
Acknowledgements

This research has been made possible thanks to a Tetra grant 100132 "A

combined GP-GPU/FPGA desktop system for accelerating image processing

applications (GUDI)” of the Flanders agency for Innovation by Science and

Technology.

 Pedestrian Recognition Application (fastHOG)

Comparison of GPU/FPGA

Conclusions

 Combined High-Performance Computing

platform

 C/C++ based tool chain available for both

platforms; FPGAs and GPUs

 The I/O bandwidth has a significantly impact

over the final performance.

 High-level synthesis cuts down development

time, making FPGAs an alternative for

market solutions.

 Performance and Programming

Environment of a Combined

GPU/FPGA Desktop

References

1. Cornelis J., Lemeire J. Benchmarks Based on Anti-Parallel Pattern for the

Evaluation of GPUs, International Conference on Parallel Computing, Ghent,

2011

2.Erik H. D’Hollander, High-Performance Computing for Low-Power Systems,

Advanced HPC Systems workshop, Cetraro, 2011

 The performance of today's PCs exceeds many

times the power of the supercomputers in the 90s,

but it is not enough for many computationally hungry

applications..

 To leverage the power of different technologies, a

hybrid solution is presented, combining the power

of:

 Graphics Processing Units (GPUs):

• Massive SIMD parallelism

• Well-known software tool chain

 Programmable Gate Arrays (FPGAs).

• Massive fine-grain parallelism and pipelining

• Algorithm in hardware

• Optimizing C-to-VHDL compilers

Objectives
 Build GPU/FPGA desktop

 Develop a combined tool chain

 Accelerate industrial applications

Introduction

Presented at the 21st ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, February 13, 2013

Research platform:

CPU: Quad-core Intel Xeon E5506

GPU: NVIDIA Tesla C2050

FPGA: Pico Computing w/ 2 Virtex-6 LX240

Communication link:

PCIe 2.0 x16 lanes (GPU and Pico board)

Figure 3. The application is adapted to be partially executed on the FPGA. The Histogram

computation and the normalization are ideal candidates for FPGAs.

Hybrid architecture

Contact Details: Bruno Da Silva, brunotiago.da.silva.gomes@ehb.be

Combination of GPU/FPGA

 The roofline model expresses the maximum

performance in function of the algorithm's

computational intensity (CI), taking into account the

peak computational power (CP) and the peak I/O

bandwidth of the accelerator (BW).

 Superimposing the rooflines of GPU and FPGA shows

the relative performance of both accelerators.

Performance estimation

 Handwritten vs C-to-VHDL compiler

The C-to-VHDL compilers are highly productive and

outperform handwritten code for algorithms such as

erosion, but commonly use more resources.

 Comparison of GPUs and FPGAs for image

erosion.

The measurements depicted on the superimposed

roofline models of GPU (dashed lines) and FPGA

(continuous lines) show that both GPU and FPGA

excel for image processing algorithms. However, the

PCIe bandwidth (x16 continuous lines and x8

dashed lines) limits the overall performance of both

devices.

Programming steps:

1. Identify the parts of the application to be accelerated

by the GPU and/or the FPGA.

2. Create a C/C++ program to be executed by the CPU

with GPU and FPGA function calls.

• GPU code → GPU compiler

• FPGA code → High-Level Synthesis (HLS)

 (ROCCC, Vivado HLS, ...)

3. Compile the programs, synthesize the FPGA design

and generate an executable linking the CPU, GPU

and FPGA binaries.

4. Load GPU, CPU code binaries and FPGA

configuration binary.

5. Execute the program

Tool chain

Figure 2. An algorithm is converted into a C/C ++ program with mixed code fragments for the three

platforms, CPU, GPU and FPGA. The executable communicates with the GPUs and FPGAs using

API libraries.

The HOG computation on the FPGA is faster than on the

GPU. However, the speedup combining GPU/FPGA is

bounded by the PCIe bandwidth due to the data transfer.

The pedestrian recognition

application fastHOG, originally

designed for GPUs, is

composed of the Histogram

Oriented Gradients (HOG) and

Support Vector Machines

(SVM) components which are

executed several times on the

downscaled images.

Figure 1. Detailed architecture combining GPU and FPGA accelerators to create a high

performance computing super desktop platform..

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Computation Computation + Data Transfer

S
p

e
e
d

u
p

1xFPGA

2xFPGA

 Bruno Da Silva1, An Braeken1, Erik H. D’Hollander2,

Abdellah Touhafi1, Jan G. Cornelis3 and Jan Lemeire3
1Erasmus University College, Department IWT, Brussels,

2Ghent University, Department ELIS, Ghent,
3Vrije Universiteit Brussel, Department ETRO, Brussels

R² = 0,96

4

6

8

10

12

14

16

18

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Fl
o

p
s

(l
o

g1
0

)

Moore's law

Memory speed increase (relative)

Computational Power

Linear (Computational Power)

