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Abstract — Currently, the use of the 2D wavelet transform in 

texture compression for real-time texture mapping on the GPU is 
still limited, mainly because of the lack of real-time texture 
filtering implementations. This work proposes a novel system to 
perform 2D wavelet reconstruction and bilinear texture filtering 
on a high performance GPU shader. The system is able to 
generate a GLSL shader for arbitrary wavelet filter 
configurations. This goes beyond earlier works in the literature 
proposing Haar wavelet and Discrete Cosine Transform (DCT) 
implementations on the GPU. We analyse the shader 
performance and run-time complexity for several wavelet filters. 
The experimental results show that filters longer than Haar are 
deployable on the GPU while maintaining accurate texture 
filtering and real-time performance.  

I. INTRODUCTION 

Texture compression has been an essential tool for real time 
rendering for the past fifteen years. The DXT family of codecs 
[1] are the most popular texture compression systems, all 
relying on block truncation coding techniques. Despite of their 
popularity, the attainable compression performance obtained 
with such simple block-based quantization techniques is 
modest. In order to further improve compression performance, 
recent works focus on transform-based texture compression 
systems, mostly based on the DCT transform [2] and the Haar 
wavelet transform [3], [4], [5].  

The transform decorrelates the input signal prior to 
quantization, which is known to improve the compression 
gain relative to quantization alone, as performed by the codecs 
in the DXT family. Moreover, transform-based codecs allow 
for more freedom than hard-coded DXT codecs. The 
decomposition of an image into subbands enables features 
such as scalable compression, per subband bitrate allocation 
and inherent mip-mapping support.  

Most of the work in the area of transform-based texture 
compression cannot be deployed in practical applications, as 
texture filtering – an essential part of texture mapping – is 
usually not implemented or has some serious performance 
drawbacks. The systems that implement the wavelet transform 
in [3], [4], [5] are all limited to the Haar transform, which is 
known to be inferior to higher order filters required for 
efficiently compressing natural images. The approach in [6] 
focuses on practical implementations of the wavelet transform 
[7] on the GPU, but this technique still cannot be used in 
practical systems as it does not perform bilinear texture 

filtering in the wavelet domain. Currently there is only one 
transform-based scheme in the literature that performs 
transform-domain bilinear filtering in an efficient way, and 
this is the DCT-based system of [2]. 

Another drawback of transform-based compression is the 
lack of specialized hardware support, contrary to DXT. This 
results in additional run-time complexity, especially when 
texture filtering is required. However, the added complexity 
can be countered nowadays by the computational power of 
current GPUs, which has tremendously increased in the recent 
past. By making efficient use of this increased capacity, the 
fill rate – i.e. the rate at which pixels can be processed – of a 
transform-based reconstruction system can be sufficient for 
real-time texture mapping. 

In this work, we propose a 2D wavelet reconstruction 
implementation on the GPU and investigate the transform-
domain filtering problem for wavelet filters of arbitrary length. 
The resulting systems will be analysed in terms of 
computational complexity, floating-point error and bandwidth 
requirements. We analyse various biorthogonal wavelet filters, 
with varying number of vanishing moments, starting from the 
simple 1.1 (Haar) transform and ending with the popular 4.4 
wavelet transform. 

The remainder of the paper is organised as follows. Section 
II details the transform-domain texture filtering problem and 
the approach of Hollemeersch et al. [2]. Section III covers the 
construction of the 2D wavelet reconstruction matrix, suitable 
for a GPU implementation. In section IV, we explain how 
border extension can be used in conjunction with the matrix 
constructed in section III. Section V shows the results of the 
proposed implementation, followed by conclusions and future 
work given in section VI. 

II. TRANSFORM DOMAIN FILTERING 

2D texture mapping is the process of mapping the data 
contained in a 2D image onto a surface in 3D space, which is 
in turn projected onto the user’s 2D screen. Bilinear filtering 
is an essential part of this process, merging 4 neighbouring 
texture elements (texels) into one texture sample. 

Modern GPU’s can handle bilinear texture filtering on the 
fly, i.e. there is no difference in performance between 
sampling just one texel or sampling an interpolation of four 
neighbouring texels. In particular, performance would suffer 
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greatly if we would implement the reconstruction and filtering 
operations without making use of the built-in hardware 
interpolators. 

A. Transform domain filtering for a block transform 

Hollemeersch et. al. [2] use a 4x4 2D DCT transform, 
decomposing an input image into 16 frequency bands. In the 
lossless case, each of these 16 frequency bands is sent to the 
GPU as a separate texture. The advantage of this system is its 
ability to reconstruct and filter a pixel by using just one 
sample instruction per DCT frequency band. 

The principle behind this system is the linearity of the 
filtering operators and the transform. In each dimension, two 
different filtering cases have to be covered: a sampling 
position can require samples from the same block (intra block 
filtering), or it can require samples from two neighbouring 
blocks (inter block filtering).  

