
Automated Experimental Parallel Performance Analysis

Jan LEMEIRE
And

Erik Dirkx
PADX, VUB

Brussels, Belgium
Email: jlemeire@info.vub.ac.be, erik@info.vub.ac.be

Extended Abstract for 2nd PACT Workshop, Edegem, Belgium, September, 2002

ABSTRACT

Performance is the key issue in parallel processing.
We want to investigate how far we can automate
experimental performance analysis in order to
achieve all necessary performance results for
performance prediction, load balancing and
algorithm optimisation. This paper describes the
approach of generalising the performance analysis
and obtaining the specific results by experiments.

Keywords: Parallel processing, performance
analysis, speedup, load balancing, performance
prediction.

1. INTRODUCTION
The current research of the Parallel Systems lab1 of
the Vrije Universiteit Brussel (VUB) focusses on
generalised performance analysis of parallel
applications.
Parallel processing is running a (sequential) program
on multiple processors to get the job done in less time.
 The only goal is to have a performance gain,
what we call the speedup. The main problem is that
parallelisation and its performance is problem and
system dependent, in a complex way. Furthermore, it
cannot yet be automated and speedup is not
guaranteed. However, for succes, the design of
efficient parallel programs should be straight
forward.
Our current research investigates the possibility to
fully automate experimental parallel performance
analysis, which will offer insight of performance in
function of all parameters and can be used for load
balancing. So we want to extract the general rules
that guides the specific, instantiated analysis and this
is after all, the goal of all science.
Note that our lab focusses on the message passing
paradigm, used on a cluster of workstations.

In the next section we describe briefly the (scientific)
problems involved with parallel processing.

2. PARALLEL PROCESSING
Figure 1 views the process of parallelisation. A
sequential algorithm is parallelised by partitioning it
and adding synchronisation. It is run on the parallel
system, resulting in a certain speedup, which is

1check http://parallel.vub.ac.be for all information

analysed in order to predict the performance, to
detect speedup bottlenecks for effective optimisation
and for efficient load balancing.

Figure 1: parallel processing

The major tasks are the parallelisation, the load
balancing [Gupta 99, Zaki 95] and the performance
analysis (figure 1). There is however a difference
between embarassingly parallel problems and
non-trivial parallel algorithms. In the first category
load balancing is the main difficulty. The
performance analysis is reduced to the
communication – computation ratio and therefore
easy to compute. The only benefit of our approach
would be the automatic analysis of the system
dependency of the performance (as we will explain
later).
For the second category, particular parallel solutions
are necessary, resulting in specific performance
bottlenecks [Kumar 94]. We will have to proof that
our general approach can reveal these ‘hot spots’.
Here, the performance analysis will also serve the
load balancing.

The next section outlines how a performance
analysis, that covers all aspects, can be performed.

3. STANDARD PERFORMANCE ANALYSIS
The time diagram of figure 2 shows the timeline of a
typical parallel program. The sequential work is
divided among the processors of the parallel system.
Besides this usefull computation, parallel processing
requires partitioning synchronisation,

communication, and it generates blocking on the
processors.

Figure 2: parallel algorithm

These 4 types of overhead slow down the
performance, as expressed in Eq. 1 [Kumar 94b,
Lemeire 2001]:

seqTime
overhead

pSpeedup
+

=
1

 (1)

with p the number of processors and SeqTime the
runtime of the sequential algorithm. The total
overhead is the sum of all overhead terms, which
can be measured experimentally:

∑=
i

irmOverheadTeoverhead (2)

The impact of the overhead on the speedup can be
expressed by the slowdown term:

SeqTime
rmOverheadTe

rmSlowdownTe i
i = (3)

Once all of the overhead terms are calculated, it can
be analysed which terms are the major bottlenecks
and which can be neglected.
Blocking overhead is mainly an effect of bad
partitioning resulting in by load imbalances, but this
is not the only reason. In most cases, partioning
happens on the master processor, causing blocking
on the slave processors, resulting in a O(p)
dependency of the partioning overhead. This can also
be the case for synchronisation and communication,
when it blocks other processors (see figure 2). In our
opinion, these effects are easily overlooked. We will
thus have to develop an algorithm which determines
the reasons of blocking.
Next, performance should be expressed in funtion of

all algorithm and system parameters. The number of
processors (p) and the problem size (W) are the most
general, but each algorithm or system adds specific
parameters. For automatic analysis, dependencies
can be investigated experimentally by varying the
parameters, and the resulting experimental data
could be transformed into analytic equations
between the data.
As stated before, the system-dependency is crucial.
Here we want to introduce first-order performance
factors that approximate these dependencies. For
example, communication blocking can be caused by
network congestion. For this overhead, there is an
influence of system and algorithm which can be
expressed by 2 sensitivity factors. One that
represents the chance of network congestion of the
system and one that represents the chance that this
causes blocking during the parallel processing.

The detailed analysis will be explained in the next
paper. In the next section we explain the expected
benefits of our approach.

