u>http://www.bayesia.com</u>
 - Examples: <u>http://www.bayesia.com/en/products/bayesialab/resources.php</u>
- Bayesian Network Repository
 - http://compbio.cs.huji.ac.il/Repository/
- Statistical Data Mining Tutorials:
 - http://www.autonlab.org/tutorials/

Verhaert New Products & Services nv

Hogenakkerhoekstraat 21 9150 Kruibeke Belgium Tel +32 (0)3 250 19 00 Fax +32 (0)3 254 10 08 www.verhaert.com info@verhaert.com

www.mastersininnovation.com

