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Abstract. Standard Hidden Markov Models (HMMs) approaches used for condition
assessment of bearings assume that all the possible system states are fixed and known a priori
and that training data from all of the associated states are available. Moreover, the training
procedure is performed offline, and only once at the beginning, with the available training
set. These assumptions significantly impede component diagnosis applications when all of the
possible states of the system are not known in advance or environmental factors or operative
conditions change during the tool’s usage. The method introduced in this paper overcomes
the above limitations and proposes an approach to detect unknown degradation modalities
using a Left-Right Continuous HMM with a variable state space. The proposed HMM is
combined with Change Point Detection algorithms to (i) estimate, from historical observations,
the initial number of the model’s states, as well as to perform an initial guess of the parameters,
and (ii) to adaptively recognize new states and, consequently, adjust the model parameters
during monitoring. The approach has been tested using real monitoring data taken from the
NASA benchmark repository. A comparative study with state of the art techniques shows
improvements in terms of reduction of the training procedure iterations, and early detection of
unknown states.

1. Introduction
This work relates to corrective maintenance [1, 2], which is based on condition monitoring and
it is performed after a degradation modality emerges in a system, with the goal of preventing
the system to fail. A fundamental requirement of this strategy is the detection of the abnormal
behavior, that will lead to the system failure, at an early stage of its evolution in order to give
enough time to perform the repairing operations. Moreover, we follow a data-driven approach
[3] using sensor data provided by monitoring the system behavior.

Several data-driven models have been proposed in the literature. Among them Hidden
Markov Models, have been successfully applied to condition monitoring of manufacturing
machines [4, 5].

The common usage of Hidden Markov Models, especially for condition assessment
applications, consists of dividing the degradation pattern of the historical data of the system
under study into different levels, from normal to deeper degradation (i.e.: good, partially worn,



seriously worn, broken), and to train several HMMs each one corresponding to a segment of
observation. The online condition assessment is then performed by selecting the HMM that,
on new incoming data, gives the highest likelihood [6–10]. Another approach [11] consists of
training a single HMM by using the sensor measurements corresponding to the entire lifetime of
the system, by setting the number of states equal to the number of degradation stages contained
in the training history. Using this approach, the model maps each degradation phase to a state
of the HMM. The condition assessment is performed online on new incoming data by calculating
the Viterbi path [12] which returns the most probable state sequence.

Such approaches assume that all possible system condition states are known a priori and that
training data sets from the associated states are available. In addition, the training procedure
has to be performed offline, and only once at the beginning with the available training set.
For this reason, the trained models are able to recognize only the conditions contained in the
training data. These assumptions significantly impede component diagnosis applications when

• It is difficult to identify and train all of the possible states of the system in advance

• Environmental factors or operative conditions change during the tool’s usage.

Since industrial machines are constantly subjected to updates, changes of configurations or
changes of working conditions, a need for models that are able to automatically adapt to new
situations, by dynamically learning the structure and the parameters, is recently arisen among
the industrial and research community.

Another aspect to consider is that the initial model parameters are usually set at random
as initial guess of the training procedure that iteratively adjust them in order to maximize the
likelihood function on the training data. However, the random initialization may lie far from
the optimal point of maximum likelihood, causing a slow converge of the training algorithm or
a sticking to a local maximum.

This work overcomes the above mentioned drawbacks, of most HMM-based condition
assessment approaches, by combining Continuous Hidden Markov Models (CHMM) with a
Change Point Detection (CPD) algorithm [13]. The CPD algorithm identifies the points of
a time serie data at which the most significative changes, i.e. events, occur. The output of
the CPD algorithm is a segmentation of the input signal, where each segment corresponds to a
degradation state of the considered machine. CPD can be used in batch mode and in an on-line
mode:

(i) During the training phase, the batch CPD algorithm is employed to segment the historical
observation signals in order to map each detected segment to a state of the CHMM. This
allows to find the initial number of states for the HMM. Then the initialization of the
model parameters can be performed simply by counting the number of transitions from one
state to the others, and estimating the mean and the variance of the observation for each
segment/state.

(ii) During the online condition assessment, the online version of the CPD algorithm is employed
to detect a new condition which was unknown during the training phase. In this case, a
new state, representing the new condition, is added to the CHMM and when enough data
coming from the new state are collected, the training procedure is executed again to adapt
the model parameters to the new situation.

