
Heterogeneous Acceleration of
Volumetric JPEG 2000

Jan G. Cornelis1,2, Jan Lemeire1,2, Tim Bruylants1,2, Peter Schelkens1,2
1Vrije Universiteit Brussel (VUB), Electronics and Informatics (ETRO) Dept.,

Pleinlaan 3, B-1050 Brussels, Belgium
jgcornel@vub.ac.be

2iMinds, Multimedia Technologies Dept.
Gaston Crommenlaan 8 (box 102), B-9050 Ghent, Belgium

Abstract—We present the implementation of a volumetric
JPEG 2000 codec as a real-world use case of software acceleration
with GPUs and multi-core CPUs. We present a generic method-
ology to accelerate existing code written in C with OpenCL.
Furthermore, we account for the volumetric nature of the
processed data and formulate associated optimization guidelines.
The resulting software can exploit different accelerator types -
GPUs and multi-core CPUs - and delivers a decent speedup on
a variety of hardware platforms for a relatively small effort.

Index Terms—hybrid, acceleration, opencl, volumetric
JPEG 2000

I. INTRODUCTION

In the last decade parallel systems and parallel programming
have become increasingly important. The data sets that need
to be processed have grown dramatically and the algorithms
used are becoming more and more complex. Nevertheless, due
to the end of frequency scaling it is no longer possible for
traditional sequential programs to obtain a free performance
gain with every new processor generation. Processors have
now become multi-core. To exploit their computing power
it is necessary to write parallel code. Furthermore, it is also
possible to use the graphical card of a computer for general
purpose computing. These many-core GPUs need even more
parallelism to be exploited efficiently.

JPEG 2000 Part 10 or JP3D is an extension to the JPEG
2000 image compression standard to compress volumetric
images. The size of such images and the complexity of
JPEG 2000 compression and decompression make it a perfect
example of a program in need of lots of computational power.

OpenCL is a standard developed in 2008 for parallel pro-
gramming a variety of hardware accelerators. Contrary to
NVIDIA’s CUDA it is an open standard that is not limited to
NVIDIA GPUs but that can be used to write code that runs on
any hardware accelerator that provides the necessary support.
For example, it is possible to run OpenCL code on GPUs,
multi-core CPUs, FPGAs and other accelerators like Intel’s
MIC. These properties make it ideal to develop software that
can exploit all available computing resources of the platform
on which it is run.

This paper discusses the acceleration of an existing JP3D
codec with OpenCL as a real-world case. Although this
specific topic is interesting in itself, the main purpose of the

paper is to illustrate how an existing sequential software can be
accelerated relatively easily. We will explain the basic steps
that need to be taken to modify the existing code, discuss
the development of the OpenCL code and emphasize the
main factors that need to be taken into account to obtain a
satisfactory performance. Our implementation serves as a prac-
tical example. We will discuss the performance obtained on a
variety of hardware. The main idea is to show the speedups
that are possible with a relatively small effort. Nevertheless,
the results are interesting in themselves because, as far as we
know, they concern the only parallel implementation of a JP3D
codec.

Most of this paper focuses on compression. Nevertheless,
we also accelerated decompression using the same method-
ology and we will show results for both compression and
decompression.

The remainder of this paper is organized as follows: in
Section II we discuss JPEG 2000 Part 10 and OpenCL.
Related work is presented in Section III. Section IV presents a
methodology to accelerate an existing software with OpenCL.
In Section V we discuss our implementation and the applied
optimization techniques. In Section VI we present the acceler-
ators and the images used for testing our implementation and
discuss the obtained results. Finally, Section VII concludes the
paper.

II. BACKGROUND

A. JPEG 2000 Part 10

JPEG 2000 is a standard for compression of digital images.
It is more recent than JPEG and uses a number of techniques
that result in a superior coding performance compared to
JPEG. For a thorough discussion of the principles of JPEG
2000 we refer to [17]. A comprehensive overview of the
baseline JPEG 2000 standard and its extensions can be found
in [15].

JPEG 2000 is divided in 14 parts. Part 1 describes the core
coding system while the other parts describe extensions of the
baseline standard. Part 10 - JP3D - [6] is an extension for en-
coding and decoding volumetric images. It provides the same
functionality as the baseline JPEG 2000 standard and exploits
all dimensions of the image to provide a superior compression

localadmin
Text Box
in Proceedings of PDP 2015

Fig. 1. Block diagram of a JP3D encoder

performance. Of course, a codec that implements volumetric
JPEG 2000 can also code and decode two-dimensional images.

