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Abstract—This paper presents the pipeline performance model,
a generic GPU performance model, which helps understand the
performance of GPU code by using a code representation that is
very close to the source code. The code is represented by a graph
in which the nodes correspond to the source code instructions
and the edges to data dependences between them. Furthermore,
each node is enhanced with two latencies that characterize the
instruction’s time behavior on the GPU. This graph, together
with a simple characterization of the GPU and the execution
configuration, is used by a simulator to mimic the execution of
the code. We validate the model on the micro-benchmarks used
to determine the latencies and on a matrix multiplication kernel,
both on an NVIDIA Fermi and an NVIDIA Pascal GPU. Initial
results show that the simulated times follow the measured times,
with acceptable errors, for a wide occupancy range. We argue
that to achieve better accuracies it is necessary to further refine
the model to take into account the complexity of memory access
and warp scheduling, especially for more recent GPUs.

Index Terms—GPU, pipeline, performance, model, latencies.

I. INTRODUCTION

In the last decade the use of GPUs to speed up parts of pro-
grams that must process massive amounts of data, has become
increasingly popular thanks to development frameworks like
CUDA [1] and OpenCL [2]. Often, however, programmers do
not understand the performance of the code they have written,
failing to know where the bottlenecks are and whether their
code can be made faster still.

A lot of work has been carried out around GPU performance
modeling and analysis. Graphical models like the roofline
model [3] and its derivatives [4], [5], [6], take into account
inefficiencies but do not model non-ideal latency hiding: they
implicitly assume that the computation and memory subsys-
tems operate independently of each other. Analytical and quan-
titative methods [7], [8], [9], [10] take the interaction between
both subsystems into account but they mix the interaction
with inefficient execution making it difficult to interpret the
obtained results. Furthermore, many of these methods are hard
to reproduce due to the large number of parameters needed
for the model as well as the need for specialized tools. Many
models use simulators, for example [11] uses a simulator to
verify the accuracy of their model, while [12] proposes an
abstract timing model to accelerate simulation of code run on
GPUs. Although their approach seems similar to ours, they

operate on a lower level focusing on NVIDIA GPUs, through
the use of PTX code and GPGPUSim [13].

The great number of existing models is a symptom of the
complexity of GPU performance. Moreover, current models
are often closely related to a specific GPU vendor or ar-
chitecture and make it difficult to map performance loss to
source code. The pipeline performance model, introduced in
this paper, aims to be generic enough to be applicable to GPUs
of different vendors and different generations. Furthermore,
the pipeline performance model remains very close to the
source code in order to make it easy to find bottlenecks in
the implementation caused by patterns of inefficiency like
those described in [14] and to quickly evaluate the effect of
optimizations without applying them. The model is based on
the fact that performance of code run on a GPU is for the
greatest part determined by the latencies of the instructions
that need to be executed and the amount of parallelism that is
available to hide these latencies. The importance of latencies
for performance has been stressed before in works like [15]
and [16].

To attain its goals, the pipeline performance model rep-
resents the code by an instruction dependence graph that
describes the dependences between instructions, while the
hardware is taken into account by assigning an issue latency
and a completion latency to every instruction of the graph.
These latencies describe the time behavior of the instruction
on the GPU. The graph, together with a simple characterization
of the GPU and the execution configuration, is used by a
simulator to mimic the time behavior of the execution of
the code. Because the pipeline performance model separately
models the source code and the GPU it is possible to quickly
perform new simulations: the instruction latencies are most
of the time independent of the code, while the instruction
dependence graph is independent of the GPU on which the
code is executed.

The remainder of this paper is organized as follows:
in Section II the necessary background to understand the
performance model is given. Section III presents the model. A
number of experiments to validate the model and their results
are presented in Section IV. Finally, Section V concludes the
paper and looks forward to future work.



II. BACKGROUND

We briefly explain the architecture of a typical GPU and
look at how it relates to code execution. Most of the terms
used here and in the description of the model are borrowed
from the OpenCL definition of a generic accelerator device.
For more details we refer to [17], [18] and [19].