A similar approach has been introduced by Lee et al. [14], in which multivariate statistical
process control is used to detect the occurrence of an unknown condition. However, a strong
limitation is posed in the modeling of the observation signals, which are constrained to be
gaussian distributed. This limitation is overcome by this paper, since the CPD algorithm is
independent from the density family used to model the observation. Hence, an arbitrarily
complex density can be used at this purpose.
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Figure 1. Framework of the proposed approach.

The proposed methodology is demonstrated on condition monitoring of bearings for which
we can assume that the degradation pattern is monotonically increasing; hence left-right HMMs
can be used. Validation using real data related to bearings taken from the NASA benchmark
repository [15] is presented, along with comparison to state-of-art approaches.

The rest of this paper is organized as follows: Section 2 introduces the theoretical background
of Continuous Hidden Markov Models and the Change Point Detection algorithm together with
a detailed description of the proposed approach. In Section 3 experimental results are discussed.
The conclusion and future research directions are given in Section 4.

2. Proposed methodology
This section gives a theoretical overview of the techniques used in this paper, together with the
description of the proposed approach’s framework, which is summarized in Figure 1.

2.1. Left-Right Continuous Hidden Markov Models
Left-Right Continuous Hidden Markov models (CHMMs) [11] are dynamic models in which
there are two types of variables. A state variable describing the system state, which is never
observed/measured directly (hidden), and an observation variable which is related to the hidden
state.

A left-right CHMM λ = (A,C, µ, U, π) is characterized by the following:

(i) N , the number of states in the model, S = {S1, . . . , SN} the set of states, and st the state
at time t.

(ii) The state transition probability distribution A = {aij} where

aij = P (st+1 = Sj |st = Si), 1 ≤ i, j ≤ N. (1)

(iii) Xt, the continuous observation vector emitted from the state at time t.



(iv) The observation density, represented by a finite mixture:

bj(X) =
M∑
m=1

cjmℵ(X,µjm,Ujm), 1 ≤ j ≤ N (2)

where X is the vector being modeled, cjm the mixture coefficient for the mth mixture in
state j, and ℵ is any log-concave or elliptically symmetric density (usually a Gaussian),
with mean vector µjm and covariance matrix Ujm for the mth mixture component in state
j. The parameters cjm, µjm and Ujm, are the coefficients of C, µ and U , respectively.

(v) The initial state distribution π = {πi} where

πi = P (s1 = Si), 1 ≤ i ≤ N. (3)

It is proved that the probability density function of Equation 2 can be used to approximate,
arbitrarily closely, any finite, continuous density function. Hence it can be applied to a wide
range of problems.

The left-right topology has the property that the state index can either increase or stay the
same, as the time goes on. In this case, the coefficients of the transition matrix are of the form

aij = 0, j < i (4)

aij = 0, j > i+ ∆ (5)

aNN = 1 (6)

aNi = 0, i < N. (7)

where Equation 4 avoids transition to previous states in the order, equation 5 avoids jumps of
more than ∆ states, while the state N is the last state, often called absorbing state. Moreover,
since the model starts from state S1, the initial state probabilities have the property

πi =

{
0 i 6= 1
1 i = 1

(8)

For CHMM’s applied to condition monitoring, learning and inference procedures are used:

(i) (learning): Adjust the model parameters λ = (A,C, µ, U, π) in order to maximize
the probability P (X|λ) i.e., for the considered CHMM model structure find the model
parameters that better fit the historical sensorial measurements X. This problem is solved
through the Baum-Welch algorithm [16].

(ii) (decoding): Given a model λ = (A,C, µ, U, π) and a sequence of sensorial measurements
X = X1,X2, . . . ,XT , find the hidden state sequence S = s1, s2, . . . , sT that have most likely
produced the observation sequence. The solution of this problem is given by the Viterbi
algorithm [12].

2.2. Change Point Detection Algorithm
Change point detection approaches apply data mining techniques to identify the time points
at which the changes, i.e. events, occur. This has been discussed in several applications:
fraud detection [17], rare event discovery [18], event/trend change detection [13], and activity
monitoring [19].

In this work we use the approach of [13], where two change point detection modes have been
proposed: the batch (offline) and the incremental (online). Following the notation in [13], let
y(t), (t = 1, ..., n) be the time series to be segmented, with t the time variable. It is assumed that



the time series can be modeled mathematically, where each model is characterized by a set of
parameters. Change-points detection is the problem of finding the function f̂x(t, wx) that best
approximates the data, for each segment x = [i, j]. The quality of an approximation is measured

by the loss function L(i, j) = Loss(y(t), f̂x(t, wx)) with t ∈ x, that has to be minimized. The
loss function considered in this paper is the residual sum of squares.