We explain briefly how a JP3D codec works with ref-
erence to figure 1. First, in order to decrease the memory
requirements, the image may be divided in tiles, which for
three-dimensional images correspond to cuboid subvolumes.
Furthermore, for color images, different components are coded
independently from each other. After preprocessing the im-
age, which includes a DC level shift and possibly a multi-
component transform, a discrete wavelet transform is applied.
This results in a decomposition of the image in subbands.
These subbands are divided in three-dimensional code-blocks
that are processed by the EBCOT Coder in Tier-1. Before
Tier-1 and for lossy compression, quantization is applied to
the wavelet coefficients. During Tier-1, code bits and side
information are generated for each code-block. Finally, in Tier-
2 the resulting encoded code-blocks are organized and written
to file following the rules of the JPEG 2000 syntax.

Decompression is the inverse process of compression. First,
Tier-2 reads the encoded code-blocks from file. Next, Tier-
1 decodes each code-block. Once all code-blocks have been
decoded an inverse DWT is applied to the resulting data.
Finally, postprocessing is applied to the result to obtain the
raw image. Each of these steps is the inverse of its counterpart
in the compression process.

As said any volumetric JPEG 2000 codec can also be used to
encode and decode two-dimensional images. In the remainder
of this paper, however, we will systematically refer to the
elements of an image as voxels, which can be seen as the
three-dimensional equivalent of pixels.

B. OpenCL

OpenCL [16] is an open standard maintained by the
Khronos group for parallel programming of modern processors
found in today’s heterogeneous systems. Using OpenCL it
is possible to write code that can run on GPUs of different
brands, multi-core CPUs and even FPGAs. It is very similar
to CUDA, a proprietary framework to program NVIDIA
GPUs [14].

OpenCL models a heterogeneous system as a platform that
consists of a host and of one or more devices that correspond
to the accelerators that can be used. The main program
runs on the host and controls all OpenCL related activities
using an API. Code that runs on the devices is specified in
a language based on C99 with a number of extensions to
facilitate the parallel nature of the code but also with a number
of limitations. This code is executed on the device by a number

of work items or threads that are organized in work groups.
The programmer must express the code as a kernel function
that defines the work that needs to be executed by a single
work item. The number of work items and their organization
in work groups is also defined by the programmer.

To write efficient code for a device it is important to under-
stand its architecture. Therefore, OpenCL presents a model of
a device that should be kept in mind for efficiency. A device
is represented as consisting of compute units which in turn are
made up of processing elements. Memory management of the
device is explicit. For this purpose OpenCL presents a memory
model that is easily mapped to the way memory is organized
on a typical GPU (Figure 2). Global memory is accessible to
all the work items running the kernel. It is used to store the
input and output data that must be transferred between the
host and the device. Local memory can be shared by the work
items of the same work group. Finally, private memory can
only be accessed by a single work item. On GPUs “global
data” is typically stored in the external GPU RAM. “Local
data” resides in a fast L1 cache and “private data” is stored
most of the time in registers. The latter two memory types
are part of a compute unit. Accessing the GPU RAM is a
lot slower than accessing the L1 cache which in turn is slower
than registers. Therefore, it is important to store data in private
or local memory. Nevertheless, using too much of them per
work group may result in a lower efficiency because less work
groups can be run concurrently. Finally, it should be noted that
private arrays may be stored in the external GPU RAM thus
making their access slower than expected. Luckily, modern
GPUs come equipped with automatic L1 and L2 caches that
somewhat alleviate this problem.

III. RELATED WORK

There already exists work on the acceleration of JPEG
2000 compression with GPU. All of this work uses CUDA. A
number of complete implementations of baseline JPEG 2000
encoding exist. The first of these by Balevic et al. is [5]. In the
implementation of Ahmadvand and Ezhdehakosh [4] encoding
of a code-block in Tier-1 is parallelized. It is, however, not
clear how this was done. Finally, Ciznicki et al. [7] encode
multi-dimensional data but use baseline JPEG 2000 to do so.

There exists also a lot of work on accelerating parts of JPEG
2000. Once again all of them use CUDA. For example, Franco
et al. [8] and Galiano et al. [9] present implementations of
three-dimensional DWT on GPU. The acceleration of Tier-1
is also a popular subject: Roto Le et al. [10] and Wei et al. [18]
both present fine-grain implementations of Tier-1 coding.