 

Figure 1. Intra block filtering. In this case, only DCT coefficients in the 
current block are required to reconstruct a filtered pixel; the 3 adjacent spatial 

domain blocks are delimited by thicker vertical lines.  

 

Figure 2. Inter block filtering. In this case, coefficients from neighbouring 
blocks are required to reconstruct a filtered pixel; the 3 adjacent spatial 

domain blocks are delimited by thicker vertical lines. 

Intra block filtering is straightforward (Fig. 1), the linearity 
of the transform is exploited and equation (1) shows how 
multiplication of the filter weights w  and the transform 
matrix � can be used to achieve the desired result:  

 filteredx w x w T c t c= ⋅ = ⋅ ⋅ = ⋅ , (1) 

where x  is a column vector denoting the spatial-domain pixel 
values in the current block, c  is a column vector denoting the 
corresponding DCT coefficients, and t  is the resulting row 
vector performing joint reconstruction and interpolation.  

Note that the filter weightsw depend on the sampling 
position within the current block. The GPU samples the 
coefficients exactly at their centre, the hardware interpolation 
being actually not performed in this case. 

In the case of inter block filtering (Fig. 2), Hollemeersch et 
al. [2] propose a solution employing the hardware texture 
filtering units. Instead of sampling at the center of each texel 
in each frequency band, the sampling position is shifted to a 
position between neighbouring texels, by an amount 
proportional to the actual sampling position between two 
neighbouring blocks. A block mirroring scheme makes sure 
the neighbouring texels at the edges of the blocks can be 
reconstructed by using exactly the same weights; for more 
details, the interested reader is referred to [2]. It should be 
noted that this mirroring scheme is applied before executing 
the transform, lowering spatial coherence and thus potentially 
lowering compression performance. 

B. Transform domain filtering for a wavelet transform 

Although the wavelet transform is not block-based, the 
approach above can be applied to handle hardware filtered 
wavelet reconstruction due to the localization properties of the 
wavelet transform. In order to use this approach for an 
arbitrary 2D wavelet transform, we have to define a block of 
samples in the spatial domain and a corresponding matrix 
which can reconstruct the elements of this block based on a 
corresponding set of wavelet coefficients. This requirement 
makes sure we can perform intra block filtering. 

To enable inter block filtering, using the block-based 
approach of [2], just as many equally sized sub-bands are 
required in the wavelet transform representation as there are 
pixels in the reconstruction block. The classical wavelet 
transform [3] does not fulfil this requirement, that is, the size 
of wavelet subbands decreases with a factor of four with each 
decomposition level. In general, the wavelet packet 
decomposition is an example of a transform that can produce 
equally sized of sub-bands. For ease of implementation, we 
start from a conventional 2D discrete wavelet transform and 
apply polyphase decompositions of the high-frequency bands, 
which are appropriately performed at each resolution level 
until equally sized subbands are obtained across all levels. The 
next section will elaborate on the construction of a 2D wavelet 
reconstruction matrix suitable for transform domain filtering. 

III.  2D DWT RECONSTRUCTION  

In classical multiresolution representations, the wavelet 
transform is a global transform applied on the entire input 
image, which is performed row- and column-wise, using 
either conventional low- and band-pass filtering operations [7] 
or the lifting scheme [8].  

Each texture sample has to be calculated independently of 
its neighbours on a GPU. Performing a global inverse wavelet 
transform on the entire image to get a single texture sample 
would be completely inefficient; that is, employing the 
conventional filter-bank or lifting-based implementation of the 
inverse wavelet transform followed by bilinear filtering in the 
spatial domain does not make sense in practice. Furthermore, 



we cannot benefit either of the well-known halving of the 
computational burden [8] brought by lifting when compared to 
traditional filtering. Even when GPGPU is used to reconstruct 
the entire image, it has been shown [6] that the lifting scheme 
[8] does not bring any performance improvements on a GPU 
when compared to a conventional filtering-based approach [7].  

Therefore, we will base our approach on the traditional 
filter bank implementation [7], which can be carried out as a 
matrix-vector multiplication. This matrix enables us to easily 
analyse the data dependencies for each texel in the spatial 
domain and identify the corresponding samples in the wavelet 
domain that are necessary for its accurate reconstruction. 
Additionally, writing the transform as a matrix-vector 
multiplication allows for grouping the filtering and inverse 
transform operations, similar to (1). We will first present the 
trivial cases, corresponding to the single-level 1D and 2D 
matrices. Using these notations and algorithms, we will finally 
construct a multi-level 2D wavelet reconstruction matrix. 