A GPU consists of a number of compute units made up
of dedicated processing elements, a great amount of registers
and an L1 cache. The memory access subsystem connects the
GPU to an external RAM memory, often using an L2 cache.
Threads are executed in SIMT fashion: the same instruction
unit is shared by a fixed number of threads. On NVIDIA GPUs
groups of 32 threads execute in lockstep and are called warps;
on AMD GPUs groups of 64 threads execute in lockstep
and are called wave fronts. We use the term warp for both.
For optimal performance SIMT execution must be taken into
account given that it influences memory access and can cause
serialization of code due to branching.

The code that must be executed by one thread is specified
in a kernel function, both in CUDA and OpenCL. A kernel
is executed by a number of threads organized in work groups
as determined in the host program. Threads of the same work
group can collaborate by performing barrier synchronization
and using part of the L1 cache as scratch pad memory. Work
groups are assigned to compute units where they remain until
their execution completes. Because the number of work groups
that can execute at the same time on a compute unit is limited,
most work groups must wait for others to complete before
they can start executing. The size and number of work groups
that need to be processed, together with the number of work
groups that can be processed concurrently is referred to as the
execution configuration of the kernel.

The number of work groups that can execute concurrently
depends on their resource needs. The occupancy of a kernel is
defined as the number of threads that can be executed at the
same time relative to the maximum number. The conventional
advice is to increase occupancy to obtain better performance,
but there are many additional factors like the amount of ILP
and MLP in the kernel and the latencies of the instructions.

III. THE MODEL

A. Philosophy

Most modern processors and memory subsystems operate in
a pipelined fashion. A simple pipeline is determined by two
latencies: the issue latency and the completion latency. The
former is the minimal time between the issue of an instruction
and the issue of another independent instruction. The latter is
the time between an instruction issue and the moment its result
becomes available. We will refer to these latencies as λ and
Λ respectively. For a simple pipeline λ is one cycle and Λ in
cycles is equal to the number of pipeline stages.

The time needed to process a number of instructions de-
pends on the presence of sufficient independent instructions.

For example, the time a pipeline needs to process W threads
of N dependent instructions is given by:

t =

{
NΛ + (W − 1)λ if W ≤ Λ

λ

Λ + (NW − 1)λ if W ≥ Λ
λ

(1)

In the presence of insufficient threads and for sufficiently
large values of N and Λ

λ the run time is dominated by
the completion latency. Given sufficient threads, the pipeline
operates at its peak performance delivering one instruction
every λ cycles.

The above concepts are extended to model a compute unit
as a pipeline that processes warp instructions. A warp is
represented by an instruction dependence graph in which the
nodes represent its instructions and the edges the dependences
between them. To simulate the timing behavior of the code
on a GPU, the nodes are labeled with their instruction and
completion latency on that GPU. The following subsections
discuss the components of the model in more detail.

B. Latencies

The latencies of the model are not necessarily equal to
those of the hardware for a number of reasons. First, because
threads execute in SIMT fashion, we use the warp instruction
as the basic scheduling unit. Therefore, the instruction rate
derived from λ must be multiplied by the warp size to obtain
the maximal instruction rate. On NVIDIA GPUs, λ = 1
corresponds to 32 instructions per cycle per compute unit, on
AMD GPUs to 64. Secondly, to keep our model generic, we
consider instructions found in the OpenCL or CUDA kernels.
Often, such instructions are translated to many hardware
instructions. Finally, the same instructions may have different
latencies in different kernels. A typical example is a memory
instruction for which the latencies depend on the memory
access pattern, caching and contention between warps.

Latencies are determined using micro-benchmarks as ex-
plained in [20]. A kernel that consists of a great number
of dependent instructions of the type under investigation is
executed for a variety of occupancies. We expect the run
time to have a boat-hull shape following Equation 1. The
completion and issue latency are derived from the maximal
and minimal run time respectively.

C. Instruction Dependence Graph

The Instruction Dependence Graph (IDG) represents data
dependences between the instructions in the kernel. It is
derived from a program dependence graph [21] by resolving
all control dependences. Loops are resolved by replicating
the nodes that make up one loop iteration N times, where
N is the loop trip count. When doing so it is necessary to
take into account loop unrolling, which may result in the
removal of loop control instructions and an increase of ILP or
MLP. Conditional statements are resolved by serializing their
branches. Branches not taken by any thread of the warp are
removed. Note that this may lead to the existence of different
graphs for different warps. This possibility, however, is not yet
explored in this work.