Fig. 2. OpenCL Memory Model

Matela et al. have done a lot of work on accelerating parts
of JPEG 2000 using GPU. In [11] they focus on a two-
dimensional DWT, while in [12] they reformulate Tier-1 in a
way that it becomes appropriate for massive parallel architec-
tures. Finally, in [13] they present an efficient implementation
of arithmetic coding on GPU.

The main novelties of our work compared with the previous
work concerns the acceleration of a volumetric codec both for
encoding and decoding. Furthermore, we use OpenCL thus
making it possible to use hardware of different types and
different vendors.

IV. METHODOLOGY

A. Adapting the original application

There are a number of steps common to the acceleration of
any application with modern accelerators using OpenCL.

• Identify the most compute intensive parts of the code.
Most of the time they are known. If this is not the case
profiling will quickly reveal the bottlenecks.

• Write OpenCL code to replace the compute intensive
parts. Usually this corresponds to implementing the body
of a loop in OpenCL. Sometimes, however, it may not be
that straightforward e.g. certain functions contain loops
where in the loop body a function is called that in turn
contains another loop.

• Replace the deprecated functions by functions that launch
the OpenCL kernels. This includes setting the arguments
of the kernel and determining the size of the global and
local work item space.

• Integrate OpenCL resource management in your program.
OpenCL must be setup and torn down. Furthermore,
memory needs to be allocated on the device and data
must be transferred between host and device. Appropriate
points for this should be identified keeping in mind that

data transfers should be minimized as they contribute an
important overhead to the application run time.

Typically, the last three steps represent an iterative process.
The OpenCL code can only be tested once all the functions
that launch them have been written. Once both have done, they
have to be debugged and optimized.

B. Writing OpenCL code

We consider the development of OpenCL code along three
axes that the programmer needs to keep in mind to write code
with a satisfactory performance. In Section V, we will use
this schema to discuss the OpenCL code we developed to
accelerate our application.

1) Data placement: in OpenCL memory must be managed
explicitly (see Subsection II-B). The programmer must
decide for all data where it is placed keeping in mind
the available resources and the resulting performance
impact.

2) Work space configuration: it is necessary to determine
how much work is assigned to a single work item.
Furthermore, it must be decided how these work items
are organized in work groups. The performance impact
of this choice cannot be overestimated.

3) Architecture specific optimizations: although OpenCL
strives to make it possible to write code that can be
run across a variety of hardware, it may be necessary
to apply architecture specific optimizations to maximize
the performance on specific hardware.

Apart from these, a number of things must be kept in mind.
First, it is necessary to write correct code. Depending on the
code it can be very hard to do so immediately and debugging
will be necessary. We used the cl_amd_printf pragma
that enables the use of printf statements in OpenCL code.
We could use this pragma both on AMD GPUs and on an
Intel multi-core. We debugged our code on the multi-core
because using the pragma on the AMD GPU slowed down
the execution dramatically. The pragma is not supported on
NVIDIA GPUs.

Secondly, when translating existing C code to OpenCL, it is
necessary to take into account its restrictions. All constructions
that are not supported by OpenCL have to be replaced by
equivalent ones. A complete list of these restrictions can be
found in [3]. In Subsection V-B we will present a number
of techniques we applied to make existing code OpenCL
compliant.

V. IMPLEMENTATION

As mentioned before we started from an existing JP3D
codec written in ANSI C and modified the code to be accel-
erated with OpenCL. Doing so, we followed the methodology
sketched in Section IV.

The most compute intensive parts of volumetric JPEG 2000
are the discrete wavelet transform and Tier-1. Nevertheless,
we decided to port also the image preparation given that it
concerns an embarrassingly parallel problem ideal for imple-
mentation on GPU. Note, in relation with Figure 1, that in our

case quantizing was done as part of Tier-1. We did not port
Tier-2 because it contributes very little to the overall run time
and concerns an inherently serial algorithm.

The data transfer between the host and the GPU is kept to a
minimum: the raw image data is transferred once to the GPU
before the processing starts, while the result is retrieved at the
end of Tier-1. Finally, Tier-2 is run on the host as before to
create the resulting JPEG 2000 file.

In the following sections we focus on the acceleration of the
DWT and Tier-1 for coding. They provide practical examples
of the principles discussed in Subsection IV-B. We do not
discuss decoding in this section because of its significant
similarity. In section VI, however, we show results for both
coding and decoding.

