
 Real-time texture sampling and reconstruction with
wavelet filters

Bob Andries #*1, Adrian Munteanu #*2, Jan Lemeire #*3, Peter Schelkens #*4
Department of Electronics and Informatics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium

*Department of Future Media and Imaging, iMinds V.Z.W., G. Crommenlaan 8, Ghent, Belgium
1bob.andries@vub.ac.be, 2acmuntea@etro.vub.ac.be, 3jlemeire@etro.vub.ac.be,

4pschelke@etro.vub.ac.be

Abstract — Currently, the use of the 2D wavelet transform in

texture compression for real-time texture mapping on the GPU is
still limited, mainly because of the lack of real-time texture
filtering implementations. This work proposes a novel system to
perform 2D wavelet reconstruction and bilinear texture filtering
on a high performance GPU shader. The system is able to
generate a GLSL shader for arbitrary wavelet filter
configurations. This goes beyond earlier works in the literature
proposing Haar wavelet and Discrete Cosine Transform (DCT)
implementations on the GPU. We analyse the shader
performance and run-time complexity for several wavelet filters.
The experimental results show that filters longer than Haar are
deployable on the GPU while maintaining accurate texture
filtering and real-time performance.

I. INTRODUCTION

Texture compression has been an essential tool for real time
rendering for the past fifteen years. The DXT family of codecs
[1] are the most popular texture compression systems, all
relying on block truncation coding techniques. Despite of their
popularity, the attainable compression performance obtained
with such simple block-based quantization techniques is
modest. In order to further improve compression performance,
recent works focus on transform-based texture compression
systems, mostly based on the DCT transform [2] and the Haar
wavelet transform [3], [4], [5].

The transform decorrelates the input signal prior to
quantization, which is known to improve the compression
gain relative to quantization alone, as performed by the codecs
in the DXT family. Moreover, transform-based codecs allow
for more freedom than hard-coded DXT codecs. The
decomposition of an image into subbands enables features
such as scalable compression, per subband bitrate allocation
and inherent mip-mapping support.

Most of the work in the area of transform-based texture
compression cannot be deployed in practical applications, as
texture filtering – an essential part of texture mapping – is
usually not implemented or has some serious performance
drawbacks. The systems that implement the wavelet transform
in [3], [4], [5] are all limited to the Haar transform, which is
known to be inferior to higher order filters required for
efficiently compressing natural images. The approach in [6]
focuses on practical implementations of the wavelet transform
[7] on the GPU, but this technique still cannot be used in
practical systems as it does not perform bilinear texture

filtering in the wavelet domain. Currently there is only one
transform-based scheme in the literature that performs
transform-domain bilinear filtering in an efficient way, and
this is the DCT-based system of [2].

Another drawback of transform-based compression is the
lack of specialized hardware support, contrary to DXT. This
results in additional run-time complexity, especially when
texture filtering is required. However, the added complexity
can be countered nowadays by the computational power of
current GPUs, which has tremendously increased in the recent
past. By making efficient use of this increased capacity, the
fill rate – i.e. the rate at which pixels can be processed – of a
transform-based reconstruction system can be sufficient for
real-time texture mapping.

In this work, we propose a 2D wavelet reconstruction
implementation on the GPU and investigate the transform-
domain filtering problem for wavelet filters of arbitrary length.
The resulting systems will be analysed in terms of
computational complexity, floating-point error and bandwidth
requirements. We analyse various biorthogonal wavelet filters,
with varying number of vanishing moments, starting from the
simple 1.1 (Haar) transform and ending with the popular 4.4
wavelet transform.

The remainder of the paper is organised as follows. Section
II details the transform-domain texture filtering problem and
the approach of Hollemeersch et al. [2]. Section III covers the
construction of the 2D wavelet reconstruction matrix, suitable
for a GPU implementation. In section IV, we explain how
border extension can be used in conjunction with the matrix
constructed in section III. Section V shows the results of the
proposed implementation, followed by conclusions and future
work given in section VI.

II. TRANSFORM DOMAIN FILTERING

2D texture mapping is the process of mapping the data
contained in a 2D image onto a surface in 3D space, which is
in turn projected onto the user’s 2D screen. Bilinear filtering
is an essential part of this process, merging 4 neighbouring
texture elements (texels) into one texture sample.