Fig. 1. A simple OpenCL kernel and its instruction dependence graph

__kernel void saxpy(
float a,
__global float * X,
__global float * Y)

{
int i = get_global_id(0);
float x = X[i];
float y = Y[i];
float z = a * x + y;
Y[i] = z;

}

get_global_id(0)

x = X[i] y = Y[i]

z = a*x + y

Y[i] = z

Figure 1 shows a simple kernel and its IDG. Given the
appropriate latencies the IDG can be used to determine the
minimum number of cycles to execute this kernel for one warp:

cycles = Λindex + Λmem + λmem + Λfmadd + λmem

Note that in this equation all memory latencies are taken to
be equal and that the warp is considered complete as soon as
the final memory request has been issued. This principle is
used to model the run time of a kernel on a GPU. However,
because it is unfeasible to capture in analytical formulas the
execution of many warps organized in groups with a certain
occupancy, we use a simulator to mimic the timing behavior
of the execution.

D. Timing Behavior Simulation

A simulator mimics the timing behavior of the kernel. This
simulator takes as inputs the number of compute units P , the
processor clock frequency f , the size and number of work
groups that need to be processed Ntotal, the number of work
groups that can be executed concurrently on a single compute
unit M and an instruction dependence graph of the kernel with
the latencies for the GPU under investigation. It is assumed
that all work groups take more or less the same time to execute,
allowing us to approximate the maximum number of work
groups that need to be executed on a single compute unit:
N = dNtotal

P e.
The simulator will start with a set of M active work groups

and schedule all instructions following the above scheme.
While doing so, it keeps track of the number of cycles
necessary. Of course, it takes into account the dependences
between instructions, their issue latencies and also the maxi-
mum number of instructions that can be issued in one cycle.
When a group completes, it is replaced by a new group if
there are still groups waiting. This process is repeated until
all groups have completed. The number of cycles is divided
by f to attain the time in seconds.

IV. VALIDATION

A. Setup

Algorithm 1 shows the pseudo-code of the simulator used
to evaluate the model. This simulator treats a compute unit
as consisting of different pipelines corresponding to the ALU,
SFU, local memory and global memory subsystems and pro-
cesses issue and completion events for each of them. It must

TABLE I
GPUS USED FOR THE VALIDATION

Architecture Fermi Pascal
Vendor NVIDIA NVIDIA

Name Tesla C2050 GeForce GTX 1060 6GB
# compute units 14 10

# compute elements 448 1280
Base clock (MHz) 1150 1506

be noted that this implementation does not take into account
the maximum number of instructions that can be issued in
one cycle. This is not a problem for the kernels analyzed in
this paper, but it may cause an overly optimistic simulation
for certain instruction mixes. Currently, we are developing a
simulator that takes this limitation into account.

Algorithm 1 Timing Behavior Simulator
waiting group count← N −M
active group set← ∅
for i = 0 to M do

add a new group to active group set
end for
for all Pipeline do

schedule an issue event at t = 0
end for
while active group set is not empty do
event← pop(event queue)
if is issue(event) then

I = look for instruction of the appropriate type
if instruction is found then

schedule a completion event at t = t(event) + Λ(I)
schedule an issue event at t = t(event) + λ(I)

else
schedule an issue event at t = t(event) + 1

end if
else if is completion(event) then

(group,warp, instruction)← unpack(event)
complete(group, warp, instruction)
if is complete(group) then

remove group from active groups
if waiting group count > 0 then
waiting group count− = 1
add a new group to active group set

end if
end if

end if
end while

The simulator was tested for a number of kernels on two
NVIDIA GPUs of two different generations: a Tesla C2050
and a GeForce GTX 1060 6GB. Their characteristics are
shown in Table I. In the remainder of this text we will refer
to them by the names of their architecture: Fermi and Pascal.