A. Discrete Wavelet Transform

The Discrete Wavelet Transform or DWT is an important
and computationally intensive part of the JPEG 2000 compres-
sion and decompression algorithm. Its goal is to divide the
image into subbands and to decrease its entropy thus making
it more suitable for compression. Our DWT implementation
uses the lifting scheme. For clarity we briefly sketch how
this scheme works on a one-dimensional sequence of samples.
Depending on the type of wavelet transform one or two pairs of
prediction and update lifting steps are executed alternately on
these samples. First, a prediction step calculates the high-pass
coefficients, positioned at odd indexes, from their respective
even positioned neighbors. Subsequently an update step cal-
culates the evenly positioned low-pass coefficients, using the
respective high-pass neighbors that result from the prediction
step. Due to the resulting low- and high-pass coefficients
being interleaved, we then need to rearrange these coefficients.
The low-pass coefficients are placed in the lower half of the
sequence, the L-subband. The high-pass coefficients are placed
in the upper half, the H-subband. The L-subband can be used
to decode a low resolution version of the image while both
subbands must be used to decode a full resolution version
of the image. Depending on the desired number of resolution
levels the process may be repeated on the L-subband.

A DWT on a three-dimensional image corresponds to 3 one-
dimensional transforms, one in each direction on each one-
dimensional sequence in the given direction e.g. on the rows
in the X direction and on the columns in the Y direction.
Note that for each resolution level a DWT is applied in every
direction. We will refer to the different transformations in
every direction as X-DWT, Y-DWT and Z-DWT.

The OpenCL code was written from scratch given the
relative simplicity of the algorithm and the difference between
a fine-grain parallel implementation and a sequential imple-
mentation. We created separate kernels for each DWT rather
than fusing all kernels into one like for example [11]. Their
solution, however, does not comply with the standard as it does
not take into account value exchange between tile borders. As
will become clear later, taking value exchange into account
adds some overhead to the code. Furthermore, this overhead

will become larger for a fused kernel and may possibly annul
what is gained by a more complex fused kernel.

1) Data placement: Each voxel is accessed at least three
times: once for the computation of its own DWT coefficient,
once for the computation of its left neighbor coefficient and
once for the computation of its right neighbor coefficient.
Therefore, the best option is to let each work group store all
voxels for which it needs to compute the DWT coefficients
in local memory and to execute the computation in local
memory. This is many times faster than doing the same in
global memory. At the end of the kernel the results are written
to global memory.

2) Work space configuration: A naive mapping would
assign one voxel to each work item. But this is wasteful
because during every step of the DWT only half of the voxels
is updated. Therefore, one should assign at least two voxels
to each work item. We chose four voxels as a performance
compromise on the three GPUs we used for testing (for their
details see Table II). On the AMD GPU the performance
decreased for an increasing voxel count, while it increased
on the NVIDIA Fermi GPU. Finally, on the NVIDIA Kepler
GPU we obtained the best performance for four voxels per
work item.

The work items must be organized in work groups. Initially,
we used one-dimensional work groups and mapped these to
the different rows, columns, . . . The major disadvantage of
this approach was the very bad global memory access of Y-
DWT and Z-DWT due to the stride between voxels that are
accessed in global memory by adjacent work items. To solve
this problem we borrowed an idea from [5]: we use two-
dimensional work groups of 16 × 16 work items whereby
the first dimension of the work group is always mapped to
the X-axis of the data. The other dimension will be mapped
to the Y-axis or the Z-axis. In this configuration one work
group is mapped to a tile of 64 × 16 or 16 × 64 voxels.
But because the DWT coefficient of a voxel depends on its
neighbors the image tiles overlap each other in the concerned
direction. Thus, one work group computes 16×64 coefficients
but only stores 16× 56 of them.

3) Architecture specific optimizations: There are different
ways to map the work item space on the data space. In our
approach the first dimension of the work item space is always
mapped on the X-axis of the data for optimal memory access,
but the second and third dimensions could be mapped to either
the Y- or Z-axis. For Z-DWT we tried both. Mapping the third
dimension to the Z-axis was 33% faster on the AMD GPU than
mapping to the Y-axis, while on the NVIDIA Fermi GPU it
was 10% faster. On the NVIDIA Kepler it was 8% slower.
These differences can be understood by considering that the
mapping will determine the order of the work groups and the
data they access. Therefore, one mapping might exploit the
memory access subsystem of a GPU in a more efficient manner
than the other. Because it is very difficult to predict the exact
impact of a mapping we advice to experimentally determine
the best choice.