Modern GPU’s can handle bilinear texture filtering on the
fly, i.e. there is no difference in performance between
sampling just one texel or sampling an interpolation of four
neighbouring texels. In particular, performance would suffer

Jan Lemeire
Typewritten Text
 IEEE International Workshop on Multimedia Signal Processing (MMSP), Italy, 2013

greatly if we would implement the reconstruction and filtering
operations without making use of the built-in hardware
interpolators.

A. Transform domain filtering for a block transform

Hollemeersch et. al. [2] use a 4x4 2D DCT transform,
decomposing an input image into 16 frequency bands. In the
lossless case, each of these 16 frequency bands is sent to the
GPU as a separate texture. The advantage of this system is its
ability to reconstruct and filter a pixel by using just one
sample instruction per DCT frequency band.

The principle behind this system is the linearity of the
filtering operators and the transform. In each dimension, two
different filtering cases have to be covered: a sampling
position can require samples from the same block (intra block
filtering), or it can require samples from two neighbouring
blocks (inter block filtering).

Figure 1. Intra block filtering. In this case, only DCT coefficients in the
current block are required to reconstruct a filtered pixel; the 3 adjacent spatial

domain blocks are delimited by thicker vertical lines.

Figure 2. Inter block filtering. In this case, coefficients from neighbouring
blocks are required to reconstruct a filtered pixel; the 3 adjacent spatial

domain blocks are delimited by thicker vertical lines.

Intra block filtering is straightforward (Fig. 1), the linearity
of the transform is exploited and equation (1) shows how
multiplication of the filter weights w and the transform
matrix � can be used to achieve the desired result:

 filteredx w x w T c t c= ⋅ = ⋅ ⋅ = ⋅ , (1)

where x is a column vector denoting the spatial-domain pixel
values in the current block, c is a column vector denoting the
corresponding DCT coefficients, and t is the resulting row
vector performing joint reconstruction and interpolation.

Note that the filter weightsw depend on the sampling
position within the current block. The GPU samples the
coefficients exactly at their centre, the hardware interpolation
being actually not performed in this case.

In the case of inter block filtering (Fig. 2), Hollemeersch et
al. [2] propose a solution employing the hardware texture
filtering units. Instead of sampling at the center of each texel
in each frequency band, the sampling position is shifted to a
position between neighbouring texels, by an amount
proportional to the actual sampling position between two
neighbouring blocks. A block mirroring scheme makes sure
the neighbouring texels at the edges of the blocks can be
reconstructed by using exactly the same weights; for more
details, the interested reader is referred to [2]. It should be
noted that this mirroring scheme is applied before executing
the transform, lowering spatial coherence and thus potentially
lowering compression performance.

B. Transform domain filtering for a wavelet transform

Although the wavelet transform is not block-based, the
approach above can be applied to handle hardware filtered
wavelet reconstruction due to the localization properties of the
wavelet transform. In order to use this approach for an
arbitrary 2D wavelet transform, we have to define a block of
samples in the spatial domain and a corresponding matrix
which can reconstruct the elements of this block based on a
corresponding set of wavelet coefficients. This requirement
makes sure we can perform intra block filtering.

To enable inter block filtering, using the block-based
approach of [2], just as many equally sized sub-bands are
required in the wavelet transform representation as there are
pixels in the reconstruction block. The classical wavelet
transform [3] does not fulfil this requirement, that is, the size
of wavelet subbands decreases with a factor of four with each
decomposition level. In general, the wavelet packet
decomposition is an example of a transform that can produce
equally sized of sub-bands. For ease of implementation, we
start from a conventional 2D discrete wavelet transform and
apply polyphase decompositions of the high-frequency bands,
which are appropriately performed at each resolution level
until equally sized subbands are obtained across all levels. The
next section will elaborate on the construction of a 2D wavelet
reconstruction matrix suitable for transform domain filtering.

III. 2D DWT RECONSTRUCTION

In classical multiresolution representations, the wavelet
transform is a global transform applied on the entire input
image, which is performed row- and column-wise, using
either conventional low- and band-pass filtering operations [7]
or the lifting scheme [8].