C. 1D case 

Equations (2) and (3) below can be used to express the 
single level 1D wavelet transform as a matrix-vector 
multiplication: 
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where ,i ia b  are even and odd spatial-domain samples needed 
to compute the low- and high-pass coefficients ,l h  
respectively, kx  is the vector containing the reconstructed 
spatial-domain pair of samples ,k ka b . 1dT , 1dTɶ  are the 1D 
decomposition and reconstruction matrices respectively, and 

kc  is the vector of wavelet coefficients needed to reconstruct 

kx . To further fully define the 1D reconstruction matrix we 
introduce an input mapping composed of ( )1dband i  and 

1 ( )dinputoffset i , which define the band and the offset at 
which the coefficient can be found for index i  of vector kc : 

[ ] ( ) ( )1 1;k d dc i b k inputOffset i b band i= + =    

In other words, given the index i , one identifies the band b
corresponding to i , and one extracts the element 

( )1dk inputOffset i+  from this band. The matrices 1dT  and 

1dTɶ  can be easily constructed making use of the filter 
coefficients for each filter bank instantiation imposing that 
perfect reconstruction is attained for any kx . 

D. 2D case 

In 2D, the reconstruction footprint has four elements, as can 
be seen in equation (4) where the 2D equivalent of equation (2) 
is given: 
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where iD  are sets of indices in the corresponding wavelet 
subbands (LL, LH, HL, HH) indicating the wavelet 
coefficients needed to reconstruct ,k px . Examples of such sets 
are given in [9]. 

Generating the single level matrix for the 2D wavelet 
reconstruction is done by convolving two 1D transforms. A 
first step is to generate the new elements of the transformation 
matrix, along with their input and output mapping, as seen in 
Table 1. The second step is to assemble a complete mapping 
of all unique inputs, defining the input vector and thus the 
number of columns of the new 2D reconstruction matrix 2dTɶ . 
Similarly, the number of output offsets determines the number 
of rows in the new matrix. Each coefficient can then be put in 
the matrix according to its input and output mapping. 

Table 1. Pseudo-code describing the generation of the reconstruction 

matrix 2dTɶ  for a one level inverse wavelet transform. 

Inputs: 

• matrix 1dTɶ , the 1D wavelet reconstruction matrix 
• the mappings ( )1dband i  and 1 ( )dinputoffset i , mapping 

each row index i  in kc  to a corresponding input band and 
an input offset 

• the mapping ( )2doutputoffset i , mapping each row index i
in ,k px to a corresponding 2D output offset in the 2 by 2 
block of reconstructed elements 

Outputs: 

• matrix 2dTɶ , the 2D wavelet reconstruction matrix 
• the mappings ( )2dband i and 2 ( )dinputoffset i , mapping each 

row index i  in ,k pc to a corresponding 2D input band and 
2D offset 

for each index i  in ,k px  
  rowX =  get row 2 ( ).doutputoffset i x in 1dTɶ  
  rowY =  get row 2 ( ).doutputoffset i y in 1dTɶ  
   for each index x  in rowX  
      for each index y  in rowY  
        [ ] [ ]   value rowX x rowY y= ⋅  
        ( ) ( )1 12 ( , )d dinputBand band d band x band y=  
        ( ) ( )1 12 ( , )d dinputOffset dOffset inputOffset x inputOffset y=  
        ( , )index findOrCreateIndex inputBand inputOffset=  
        ( )2dband index inputBand=  
        2 ( )dinputoffset index inputOffset=  
        [ ]2 ,d i index v ueT al=ɶ  
      end  
   end  
end  

E. Multiple levels 

When dealing with multiple levels, the size of vector ,k px
increases; in the case of 2 levels, the 4 element output vector 
in equation (4) becomes a 16 element output vector. To create 
the corresponding extended matrix, we first apply the 
algorithm in Table 1 on an extended output vector. The 



corresponding mapping ( )2dband i  will still depend on a level 
1 low-pass sub-band, which is not available when N > 1 
decompositions have been performed. Conceptually, each of 
the level 1 low-pass sub-band coefficients can be in turn 
expressed using (4) as a function of the coefficients in the 
level 2 subbands. Similar to (4), this will finally yield a 2D 
transformation matrix for 2 decomposition levels, which  
multiplies the coefficients of the level 1 and level 2 subbands.   

A last issue is the requirement of using equally sized bands. 
The generated reconstruction matrices can be easily modified 
to support polyphase reconstruction in which case the input 
mappings have to be appropriately adapted. 

IV.  BORDER EXTENSION 

Border extension has to be performed on the 2D signal for 
any wavelet transform except for the simple Haar wavelet 
transform. Commonly used extension methods are the half-
point and the point symmetric extensions. One of these two 
extension techniques has to be applied both when 
decomposing and reconstructing the signal. 