Often, it is impossible to determine the nature of the approximation functions f̂x(t, wx)’s from
domain knowledge. As such, several types of basis functions can be considered, e.g. algebraic
polynomials, wavelet, Fourier, etc. [20].

In the batch CPD, the entire data set is collected before the analysis begins. At every
iteration, each segment is examined to see whether the time series can be split into two
significantly different segments. The change-point in the first stage is the point j minimizing
L(1, j)+L(j+1, n). Once this point has been found, the above procedure is repeated recursively
on the resulting two segments, until a stopping criterion is reached. Formally, the algorithm
should stop if in iterations l and l + 1

(Ll − Ll+1)/Ll < s (9)

where s is a user-defined stability threshold.
Conversely, the online CPD is executed concurrently during data collection. Suppose that the

last change-point was detected at time tl−1. At time tl the algorithm starts by collecting enough
data to fit the regression model. Suppose at time tj a new data point is collected. The candidate
change-point is found by determining ti such that Lchange = minl<i≤j L(l, i) + L(i+ 1, j). The
value Lchange is then compared with Lno change = L(l, j) and if

(Lno change − Lchange)/Lno change > δ, (10)

then ti is a change-point. Otherwise, the process should continue with the next point, i.e. tj+1.
δ being a user-defined threshold.

2.3. Framework Overview
As discussed in the introduction, the methodology is applied in two phases, the training and
the online application. An extensive description of the methodology is given in the following for
each of the two phases.

2.3.1. Phase 1: Finding the initial number of states and CHMM parameters initialization
During the first phase, we assume that enough historical sensor data have been collected from
the monitoring system of the machine under study. Signal preprocessing is then performed to
extract relevant information (features) correlated with the health condition of the system. In
this paper, a vibration signal, collected through an accelerometer is used, and we consider as
feature the mean value denoted as y(t). This feature signal is then divided into N∗ segments
through the application of the batch version of the CPD algorithm. Each segment is mapped to a
HMM state. The intuition of this approach comes from the assumption that there is correlation
between observations and states. Thus, a variation in the condition of the system is related to
a corresponding change in the behavior of the sensorial measurements.

Once the initial states are estimated, the initialization of the HMM parameters λ0 =
(π0, A0, C,µ0,U0) can be performed. Since left-right HMMs are considered, π0 is initialized
by using Equation 8. The transition matrix A0 is initialized by using the following equations

aij =
#tr(i, j)

#si
, 1 ≤ i ≤ N∗ − 1, j = i+ 1 (11)

aii = 1−
∑
j 6=i

aij , 1 ≤ i ≤ N∗ (12)



being #tr(i, j) the number of transitions from segment i to j (which is equal to 1 for left-right
HMM) and #si the number of data points in segment i. To ensure the validity of the left-right
structure constraint, Equations 4, 6, 7 and 5 are also satisfied, with ∆ = 1 in Equation 5. This
way, the transition matrix is ensured to satisfy the stochastic constraint, being ∀i,

∑N∗

j=1 aij = 1.

The observation density parameters µim, Uim and Cim (Equation 2) are estimated for each
segment i as follows:

∀m, µim = y(t), t ∈ i; (13)

∀m, Uim = Var(y(t)), t ∈ i. (14)

where y(t) and Var(y(t)) are respectively the mean and the variance of the feature signal. The
mixture coefficients Cim are initialized by using the uniform distribution, for each i and m:
cim = 1/M , M being the number of mixtures.

Together with the features extracted from the training histories, the estimated initial
parameters λ0 are used as inputs to the Baum-Welch procedure. The obtained optimal model
parameters, λ∗, of the N∗-states left-right CHMM, are then used in the following phase 2 for
the online adaptive condition assessment.

2.3.2. Phase 2: Online adaptive condition assessment This phase is performed on new
incoming data, referred to as testing signal in Figure 1. The incoming data are collected one
sample a time, during the normal runtime of the machine under study. The above described
features extraction (mean value estimation) procedure is performed each time a predefined
number of samples are acquired.

For condition assessment, the feature signal is continuously input to the inference algorithm,
using the N∗-states left-right CHMM model and its optimal parameters λ∗ of phase 1, to
calculate the most probable state sequence, given the observations up to that moment. The
last state in the inferred sequence is then selected as the actual condition of the machine.