Each texture sample has to be calculated independently of
its neighbours on a GPU. Performing a global inverse wavelet
transform on the entire image to get a single texture sample
would be completely inefficient; that is, employing the
conventional filter-bank or lifting-based implementation of the
inverse wavelet transform followed by bilinear filtering in the
spatial domain does not make sense in practice. Furthermore,

we cannot benefit either of the well-known halving of the
computational burden [8] brought by lifting when compared to
traditional filtering. Even when GPGPU is used to reconstruct
the entire image, it has been shown [6] that the lifting scheme
[8] does not bring any performance improvements on a GPU
when compared to a conventional filtering-based approach [7].

Therefore, we will base our approach on the traditional
filter bank implementation [7], which can be carried out as a
matrix-vector multiplication. This matrix enables us to easily
analyse the data dependencies for each texel in the spatial
domain and identify the corresponding samples in the wavelet
domain that are necessary for its accurate reconstruction.
Additionally, writing the transform as a matrix-vector
multiplication allows for grouping the filtering and inverse
transform operations, similar to (1). We will first present the
trivial cases, corresponding to the single-level 1D and 2D
matrices. Using these notations and algorithms, we will finally
construct a multi-level 2D wavelet reconstruction matrix.

C. 1D case

Equations (2) and (3) below can be used to express the
single level 1D wavelet transform as a matrix-vector
multiplication:

1

1

1d

n

n

a

b
l

T
h

a

b

 = ⋅

⋮ (2)

 1
k

k d k
k

a
x T c

b

= = ⋅

ɶ (3)

where ,i ia b are even and odd spatial-domain samples needed
to compute the low- and high-pass coefficients ,l h
respectively, kx is the vector containing the reconstructed
spatial-domain pair of samples ,k ka b . 1dT , 1dTɶ are the 1D
decomposition and reconstruction matrices respectively, and

kc is the vector of wavelet coefficients needed to reconstruct

kx . To further fully define the 1D reconstruction matrix we
introduce an input mapping composed of ()1dband i and

1 ()dinputoffset i , which define the band and the offset at
which the coefficient can be found for index i of vector kc :

[] () ()1 1;k d dc i b k inputOffset i b band i= + =

In other words, given the index i , one identifies the band b
corresponding to i , and one extracts the element

()1dk inputOffset i+ from this band. The matrices 1dT and

1dTɶ can be easily constructed making use of the filter
coefficients for each filter bank instantiation imposing that
perfect reconstruction is attained for any kx .

D. 2D case

In 2D, the reconstruction footprint has four elements, as can
be seen in equation (4) where the 2D equivalent of equation (2)
is given:

1

2

3

4

,

,
, 2 2

,

,

,

k p

k p
k p D D

k p

k

k

p

p

llaa

lhab
x T T

hlba

bb h

c

h

 = = =

⋅ ⋅

ɶ ɶ

D

D

D

D

 (4)

where iD are sets of indices in the corresponding wavelet
subbands (LL, LH, HL, HH) indicating the wavelet
coefficients needed to reconstruct ,k px . Examples of such sets
are given in [9].

Generating the single level matrix for the 2D wavelet
reconstruction is done by convolving two 1D transforms. A
first step is to generate the new elements of the transformation
matrix, along with their input and output mapping, as seen in
Table 1. The second step is to assemble a complete mapping
of all unique inputs, defining the input vector and thus the
number of columns of the new 2D reconstruction matrix 2dTɶ .
Similarly, the number of output offsets determines the number
of rows in the new matrix. Each coefficient can then be put in
the matrix according to its input and output mapping.

Table 1. Pseudo-code describing the generation of the reconstruction

matrix 2dTɶ for a one level inverse wavelet transform.