Finally, we optimized the access of local memory for

Fig. 3. Bit-plane traversal of code-blocks in Tier-1

NVIDIA GPUs. On these GPUs local memory is organized in
32 banks whereby consecutive words are stored in consecutive
banks. Furthermore, the memory accesses of 32 work items are
processed as one request. Therefore, access to local memory
is optimal if all 32 work items access a different bank. If this
is not the case bank conflicts arise incurring a performance
penalty. To reduce the number of bank conflicts we changed
the dimensions of the local memory used from 16 × 64 to
16 × 65. The resulting code ran 22% faster on the NVIDIA
Fermi GPU 44% faster on the NVIDIA Kepler GPU. The
change had no effect for the AMD GPU.

B. Tier-1

Tier-1 concerns the compression of the subbands. To do
so they are divided into three-dimensional code-blocks that
are processed independently. Each significant bit-plane of the
code-block is traversed three times according to a predefined
pattern (Figure 3). Each voxel is associated with three state
variables that are updated during the traversal. Depending on
its state and that of its neighbors, state updates are applied and
code bits may be generated. Also, side information to guide
Tier-2 is generated for each code-block.

As it is originally formulated, processing a code-block
is inherently serial. There exists work that reformulates the
algorithm such that it exhibits parallelism for a single code-
block [12], [10], [18]. Although verifying the method and
extending it to a third dimension might be relatively straight-
forward, rewriting the existing code to reflect those changes,
while keeping the existing functionality, would have taken a
long time. Furthermore, we could not find work that does the
same for decompression.

In our approach, the available parallelism is limited by
the number of code-blocks that need to be processed. For
small images and large code-blocks the parallelism will be
lowest. Because we use OpenCL, however, it is possible to use
accelerators that are more appropriate for this kind of coarse-
grain parallelism, without changing the code. We ran our
code on an Intel multicore CPU. The resulting performance is
included in Section VI.

TABLE I
OPTIMAL CONFIGURATION FOR DIFFERENT IMAGES. THE

CONFIGURATION IS SHOWN AS THE NUMBER OF WORK GROUPS TIMES
THE WORK GROUP SIZE

Image AMD NVIDIA Tesla NVIDIA GeForce
28 compute units 14 compute units 4 compute units

flower foveon 221× 4 111× 8 56× 16
artificial 193× 8 97× 16 97× 16

bridge 178× 16 89× 32 45× 64
big tree 434× 16 109× 64 109× 64

The OpenCL code is based on a function in the original
code that is called to encode a single code-block. Translating
the code of this function and all the functions on which it
depends - about 1500 lines of ANSI C - to OpenCL proved
to be the most labor intensive part of the project.

1) Data placement:

• The code-block coefficients are read from global mem-
ory and stored in a private array. As mentioned in
Subsection V-B these arrays are typically stored in the
GPUs RAM but cached in fast L1 cache. Furthermore,
this way of working is closely related to the original
implementation where the code-block DWT coefficients
are first stored in a temporary buffer.

• The state variables are also stored in a private array. We
did consider the possibility to use local memory rather
than private arrays but the large amount of data for one
work item - 4 KB for the state variables and 16 KB
for the DWT coefficients - would decrease the potential
occupancy and hence decrease the resulting performance
dramatically.

• The code words were written immediately to global
memory. Choosing some intermediate and faster memory
proved more difficult because encoded bits are generated
at different locations in the code. Furthermore, because
we are compressing data it is impossible to say how much
memory is needed for the output. Our solution was to
allocate as much memory for the output as for the input
and to foresee for each code-block as much memory as
for the code-block itself.

2) Work space configuration: For a certain image size the
work group size makes a big impact on the performance of
our implementation. The work groups may not be too big
for two reasons. First, due to the large amount of resources
used by one work item, large work groups may cause a low
occupancy, hence decreasing performance. Secondly, the total
number of work groups will be too small to have an equal
distribution of work groups among the compute units. This
will be especially the case for small images and devices with
a great number of compute units. This is illustrated by table I
that shows the optimal configuration for the tested GPUs for
the 2-dimensional test images (their details can be found in
Table II) using 64×64 code-blocks. Because the choice seems
to be determined mainly by the size of the image and the
device on which the code is run, the optimal work group size
can be decided depending on the image that is to be encoded.