At the same time, the feature signal is also input to the online CPD algorithm to detect
possible changes, which could correspond to state changes. Here, we assume that an unknown
situation is experienced by the system when the detected segments (change points) exceed N∗,
being the number of states of the optimal CHMM of the previous phase or iteration. In such
case, when enough samples coming from the new condition are acquired, a new state is added
to the CHMM, to obtain a new model with N∗ = N∗ + 1 states. The model parameters, λ∗,
are also adapted to the new situation, by performing the training procedure as described in the
above phase 1, using the testing signal together with the training histories.

3. Results
To assess the effectiveness of the proposed methodology, several experiments have been
performed on condition monitoring data related to bearings taken from the NASA benchmark
repository [15]. All the parameters concerning the CPD algorithms reported in this section have
been carefully estimated through data analysis and selection of the optimal parameters.

3.1. Data description
The considered data [15] are monitoring measurements collected during several run-to-failure
tests performed on bearings under constant load conditions on a special designed test rig. Four
bearings (bearing-1, ..., bearing-4) were installed on a rotating shaft and the test has been
performed by keeping a constant rotation speed of 2000 rpm, while a radial load of 6000 lbs has
been added to the shaft and bearing by a spring mechanism.

All the bearings are forcedly lubricated and the failure of a bearing is detected by means of
a magnetic plug installed in the oil feedback pipe, that collects debris from the oil as evidence



of bearing degradation. When the accumulated debris adhered to the magnetic plug exceeds a
certain level, causing an electrical switch to close, a failure of at least one of the four bearings
is assumed and the test will stop [21].

The data set consists of vibration signals collected by means of accelerometers. On each
bearing housing, two accelerometers have been installed (one on the vertical Y axis and one on
the horizontal X axis) for a total of 8 accelerometers.

Three run-to-failure tests have been performed on the test rig. One second snapshot data
were collected at a sampling rate of 20 kHz (20480 samples for each snapshot) every 20 minutes
for test-1 and every 10 minutes for test-2 and test-3.

At the end of the first run-to-failure experiment a crack was found near the shoulder of
bearing-3 while test-2 and test-3 ended up with an outer race defect in bearing-1 and bearing-3,
respectively.

3.2. Experimental results
Four histories of bearings that did not experience failure have been considered as training set.
The raw data of the training set have been preprocessed to extract the mean value for each
20480 samples snapshot, resulting in a signal containing 2156 samples. Using these data, two
segments have been detected by the batch CPD algorithm, parameterized with a polynomial
fitting function of degree 1, and a stability threshold s = 0.3. Hence, a N∗ = 2-sates left-right
CHMM is considered.

To evaluate the effectiveness of the proposed initial parameters estimation approach on the
training of the CHMM, 11 runs of the Baum-Welch algorithm have been made using as initial
values the estimated λ0 as described in Section 2.3.1, and 10 randomly set λ0’s. For these
experiments, the number of mixtures has been set to three, which allows a trade-off between
precision and computation time, and the maximum number of iterations has been set to 15.
The training convergency speed, the final likelihood value, and the number of iterations, of
the 11 runs are shown in Figure 2. As it can be seen, the learning procedure converges in
only 3 iterations when the initial parameters are set using the proposed approach, compared to
the randomly set parameters. Moreover, the final likelihood value is comparable with the best
random initialization.
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Figure 2. Training Evaluation - proposed λ0 estimation v.s. randomly set λ0

The online condition assessment has been performed by collecting the testing history relative
to a faulty bearing one point a time. However, as explained in Section 2.3.2, in order to perform
the adaptive structure and parameter learning after the recognition of the unknown state, an
amount of data coming from the faulty state are necessary. Since no experimental data have
been collected after the breaking of the bearing, a simulated testing signal that resembles a
bearing that breaks after 2158 time steps (see Figure 3) have been constructed, from which the
mean values were estimated as features.

The online adaptive condition assessment of the above described Phase 2 has been executed on
the obtained testing signal, using the the above learned 2-states CHMM. For these experiments
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0 500 1000 1500 2000 2500
−50

0

50

100
Online CPD − Bearing 3, test #1

M
ea

n

0 500 1000 1500 2000 2500
1

1.5

2

2.5

3

S
ta

te
s

Viterbi Path
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a second degree polynomial function has been considered for the online CPD fitting function
and a threshold δ = 0.6. The obtained results are illustrated in Figure 3, depicting in the first
row the change points detected by the online CPD (red dots), and in the second row the Viterbi
path. As it can be seen, till sample 2159 the Viterbi path correctly classifies the real conditions
of the bearing. Moreover, at that sample, the online CPD algorithm correctly detects a faulty
state, which was previously unknown. 10 samples after, a new state is added to the 2-states
CHMM. After learning the paraments of the new 3-states CHMM, classification of the third
state is performed correctly until the end of the experiment.