To exhaustively test our model, which takes into account
occupancy and group size, every kernel is run for a wide
range of occupancies using different group size and count



TABLE II
MICRO-BENCHMARKS SIMULATIONS: LATENCIES, AVERAGE ERROR AND

STANDARD DEVIATION

Benchmark device λ Λ µerr σerr
fadd Fermi 1 18 2.79 0.56

Pascal 0.25 6 0.55 4.14
cos Fermi 8 40 0.45 0.52

Pascal 1 14 0.19 3.80
loop Fermi 4 58 0.91 3.80

Pascal 1.75 29 -1.91 2.25
memory Fermi 23 521 3.74 4.18

Pascal 12 378 11.59 7.19

combinations. Nevertheless, to limit somewhat the simulation
space, group sizes were limited to powers of two greater
than or equal to 32. For the Fermi GPU we explored 34
combinations for 18 different warp counts. For the Pascal GPU
we explored 78 combinations for 43 warp counts.

B. Micro-benchmark Kernels

We start by simulating the benchmark kernels that are used
to derive the latencies. Table II shows the latencies used
for simulation and the average percentual error and standard
deviation for a few characteristic benchmarks: floating point
addition fadd, hardware accelerated cosine cos, loop overhead
loop and memory access memory. As can be seen the
simulation is quite accurate for instructions that correspond
to hardware instructions. Loop overhead is measured using a
composed benchmark that executes a compute intensive loop,
but in which the compiler is directed to refrain from loop
unrolling using #pragma unroll 1. Finally, the memory
benchmark tries to measure reading global memory with a
perfectly aligned access pattern and without caching.

For the Pascal GPU the accuracy is not as good as for the
Fermi GPU for a number of reasons. First, the Pascal GPU has
a boost clock, which causes uncertainty about the frequency
at which a kernel was run. Furthermore, fixing the frequency
involves a very labour intensive setup as explained in [16].
Second, the effect of multiple warp schedulers, which is more
important on the Pascal GPU, is not yet taken into account by
our current simulator.

For both GPUs the simulation of the memory benchmark
is less accurate. To understand why this is the case, it is
useful to compare the real performance with the simulated
performance. Figure 2 shows that memory access does not
behave like a perfect pipeline: the maximum performance
is reached at a higher occupancy than expected. According
to [16] this is due to memory contention. Regardless of the
cause, this phenomenon can be taken into account by making
the latencies depend on the warp count.

Clearly, the differences between the measured and simulated
run times reveal differences between our model and the real
world behavior of a GPU. Therefore, their study can be used
to get a more detailed understanding of what is happening on
a particular GPU.

Listing 1. CUDA SDK matrix multiplication in OpenCL

#define BLOCK_SIZE 8

__kernel void
mmul_08(__global float* C,

__global float* A,
__global float* B,
int WA,
int WB,
__local float* extra)

{
__local float SA[BLOCK_SIZE][BLOCK_SIZE];
__local float SB[BLOCK_SIZE][BLOCK_SIZE];

int y = get_global_id(1);
int x = get_global_id(0);
int ly = get_local_id(1);
int lx = get_local_id(0);
int gy = get_group_id(1);
int gx = get_group_id(0);

int aIdx = y * WA + lx;
int aDelta = BLOCK_SIZE;
int aEnd = (y + 1) * WA;
int bIdx = ly * WB + x;
int bDelta = BLOCK_SIZE * WB;

float sum = 0;
for (; aIdx < aEnd; aIdx += aDelta, bIdx += bDelta) {

SA[ly][lx] = A[aIdx];
SB[ly][lx] = B[bIdx];
barrier(CLK_LOCAL_MEM_FENCE);
for (int k = 0; k < BLOCK_SIZE; ++k)
sum += SA[ly][k] * SB[k][lx];

barrier(CLK_LOCAL_MEM_FENCE);
}

C[y * WB + x] = sum;
}

C. Memory Matrix Multiplication

We now look at an OpenCL implementation of matrix
multiplication from the CUDA SDK, which uses local memory
(shared memory in CUDA terminology). Listing 1 shows the
source code for 8x8 work groups. We use our model to
simulate this kernel and a similar one for 16x16 work groups.
The NVIDIA PTX code showed that for both kernels the
inner loop was completely unrolled, while the outer loop was
completely unrolled for the 8x8 case but only partially for
the 16x16 case. To simplify the construction of the IDG we
removed unrolling of the outer loop for both kernels using
#pragma unroll 1 with little effect on the run time. The
unrolling of the inner loop introduces local memory level
parallelism. The multiply-add instructions depend on two local
memory reads and the previous multiply-add instruction for all
but the first one. Note that only the loop and the writing of
the result to global memory was included in the IDG.