TABLE II
2D AND 3D TEST IMAGE CHARACTERISTICS

Image Name Dimensions Size [MB]
flower foveon 2268× 1512 9.8

artificial 3072× 2048 18.0
bridge 2749× 4049 31.8

big tree 6088× 4555 79.3
mri ventricles 256× 256× 124 7.8

mrt8 angio2 256× 320× 128 10.0
mrt8 angio 412× 512× 112 22.5

stent8 512× 512× 174 43.5
backpack8 512× 512× 373 93.3

vertebra8 512× 512× 512 128.0

3) Translating C to OpenCL: The greatest difficulty en-
countered was to replace constructions that are not supported
by OpenCL. We illustrate the measures we took for three
instances of this problem:

• Self-reference. A state transition table was implemented
as an array of structs that used self-referencing pointers
to determine the state to be taken according to the symbol
encountered. We replaced the array of structs by different
arrays of which two are used to hold the indexes of the
next state for symbols 0 or 1. Of course, all references
to this array throughout the code had to be modified
accordingly.

• Dynamic memory allocation. A state register list that is
constructed by the arithmetic coder and that is used to
harvest side-information for Tier-2 was implemented as
a linked list using self-referencing structs and dynamic
memory allocation. This construction was replaced by
allocating a fixed size array as a member of the arithmetic
coder and to keep a current index to keep track of the head
of the list. The concerned code was updated accordingly.

• Function pointer. The bit plane traversal function used a
function pointer argument to call the appropriate function
according to which pass was being applied. We replaced
the function pointer by using a type argument and calling
the appropriate function from a switch statement on
this type.

VI. RESULTS

A. Test Setup

The performance of the codec was tested on two-
dimensional color images from [2] and three-dimensional
gray-scale images from [1]. Table II shows the image dimen-
sions and the resulting size.

The OpenCL code was run on three different GPUs and a
multi-core CPU. Their characteristics are listed in table III.

Apart from the complete codec run times shown at the end,
all results concern coding or decoding of a single component.
This is especially important for the two-dimensional images,
which consist of three color components. All results are for
lossless coding.

TABLE IV
PERFORMANCE OF ONE DWT

GPU 2D throughput 3D throughput
Tesla C2050 3293 MPix/s 1850 MVox/s

GeForce GTX 650 Ti 3263 MPix/s 1512 MVox/s
AMD Radeon HD 7950 8577 Mpix/s 5038 MVox/s

Fig. 4. Performance of X-, Y- and Z-DWT on a 512× 512× 512 image

B. DWT

Table IV shows the performance of a single DWT using
a 5× 3 wavelet, both for two- and three-dimensional images.
The AMD GPU outperforms the NVIDIA GPUs because of its
higher memory bandwidth and its greater number of compute
units.

Figure 4 shows the performance achieved in each direction
for the 512 × 512 × 512 image. For all GPUs the Y-DWT
has the best performance. In this case the adjacent voxels
accessed by groups of 16 work items begin at boundaries
that are multiples of 16 bytes. This is not the case for X-
DWT because the accessed tiles overlap along the X-axis.
Therefore the adjacent voxels may belong to different memory
segments, hence causing extra memory transactions. The Z-
DWT performs worse on the AMD and the NVIDIA Fermi
GPUs. This can probably be explained by the very large
distance between chunks of data that are accessed by a group
of work items. Because on GPUs data access of a group of
work items is handled as one request, it is more advantageous
if the accessed elements lay close to each other in memory.
The NVIDIA Kepler GPU is least impacted by the direction
of the DWT.

The speedups shown in figure 5 concern both forward DWT
(coding) and inverse DWT (decoding) for both two- and three-
dimensional images. Here we consider the complete DWT pro-
cess that includes several levels of DWT and the data transfers
necessary on the GPU because we cannot perform the DWT
in-place. The speedup dip for the mrt8 angio image is caused
by a performance peak of the sequential implementation.

C. Tier-1

Table V shows the performance of Tier-1 in Mpix/s for the
different devices and for two- and three-dimensional images. A
higher throughput is obtained for larger images. To illustrate

TABLE III
HARDWARE USED FOR OUR TESTS.

Architecture Fermi Kepler GCN Bloomfield
Vendor NVIDIA NVIDIA AMD Intel

Name Tesla C2050 GeForce GTX650 Ti Radeon HD 7950 iCore 7
compute units 14 4 28 8

compute elements 448 768 1792 8
Clock frequency (MHz) 1150 928 800 3200

Memory Bandwidth (GB/s) 144 86 240 26

Fig. 5. Speedup of DWT for 2-dimensional and 3-dimensional images

TABLE V
PERFORMANCE OF TIER-1 FOR DIFFERENT DEVICES AND DIFFERENT

CODE-BLOCK SIZES

GPU block size 2D throughput 3D throughput
Intel iCore 7 212 16 - 24 MPix/s 16 - 43 MVox/s