Inputs:

• matrix 1dTɶ , the 1D wavelet reconstruction matrix
• the mappings ()1dband i and 1 ()dinputoffset i , mapping

each row index i in kc to a corresponding input band and
an input offset

• the mapping ()2doutputoffset i , mapping each row index i
in ,k px to a corresponding 2D output offset in the 2 by 2
block of reconstructed elements

Outputs:

• matrix 2dTɶ , the 2D wavelet reconstruction matrix
• the mappings ()2dband i and 2 ()dinputoffset i , mapping each

row index i in ,k pc to a corresponding 2D input band and
2D offset

for each index i in ,k px
 rowX = get row 2 ().doutputoffset i x in 1dTɶ
 rowY = get row 2 ().doutputoffset i y in 1dTɶ
 for each index x in rowX
 for each index y in rowY
 [] [] value rowX x rowY y= ⋅
 () ()1 12 (,)d dinputBand band d band x band y=
 () ()1 12 (,)d dinputOffset dOffset inputOffset x inputOffset y=
 (,)index findOrCreateIndex inputBand inputOffset=
 ()2dband index inputBand=
 2 ()dinputoffset index inputOffset=
 []2 ,d i index v ueT al=ɶ
 end
 end
end

E. Multiple levels

When dealing with multiple levels, the size of vector ,k px
increases; in the case of 2 levels, the 4 element output vector
in equation (4) becomes a 16 element output vector. To create
the corresponding extended matrix, we first apply the
algorithm in Table 1 on an extended output vector. The

corresponding mapping ()2dband i will still depend on a level
1 low-pass sub-band, which is not available when N > 1
decompositions have been performed. Conceptually, each of
the level 1 low-pass sub-band coefficients can be in turn
expressed using (4) as a function of the coefficients in the
level 2 subbands. Similar to (4), this will finally yield a 2D
transformation matrix for 2 decomposition levels, which
multiplies the coefficients of the level 1 and level 2 subbands.

A last issue is the requirement of using equally sized bands.
The generated reconstruction matrices can be easily modified
to support polyphase reconstruction in which case the input
mappings have to be appropriately adapted.

IV. BORDER EXTENSION

Border extension has to be performed on the 2D signal for
any wavelet transform except for the simple Haar wavelet
transform. Commonly used extension methods are the half-
point and the point symmetric extensions. One of these two
extension techniques has to be applied both when
decomposing and reconstructing the signal.

When reconstructing a sample, several texels from the
wavelet sub-bands are required for reconstruction. Which
texels are exactly required is determined by the position of the
desired reconstructed sample and the subband and offsets
stored in the input mappings ()2dband i and 2 ()dinputoffset i .
Calculating the sample positions for a single level
decomposition is straightforward: for each element in ,k pc ,
add the corresponding offset to the sample position at (,)k p ,
followed by the application of border extension. Calculating
the positions for a decomposition with more than one level is
more complicated. These positions should be derived from the
sample positions from the level above them, which
complicates the construction of the one pass matrix, as we
cannot simply use offsets anymore to define the input
mapping. This can be alleviated by replacing the offsets
introduced in section II.C by referenced positions. A
referenced position consists of an offset and a parent
relationship. At runtime, this results in a tree like database of
positions, which can only be resolved by first calculating the
root value, after which its children can be calculated and so on
until all the sampling positions have been resolved.

V. COMPLEXITY AND PERFORMANCE

F. GLSL shader generation

As a rather unbiased platform and because of the support
for multiple platforms, GLSL was chosen as implementation
language. To facilitate benchmarking and fast exploration of
different algorithms, an automatic GLSL shader generation
system was developed. The core of this system is the matrix
generation described in section III and the border extension
given in section IV. The system can generate a shader with
just two parameters: the 1D wavelet reconstruction filter and
the number of decomposition levels. It allows us to send fully
unrolled GLSL code to the OpenGL drivers, which is then
further optimized and compiled into a binary shader program.

Figure 1. Sequence of operations for the generation of the GLSL code.

A second advantage of this system is that it allows us to

easily calculate the theoretical complexity of each
configuration. This might differ from the actual run time
complexity as the GLSL compiler is free to optimize and
merge the unrolled calculations in the GLSL code.

G. Results

The run time performance of the proposed 2D wavelet
reconstruction and bilinear texture filtering depends mainly on
two factors: the number of texture sample instructions and the
number of floating point operations. These two groups of
instructions compose the majority of the generated GLSL
code. As modern GPUs still have a hard time performing well
on non-locally grouped branching instructions, these were
entirely avoided.