Because the latencies of memory requests depend on their
memory access pattern, caching and the occupancy of the
kernel we wrote small benchmarks that mimic the data access
of matrices A and B. In this case we derived a single issue
and completion latency for the whole occupancy range and for
each kind of access. Table III shows the latencies we used for
simulation.

Both kernels were run on both GPUs to multiply two
1024x1024 matrices. Figure 3 compares the actual and simu-
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Fig. 2. Real and estimated performance of the streaming read benchmark
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Fig. 3. Real and estimated performance of the matrix multiplication kernels

TABLE III
LATENCIES USED FOR THE MATRIX MULTIPLICATION SIMULATION

Fermi Pascal
Operation λ Λ λ Λ
loop 4 58 1.75 29
local memory 2 47 1 30
matrix A 8x8 20 162 7 210
matrix B 8x8 45 479 8 409
matrix A 16x16 13 244 6 247
matrix B 16x16 17 561 10 444
barrier 3 40 2 70
fmadd 1 18 0.25 6

lated performance for each run. In this figure mmul08 and
mmul16 refer to the matrix multiplication using 8x8 and
16x16 work groups respectively. We can see that for most
runs our simulation predicts a performance that is quite close
to the one that is actually achieved. For mmul16 on the Fermi
our simulation overestimates the achieved performance. We
believe the reason for this can be found in the latencies used
for the global memory access.

Finally, to illustrate the capability of our model to quickly

evaluate the impact of optimizations, we changed the local
memory indices in the inner loop in order to introduce local
memory bank conflicts. These occur when threads of the
same warp read different elements in the same bank of local
memory. This causes a decrease of local memory performance
due to the need to serialize the access. In our model, this effect
is taken into account by the association of the local memory
access with higher latencies. For the Fermi GPU the latencies
of the conflicting access were measured to be 16 and 250
cycles, while for the Pascal GPU they were measured to be 7
and 100 cycles. We replaced the original latencies by the new
ones and reran the simulation. As can be seen in Figure 3
our simulation correctly takes into account the effect of the
increased latency. As a matter of fact due to the fact that local
memory has now become the bottleneck of the implementation
the simulation is even more accurate.

V. CONCLUSION AND FURTHER WORK

This paper introduced the pipeline performance model,
a generic GPU performance model. It uses an instruction
dependence graph of the code, which represents the depen-



dences between the instructions and in which each instruction
is characterized by its issue and completion latency. This
representation together with the work configuration used to
run the code and its occupancy is used to simulate the timing
behavior of the code on the GPU under investigation.

The instruction latencies are determined with micro-
benchmarks and can be reused for different kernels running on
the same GPU. Similarly, the instruction dependence graph is
derived from the OpenCL or CUDA source code and can be
reused to simulate the same kernel on different GPUs using
the appropriate latencies.

The model was tested on the micro-benchmarks used to
determine the latencies and on a matrix multiplication kernel
that uses local memory. All kernels were run for a wide occu-
pancy range using various group sizes. Despite the differences
between the real and simulated performance, we believe our
model captures the main performance contributors. It was also
showed that the greatest difficulty lies in using accurate la-
tencies for memory instructions, which can be expected given
the complexity of memory access. Finally, we showed that the
model can be used to quickly asses whether a given instruction
is the bottleneck by changing its latencies and rerunning the
simulation. To validate this claim we increased the latencies
of local memory access in the matrix multiplication kernel
by introducing bank conflicts and showed that the simulation
correctly predicts the deteriorated run time.

A lot of improvements to the model are foreseen. First, we
want to automate the construction of the instruction depen-
dence graph, which is currently a labour intensive process,
using compiler technology. Secondly, we will further refine
how we model memory instructions. For example, the effect
of contention can be taken into account by letting the latencies
be a function of the occupancy. Thirdly, we will update the
simulator to take into account the instruction issue limit and
test how our model performs on the instruction mix from [16],
which is introduced as a performance model benchmark and
for which many performance models fail to give good results.
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