210 16 - 24 MPix/s 14 - 36 MVox/s
Tesla C2050 212 11 - 29 MPix/s 15 - 83 MVox/s

210 22 - 55 MPix/s 27 - 78 MVox/s
GeForce 212 9 - 20 MPix/s 14 - 56 MVox/s

GTX 650 Ti 210 20 - 29 MPix/s 21 - 51 MVox/s
AMD Radeon 212 7 - 14 MPix/s 5 - 40 MVox/s

HD 7950 210 15 - 30 MPix/s 10 - 87 MVox/s

the impact of the code-block size we include numbers for
two different code-block sizes: 4096 voxels and 1024 voxels.
For smaller code-blocks the total amount of work is greater
because the achieved compression is smaller. This is made
clear by the better performance of the multi-core for larger
code-blocks. On the other hand smaller code-blocks are more
beneficial for the GPU especially for small images and for
images exhibiting a high entropy. Using smaller code-blocks
increases the throughput for all two-dimensional images on all
GPUs. On the NVIDIA GPUs and for large three-dimensional
images using smaller code-blocks is not advantageous because
the greater amount of overall work undoes the effects of the
increased parallelism. On AMD GPUs smaller code-blocks are
always beneficial. This is explained by the fact that the AMD
GPU is the most “fine-grained” device i.e. it has the highest
number of compute units, and the smallest amount of resources
per compute unit.

Figure 6 shows the speedup obtained for Tier-1 both for
coding and decoding. For coding we also show numbers
for the Intel iCore7. As expected we get a better speedup
on GPU for larger images because of the greater paral-
lelism. The same observation is valid when comparing the
two-dimensional and three-dimensional images: for the same
size the three-dimensional images contain more voxels than

TABLE VI
CODING PERFORMANCE IN MVOXELS PER SECONDS FOR THE ORIGINAL

VERSION, THE GPU ACCELERATED VERSIONS AND THE HYBRID
ACCELERATED VERSION

image seq tesla geforce amd hybrid
flower foveon 4.4 10.2 8.8 2.7 18.6

artificial 4.6 14.6 12.8 4.6 19.6
bridge 2.9 15.1 14.3 6.0 14.8

big tree 2.7 24.0 18.0 8.4 14.7
mri ventricles 2.7 12.1 11.8 2.5 12.6

mrt8 angio2 3.1 14.9 11.8 3.1 13.7
mrt8 angio 3.0 22.3 11.3 6.2 14.3

stent8 4.1 29.6 18.2 10.5 22.3
backpack8 4.4 32.1 21.1 15.0 24.2

vertebra8 5.3 45.9 26.9 23.7 30.6

the two-dimensional images contain pixels because the two-
dimensional images are color images and the components are
processed serially. It is interesting to note that the AMD GPU
is better at decoding images. We believe this is caused by the
fact that Tier-1 requires less resources for decoding than for
coding.

D. Overall

Tables VI and VII show the throughput of the differ-
ent codec versions for lossless coding of two- and three-
dimensional images using code-blocks of 4096 voxels The
hybrid version is one where image preparation and discrete
wavelet transform are run on the AMD GPU and Tier-1 is
run on the multi-core. Note we do not take into account some
sources of overhead concerning the set up of OpenCL and the
compilation of the OpenCL code. On the AMD GPU it took 3
seconds to compile the OpenCL code, while on the multi-core
it took 0.4 seconds. NVIDIA cached the compiled kernels,
however, we needed 0.3 seconds to set up OpenCL.

Fig. 6. Speedup of Tier-1 for 2-dimensional and 3-dimensional images

TABLE VII
DECODING PERFORMANCE IN MVOXELS PER SECONDS FOR THE

DIFFERENT VERSIONS

image seq tesla geforce amd
flower foveon 4.5 10.5 9.2 7.1

artificial 4.8 14.6 13.8 11.1
bridge 2.9 14.7 14.4 12.2

big tree 2.7 22.8 18.1 20.2
mri ventricles 2.8 14.8 14.6 10.2

mrt8 angio2 3.4 20.0 17.5 12.9
mrt8 angio 3.1 32.6 22.9 20.9

stent8 4.5 40.7 29.9 32.3
backpack8 5.2 51.6 33.6 41.6

vertebra8 5.5 69.5 51.5 69.6

VII. CONCLUSION

In this paper we presented and illustrated a methodology to
accelerate an existing sequential software using OpenCL and
modern accelerators such as GPUs and multi-core CPUs. We
considered the development of the OpenCL code along three
axes to obtain a satisfactory performance: data placement,
work space configuration and architecture specific optimiza-
tions.