4. BENEFITS
The performance analysis results in S=f(par), the
speedup in function of all parameters. This
knowledge is usefull in several ways. First, for
speedup prediction of a certain parameter
configuration, for scalability analysis (S versus
increasing p and W) [Kumar 94b], for cost-S tradeoff
[Kumar 94], for calculation of the optimal S
configuration, etc.
Secondly, the function S(par) is necessary for the
load balancing algorithm. Here, the influence of the
system on the speedup is essential.
Next, reducing the speedup analysis to the detailed
analysis of the overhead terms, makes understanding
of the performance results possible and optimisation
of the parallel algorithm. Certainly in the cases when
the overhead is non-trivial, for example when the
blocking is caused by communication. This is more
difficult to predict, making an experimental analysis
indispensable.
Finally, a standard parallel performance analysis,
makes exchange of results easier and more usefull.

Let’s now look how this approach results in an
application.

5. APPLICATION
The application for parallel performance analysis
consists of 5 parts, as shown in figure 3.

Figure 3: application

(A) The Experiment Director decides what
experiments are necessary and configures the
parameters of system and algorithm.

(B) The Measurements part adds chronometers to
the code of the parallel algorithm that will time
all phases (partitioning, communication,
computation, synchronisation and blocking).
Simultaneously, the values of algorithm
variables are passed, like the communication
datasize and the number of performed iterations.
Here algorithm-specific parameters can be
added. This part is integrated with pvm or mpi,
the standard interface for message passing.

(C) All Data is stored in a relational database.
(D) Once an experiment finishes, the Analysis part

first calculates the overhead terms, the speedup,
etc. Then the relation with the different
parameters is investigated and more
experiments can be ordered.

(E) Finally, the Visualisation part shows the results
in different layers, where each layer represents
an aspect of the analysis:
1) The time layer shows all variables in

function of the algorithm runtime of one
experiment (cf the xpvm graphical support
of pvm).

2) The processor layer shows all totalised
values per processor.

3) The experiment layer shows all total
values of an experiment and the
conclusions about speedup and
bottlenecks.

4) The parameter layer shows all values in
function of the system and algorithm
parameters.

Additional interesting features are the possiblity for
the user to input equations between the parameters,
that can then be compared with the experimental
results. Furthermore, the possibility to perform
partial measurements in order to extract equations of
fundamental operations, eg. perform 1 sort iteration
to measure its time constant. Moreover, performance
estimatation before implementation by entering the
estimated overhead and get the performance
analysis.
The application will be implemented on our LINUX
operating system, in C++, using pvm/mpi for parallel
processing [Geist 94, MPI], the QT GUI library
[Trolltech] and the mSQL database [Hughes].

6. OTHER RESEARCH TOPICS
Parallel performance analysis is the topic of the PhD
research of Jan Lemeire. Besides this, the lab
investigates within the scope of parallel processing:
• The construction of parallel algorithms for

algorithm classes, that separate algorithm and
parallelisation aspects as much as possible by
using modern software engineering techniques.

• Visualisation of parallel processing, integrated
in the performance application.

• Parallel discrete event simulation [Brissinck 99],
for which the above performance analysis is
also valid [Lemeire 2001].

• Detection of symmetry properties of problems
for partitioning and visualisation.

7. CONCLUSIONS
The goal of our research is to facilitate parallel
processing of algorithms by automating the
performance analysis. We try to proof that a general,
standard analysis can serve all desired results.
What are the difficulties we have to overcome? First,
it is not yet clear if we can get the same detailed
results of an instantiated algorithm-specific analysis.
So, we will try to find again known results, like the
detailed performance discussions described in
[Kumar].
What are the expected limitations? Clearly, a lot of
experiments will be necessary. This could be
overcome by using partial experiments or perform
experiments only when necessary. Second, in certain
cases first-order approximation for the hardware
dependencies will fail. Higher order analysis will
become necessary.

This research track looks interesting, especially
because we believe it involves more general
scientific problems.

8. REFERENCES

Wouter Brissinck, “Tuneable Granularity Parallel

Discrete Simulation”, PhD, Vrije Universiteit
Brussel (VUB), Brussels, 1999.

A. Geist, A. Beguelin et al., “PVM: Parallel Virtual
Machine”, the MIT press, 1994.

www.netlib.org/pvm3/book/pvm-book.html
www.epm.ornl.gov/pvm/ (pvm homepage)
D. Gupta and P. Bepari, "Load sharing in distributed

systems", In Proceedings of the National
Workshop on Distributed Computing, January
1999.

Hughes Technologies, mSQL database,
http://www.Hughes.com.au/.

Kumar V., Grama A., Gupta A. and Karypsis G.
Introduction to Parallel Computing. Design and
Analysis of Algorithms. Benjamin CUmmings,
California, 1994.

Vipin Kumar and Anshul Gupta, “Analyzing
Scalability of Parallel Algorithms and
Architectures”, Journal of Parallel and Distributed
Computing (special issue on scalability), Volume
22, Number 3, September 1994, pp. 379-391.
1994b.

J. Lemeire and E. Dirkx, “Performance Factors in
Parallel Discrete Event Simulation”, in
Proceedings of the 15th European Simulation
Multiconference (ESM 2001), SCS, Delft, 2001.

MPI homepage, http://www-unix.mcs.anl.gov/mpi/.
Trolltech AS, QT, the cross-platform C++ GUI

toolkit, http://www.trolltech.com.
M.J. Zaki, Wei Li; S. Parthasarathy, “Customized

dynamic load balancing for a network of
workstations”, Proceedings of the High
Performance Distributed Computing (HPDC'96),
IEEE, 1996.