Figure 3 also highlights the added value of the proposed adaptive procedure approach. Indeed,
using the fixed structure CHMM, the Viterbi path is unable to give a correct estimation of the
current condition at sample 2159, where a failure is experienced, and wrongly assigns the first
state as the most probable state. Hence, the wrong classification would have been continued for
the rest of the experiment if a fixed structure CHMM had been used in place of the proposed
adaptive procedure.

The obtained 3-states CHMM has been tested on the real faulty bearing of the first run-to-
failure experiment of the benchmark. As illustrated in Figure 4, the faulty state classification is
correctly performed at the end of the experiment.

The above results have been compared to the ones using the approach of Lee et al. [14],
in which the detection of a new state is performed by evaluating a statistically significant
shift in the mean of the observation signal by using the Hotelling Multivariate Control Chart
(referred as Hotelling MCC in the following). As in our approach we use a single feature
as observation, a straightforward adaptation to the univariate case has been implemented.
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Figure 5. Online condition assessment using the Hotelling MCC.

In general, the Hotelling MCC considers as measure of similarity the Mahalanobis distance,
denoted as D2(O,µi), between the empirical mean O of the last b observations (set to 10 in this
experiment) and the µi parameter relative to the state i, which is the most probable state given
by the Viterbi path:

D2(O,µi) = b(O− µi)
TU−1i (O− µi) (15)

where Ui is the covariance matrix relative to the most probable state i. If this statistic exceeds
a certain threshold (called Upper Control Limit, UCL) for more than R consecutive times, then
a significant change is assumed in the process and a new state is added. R can be seen as a
measure of the detection sensitivity of the algorithm, if R is increased, the detection algorithm
may become more robust against false detections caused by the process randomness itself; on
the other hand the algorithm may respond more slowly to the unknown state.

Concerning the UCL, since µ and U are known, the D2 statistic follows the χ2 distribution
with p degrees of freedom, where p is the number of multivariates, i.e., the number of features
considered as observations. Thus, the UCL can be obtained as UCL = χ2

α,p, where α is the risk
level.

Figure 5 shows the complete execution of this procedure. The middle plot represents the
Mahalanobis distance, with the points exceeding the UCL plotted in red. In this case R has
been set to 5, and the detection of the failure modality happens at sample 2210, where a
third state is added to the HMM. However, Figure 6 shows the limitation of this procedure
represented by the modeling of the observations through a Gaussian distribution (and not with
a mixture). The Mahalnobis distance is highly sensitive to small differences between the mean of
the testing and the training observations, hence, it is applicable only when training and testing
observations are very similar. This is demonstrated by the first part of Figure 6 where there
are several consecutive points exceeding the UCL (denoted “Out Of Control”) at the beginning
because the mean of the training observations in this portion is slightly different from the testing
set. If a smaller value of R had been considered, such method would have wrongly detected an
unknown situation and a new state would have been added. However, at sample 2210 after the
R consecutive points exceeding the UCL have been detected and the new state has been added
to the HMM, the Mahalanobis distance is again reliable.

These results highlight that the proposed methodology (i) overcomes the limitations imposed
by the Hotelling MCC since an arbitrarily complex density can be used to model the observations,
and (ii) it is effective in detecting failure modalities at an early stage.
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4. Conclusion and future work
In this paper, a new approach to the online adaptive condition monitoring has been introduced.
The methodology is based on continuous observation Hidden Markov Models that, combined
with the Change Point Detection algorithm, are enhanced to deal with a variable state space,
and are used for detection of unknown states and diagnosis. Moreover, a new approach for
the estimation of the initial number of states of the CHMM has been provided, together
with a method for parameters initialization. The obtained results illustrate that the proposed
methodology (1) correctly estimates the initial number of states for the CHMM; (2) improves the
execution speed of the training procedure in terms of iterations number reduction with a final
likelihood comparable with the best random initialization; (3) detects an anomalous condition
or an unknown state at an early stage; (4) changes the structure and the parameters of the
CHMM to adapt the model to new situations.

In order to render the methodology more generally applicable, it is necessary to consider in
future work multiple observations, as well as a method which is able to distinguish intermediate
states and to recognize if the new detected state has already been encountered.
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