We used a volumetric JPEG 2000 codec as a real-world
example of software acceleration using OpenCL. Our approach
resulted in obtaining a decent speedup for a relatively small
effort. Furthermore, a number of interesting observations were
made concerning the acceleration of the two most important
parts of the codec: DWT and Tier-1. The former is ideal
for acceleration on GPU and dramatic speedups are achieved,
while the parallelism of the latter is too coarse-grain for the
GPU. Therefore, the acceleration of Tier-1 was also run on
the multi-core obtaining good speedups. Despite the coarse
granularity of Tier-1 we achieved a good speedup. Encoding of
large images was accelerated almost 9 times using an NVIDIA
Tesla C2050, while decoding of large images was accelerated
almost 13 times using both an NVIDIA Tesla C2050 and an
AMD Radeon HD 7950.

In the future we hope to improve our implementation by the
introduction of streaming and further optimization techniques.

ACKNOWLEDGMENT

This work was supported by the iMinds ICON MMIQQA
project, “Multimodel Microscopic Imaging: Quality, Quantifi-
cation and Acceleration”.

REFERENCES

[1] New “real world” medical datasets. http://www.volvis.org/. Accessed:
2014-07-01.

[2] The new test images - image compression benchmark. http://www.
imagecompression.info/test images/. Accessed: 2014-07-01.

[3] Opencl 1.2 reference pages. http://www.khronos.org/registry/cl/sdk/1.2/
docs/man/xhtml/. Accessed: 2014-09-01.

[4] M. Ahmadvand and A. Ezhdehakosh. Gpu-based implementation of
jpeg2000 encoder. In PDPTA 2012 Proceedings, pages 682–688, 2012.

[5] Ana Balevic, Armin Weiss, Martin Heide, Simon Papandreou, and
Norbert Fuerst. Cuj2k: Jpeg2000 encoder on cuda. http://cuj2k.
sourceforge.net/. Accessed: 2014-07-01.

[6] Tim Bruylants, Adrian Munteanu, Alin Alecu, Rudi Deklerck, and Peter
Schelkens. Volumetric image compression with jpeg2000. In SPIE The
International Society for Optical Engineering, 2007.

[7] Milosz Ciznicki, Krzysztof Kurowski, and Antonio Plaza. Gpu im-
plementation of jpeg2000 for hyperspectral image compression. In
SPIE Remote Sensing, pages 81830H–81830H. International Society for
Optics and Photonics, 2011.

[8] Joaquı́n Franco, Gregorio Bernabé, Juan Fernández, and Manuel
Ujaldón. Parallel 3d fast wavelet transform on manycore gpus and
multicore cpus. Procedia Computer Science, 1(1):1101 – 1110, 2010.
ICCS 2010.

[9] V. Galiano, O. López, M.P. Malumbres, and H. Migallón. Gpu-based
3d wavelet transform. 2012.

[10] Roto Le, IR. Bahar, and J.L. Mundy. A novel parallel tier-1 coder for
jpeg2000 using gpus. In Application Specific Processors (SASP), 2011
IEEE 9th Symposium on, pages 129–136, 2011.

[11] Jiřı́ Matela. GPU-Based DWT Acceleration for JPEG2000. In MEMICS
2009 Proceedings, pages 136–143, Brno, 2009.

[12] Jiri Matela, Vit Rusnak, and Petr Holub. Efficient jpeg2000 ebcot context
modeling for massively parallel architectures. In Data Compression
Conference (DCC), 2011, pages 423–432. IEEE, 2011.

[13] Jiřı́ Matela, Martin Šrom, and Petr Holub. Low gpu occupancy approach
to fast arithmetic coding in jpeg2000. In Mathematical and Engineering
Methods in Computer Science, pages 136–145. Springer, 2012.

[14] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, 2014.
[15] Peter Schelkens, Athanassios Skodras, and Touradj Ebrahimi, editors.

The JPEG 2000 Suite. John Wiley & Sons, Chichester, UK, 2009.
[16] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel pro-

gramming standard for heterogeneous computing systems. Computing
in science & engineering, 12(3):66, 2010.

[17] D. Taubman and M. Marcellin. JPEG2000 Image Compression Fun-
damentals, Standards and Practice: Image Compression Fundamentals,
Standards and Practice. The Springer International Series in Engineer-
ing and Computer Science. Springer US, 2001.

[18] Fang Wei, Qiu Cui, and Ye Li. Fine-granular parallel ebcot and
optimization with cuda for digital cinema image compression. In ICME,
pages 1051–1054. IEEE, 2012.