The results obtained for wavelet filters having various
number of vanishing moments for 1 and 2 decomposition
levels are given in Tables 2 and 3. In the naming convention
biorxy, x and y indicate the number of vanishing moments for
the decomposition and reconstruction band-pass filters
respectively.

Table 2. Computational complexity for various filter kernels and
decomposition levels.

configuration Texture
samples / pixel

Matrix size
(elements)

1 level Haar 4 16
1 level bior13 16 64
1 level bior31 36 144
1 level bior22 25 100
1 level bior44 81 324
2 level Haar 16 256
2 level bior13 48 768
2 level bior31 84 1344
2 level bior22 65 1040
2 level bior44 265 4240

The fill rate was derived by rendering a texture to a 1024
by 1024 render target. This number can be used as a guideline
when the average number of visible textures and the screen
resolution of a real time application is known. For example,
our render target of about 1 Mpixel was used to render the

same texture 32 times during each render pass, which requires
a fill rate of at least 1 Gpixel/s to achieve a smooth frame rate
of 30 fps. As for the complexity, we notice that there is very
little relation between the size of the reconstruction matrix and
the real time performance on the GPU; the performance of the
analysed GPU shaders is probably constrained by the texture
sampling units, which have to process a high amount of
sample instructions per pixel.

Table 3. Fill rates for different filter kernels and decomposition levels
for two different GPUs. Several OpenGL drivers had troubles compiling

the GLSL source of the 2 level bior44 reconstruction shader.

 Fill rate (Gpixel/s)
configuration AMD 7970 NVIDIA

GTX 660 Ti
1 level Haar 20.8 12.5
1 level bior13 6.31 6.74
1 level bior31 2.52 3.34
1 level bior22 5.02 4.47
1 level bior44 1.29 1.36
2 level Haar 4.29 5.25
2 level bior13 1.45 1.93
2 level bior31 0.88 1.10
2 level bior22 1.26 1.44
2 level bior44 0.072 N/A

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a system which enables the use of
wavelet reconstruction in filtered texture mapping scenarios.
The performance results show that real-time implementations
are achievable for 2 level wavelet transforms with filters

having up to 4 vanishing moments in total for the
decomposition and reconstruction band-pass filters.

The next step is to avoid mirroring the blocks (see section
II.A), as this has a detrimental effect on compression
performance. Recent developments in GPU shading language,
especially the newer sampling instructions, might enable us to
employ some more fundamental methods to avoid this
problem.

VIII. REFERENCES
[1] P. Brown, S3 texture compression specification,
http://www.opengl.org/registry/specs/EXT/texture_compression_s3tc.txt
[2] C.-F. Hollemeersch, B. Pieters, P. Lambert, and R. Van de Walle, “A new
approach to combine texture compression and filtering,” The Visual Computer,
vol. 28, no. 4, pp. 371–385, 2012.
[3] S. Diverdi, N. Candussi, and T. Höllerer, “Real-time rendering with
wavelet-compressed multi-dimensional textures on the GPU,” In University of
California, Santa Barbara. Citeseer, 2005.
[4] A. V. Pereberin et al. “Hierarchical approach for texture compression,”
Proceedings of GraphiCon ’99, pp. 195–199, 1999.
[5] C. Sun, Y. Tsao, and S. Chien, “High-quality mipmapping texture
compression with alpha maps for graphics processing units,” IEEE
Transactions on Multimedia, vol. 11, no. 4, pp. 589–599, 2009.
[6] C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, and F. Tirado. Parallel
implementation of the 2d discrete wavelet transform on graphics processing
units: Filter bank versus lifting. IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 3, pp. 299–310, 2008.
[7] S. Mallat, “A Theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 7, pp. 674-693, July 1989.
[8] W. Sweldens, “The Lifting Scheme: a Custom Design Construction of
Biorthogonal Wavelets,” Journal of Appl. and Comput. Harmonic Analysis,
vol. 3, no. 2, pp. 186-200, 1996.
[9] A. Alecu, A. Munteanu, P. Schelkens, J. Cornelis, and S. Dewitte,
“Wavelet-based Fixed and Embedded Linf-constrained Image Coding,” SPIE
Journal of Electronic Imaging, vol. 12, no. 3, pp. 522-538, July 2003.