When reconstructing a sample, several texels from the 
wavelet sub-bands are required for reconstruction. Which 
texels are exactly required is determined by the position of the 
desired reconstructed sample and the subband and offsets 
stored in the input mappings ( )2dband i  and 2 ( )dinputoffset i . 
Calculating the sample positions for a single level 
decomposition is straightforward: for each element in ,k pc , 
add the corresponding offset to the sample position at ( , )k p , 
followed by the application of border extension. Calculating 
the positions for a decomposition with more than one level is 
more complicated. These positions should be derived from the 
sample positions from the level above them, which 
complicates the construction of the one pass matrix, as we 
cannot simply use offsets anymore to define the input 
mapping. This can be alleviated by replacing the offsets 
introduced in section II.C by referenced positions. A 
referenced position consists of an offset and a parent 
relationship. At runtime, this results in a tree like database of 
positions, which can only be resolved by first calculating the 
root value, after which its children can be calculated and so on 
until all the sampling positions have been resolved. 

V. COMPLEXITY AND PERFORMANCE 

F. GLSL shader generation 

As a rather unbiased platform and because of the support 
for multiple platforms, GLSL was chosen as implementation 
language. To facilitate benchmarking and fast exploration of 
different algorithms, an automatic GLSL shader generation 
system was developed. The core of this system is the matrix 
generation described in section III and the border extension 
given in section IV. The system can generate a shader with 
just two parameters: the 1D wavelet reconstruction filter and 
the number of decomposition levels. It allows us to send fully 
unrolled GLSL code to the OpenGL drivers, which is then 
further optimized and compiled into a binary shader program. 

Figure 1. Sequence of operations for the generation of the GLSL code. 

 
A second advantage of this system is that it allows us to 

easily calculate the theoretical complexity of each 
configuration. This might differ from the actual run time 
complexity as the GLSL compiler is free to optimize and 
merge the unrolled calculations in the GLSL code. 

G. Results 

The run time performance of the proposed 2D wavelet 
reconstruction and bilinear texture filtering depends mainly on 
two factors: the number of texture sample instructions and the 
number of floating point operations. These two groups of 
instructions compose the majority of the generated GLSL 
code. As modern GPUs still have a hard time performing well 
on non-locally grouped branching instructions, these were 
entirely avoided. 

The results obtained for wavelet filters having various 
number of vanishing moments for 1 and 2 decomposition 
levels are given in Tables 2 and 3. In the naming convention 
biorxy, x and y indicate the number of vanishing moments for 
the decomposition and reconstruction band-pass filters 
respectively. 

Table 2. Computational complexity for various filter kernels and 
decomposition levels. 

configuration Texture 
samples / pixel 

Matrix size 
(elements) 

1 level Haar 4 16 
1 level bior13 16 64 
1 level bior31 36 144 
1 level bior22 25 100 
1 level bior44 81 324 
2 level Haar 16 256 
2 level bior13 48 768 
2 level bior31 84 1344 
2 level bior22 65 1040 
2 level bior44 265 4240 

The fill rate was derived by rendering a texture to a 1024 
by 1024 render target. This number can be used as a guideline 
when the average number of visible textures and the screen 
resolution of a real time application is known. For example, 
our render target of about 1 Mpixel was used to render the 



same texture 32 times during each render pass, which requires 
a fill rate of at least 1 Gpixel/s to achieve a smooth frame rate 
of 30 fps. As for the complexity, we notice that there is very 
little relation between the size of the reconstruction matrix and 
the real time performance on the GPU; the performance of the 
analysed GPU shaders is probably constrained by the texture 
sampling units, which have to process a high amount of 
sample instructions per pixel. 

 

Table 3. Fill rates for different filter kernels and decomposition levels 
for two different GPUs. Several OpenGL drivers had troubles compiling 

the GLSL source of the 2 level bior44 reconstruction shader. 

 Fill rate (Gpixel/s) 
configuration AMD 7970 NVIDIA 

GTX 660 Ti 
1 level Haar 20.8 12.5 
1 level bior13 6.31 6.74 
1 level bior31 2.52 3.34 
1 level bior22 5.02 4.47 
1 level bior44 1.29 1.36 
2 level Haar 4.29 5.25 
2 level bior13 1.45 1.93 
2 level bior31 0.88 1.10 
2 level bior22 1.26 1.44 
2 level bior44 0.072 N/A 

 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presents a system which enables the use of 
wavelet reconstruction in filtered texture mapping scenarios. 
The performance results show that real-time implementations 
are achievable for 2 level wavelet transforms with filters 

having up to 4 vanishing moments in total for the 
decomposition and reconstruction band-pass filters. 

The next step is to avoid mirroring the blocks (see section 
II.A), as this has a detrimental effect on compression 
performance. Recent developments in GPU shading language, 
especially the newer sampling instructions, might enable us to 
employ some more fundamental methods to avoid this 
problem. 
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