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Bayesian networks

Belief Update during Medical Diaghosis

Information P(cancer)
Prior belief 0.001
Short of breath (symptom) 0.002

Smoker 0.008
X-rays (clinical test) 0.04

It is not bronchitis 0.5
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Bayesian networks

Bayes’ rule

P(cancer | smoker) = P(cancer). P(smoker |cancer)

P(smoker)

Posterior belief  Prior belief  New knowledge

Thomas Bayes
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Bayesian networks

Types of questions

= Probabilistic queries
= "l've got a temperature of 101, I'm a 37-year-old

Male and my tongue feels kind of funny but | have
no headache. What's the chance that I've got

bubonic plague?"

= Take decisions about tests
Utility of tests: which tests give me maximal

information
Take decisions about interventions

Explain things in terms of causal relations
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Bayesian networks 2

Bayesian Networks

Intuitive graphical representation expressing the relations among the
variables. Can be causal relations.

Plus probabillities attached to each node.

P(visited Asia)

P(pollution)

P(Smoker)

P(tuberculosis | visited Asia)
P(cancer |smoker, pollution)
P(Bronchitis|smoker)
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Bayesian networks 2

Typical use of Bayesian networks

= to model and explain a domain.

= to update beliefs about states of certain variables when some other
variables were observed,

= e.g.. P(car breaks down | age of car = 16, changed oil = no).
= = prediction
to find most probable configurations of variables

to support decision making under uncertainty (a Bayesian Network
IS a probabilistic model)

to find good strategies for solving tasks in a domain with uncertainty
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Bayesian networks

Typical use of Bayesian networks Il

Explain things in terms of causal relations
= E.g.: smoking causes lung cancer?

moking &
ancer Geneg

= To answer qualitative questions
E.g.: if the national bank would lower interest

rates, but the confidence remains low, would -
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Bayesian networks

2

Dynamic Bayesian Networks

Models a dynamic system: the state at time t is affected by the state
attime t-1

Used in reliability analysis
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Bayesian networks

Examples

= Norsys (

= Coronary Risk: a Bayesian Network to predict risk of Coronary Heart
Disease

Agricultural Yield
Car Diagnosis

Chest Clinic Decision: A graphical method for solving a decision
analysis problem

Oil Wildcatter Extended: decision network
Win95pts: An expert system for printer troubleshooting in Windows 95.
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Bayesian networks

Learning Bayesian networks

From data and expert knowledge

Parameterization (‘the probabilities’)
= Based on assumptions on the relations
= e.g. linear with Gaussian errors

= When the structure is known
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Bayesian networks

Learning Bayesian networks Il

The structure of the graph
1. Find minimal model that best explains the data

Trade-off between goodness-of-fit and model

complexity -
overfitting in regression

2. Find model that explains the conditional

independencies
= A causal structure implies conditional independencies

positive X-ray
results
\\V( Vrije
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Bayesian networks

Statistical Learning

= Supervised learning
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Goal: learning from data, try to understand the underlying system
that generated the data
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Bayesian networks

Techniques for supervised learning
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Bayesian networks

Statistical Learning Il

Unsupervised learning
there is no outcome measure

= the goal is to describe the associations and patterns of the data

Example: find types of

consumers
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Bayesian networks 2

Techniques for statistical learning compared

= Provide ‘black box’ models for the relation between the variables
that we know and the ones we want to predict.

= They are usually better in that task.
= Bayesian networks model the relations among all variables.
= Bayesian networks provide insight.

= Bayesian networks are not good in pattern recognition (e.g.
recognizing characters from a printed text).
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Knowledge representation

Expert Systems

Example: Evaluating car insurance risks.

N=1,173
No cancer: 882 (75.2%)

Decision trees Cancer: 291 (24.8%)

\PSAASLSS

Low risk group: n = 203
No cancer: 192 (95.1%)

PSAD > 0.165 Cancer: 10 (4.9%)

PSAD < 0.165 l

Rule-based systems n =626

High risk group I: n = 344
’ : TRUS: hypoechoic No cancer: 176 (51.2%)
TRUS: nonhypoechoic
> B P / \ Cancer: 168 (48.8%)

Age > 55 Cancer: 64 (26.4%)

n =384 High risk group II: n = 242
— No cancer: 178 (73.6%
B & C - > D 55/ ( °)
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Bayesian networks

Knowledge representation Il

Input Variables

small mel:lmm large

Dain Model Size

Number of Scveens

74
small | medium  large

T:
(30)
Process Model Sixe

Fuzzy Logic

Fuzzy Rule Base Output Variables

154

If data model small
then development fime short short medium

If data model medium
and number of sereens small
then development fime medium

Development Time

Fuzzy Rules
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Bayesian networks 2

Knowledge representation techniques compared

Bayesian networks can be regarded as the underlying (causal)
structure, from which (fuzzy) rules can be extracted

While the graph describes the relations among the variables, other
techniques describe the type and structure of the relations better .
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Bayesian networks 2

Conclusions

= A lot of data is available nowadays + a lot computing power
= Data mining and statistical learning becomes interesting
= Academic researchers are in need of real-world data and problems!
= A Bayesian network provides an intuitive graphical representation
= Knowledge representation
= Learning algorithms exist that can learn the models from data
= Extract knowledge from data

= Useful when the relations among the variables matter
= Not when the (causal) relations are trivial v Vrije
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