IEEE International Workshop on Multimedia Signal Processing (MMSP), Italy, 2013

Real-time texture sampling and reconstruction with
wavelet filters

Bob Andries™, Adrian Muntean(’

2 Jan Lemeir&®, Peter Schelkedd

“Department of Electronics and Informatics, Vrijeitsrsiteit Brussel, Pleinlaan 2, Brussels, Belgium
*Department of Future Media and Imaging, iMinds W\Z, G. Crommenlaan 8, Ghent, Belgium

‘bob. andri es@ub. ac. be,

*acrmunt ea@tro.

vub. ac. be, ’jleneire@tro.vub. ac. be,

‘pschel ke@tro. vub. ac. be

Abstract— Currently, the use of the 2D wavelet transform in
texture compression for real-time texture mapping a the GPU is
still limited, mainly because of the lack of realime texture
filtering implementations. This work proposes a noel system to
perform 2D wavelet reconstruction and bilinear textre filtering
on a high performance GPU shader. The system is ablto
generate a GLSL shader for arbitrary wavelet filter
configurations. This goes beyond earlier works inhe literature
proposing Haar wavelet and Discrete Cosine Transfon (DCT)

filtering in the wavelet domain. Currently theredsly one
transform-based scheme in the literature that pmgo
transform-domain bilinear filtering in an efficiemay, and
this is the DCT-based system of [2].

Another drawback of transform-based compressiothés
lack of specialized hardware support, contrary ¥TDThis
results in additional run-time complexity, espdgiaivhen
texture filtering is required. However, the addexngplexity

implementations on the GPU. We analyse the shadercan be countered nowadays by the computational pofve

performance and run-time complexity for several waelet filters.
The experimental results show that filters longer han Haar are
deployable on the GPU while maintaining accurate tdure
filtering and real-time performance.

I. INTRODUCTION

Texture compression has been an essential tocd&btime
rendering for the past fifteen years. The DXT fanoif codecs
[1] are the most popular texture compression systeafl
relying on block truncation coding techniques. Diespf their
popularity, the attainable compression performaoiotained
with such simple block-based quantization techrsquig
modest. In order to further improve compressiorigrarance,
recent works focus on transform-based texture cesgn
systems, mostly based on the DCT transform [2]thedHaar
wavelet transform [3], [4], [5].

The transform decorrelates the input signal prior
gquantization, which is known to improve the compias
gain relative to quantization alone, as performgthle codecs
in the DXT family. Moreover, transform-based codetlew

current GPUs, which has tremendously increaseddanédcent
past. By making efficient use of this increasedacdy, the
fill rate — i.e. the rate at which pixels can begassed — of a
transform-based reconstruction system can be girffidor
real-time texture mapping.

In this work, we propose a 2D wavelet reconstrurctio
implementation on the GPU and investigate the foans
domain filtering problem for wavelet filters of aary length.
The resulting systems will be analysed in terms
computational complexity, floating-point error abdndwidth
requirements. We analyse various biorthogonal vea\éders,
with varying number of vanishing moments, startiram the
simple 1.1 (Haar) transform and ending with theap4.4
wavelet transform.

The remainder of the paper is organised as foll@estion
{l details the transform-domain texture filteringoplem and
the approach of Hollemeersch et al. [2]. Sectidrdlvers the
construction of the 2D wavelet reconstruction nxatsuitable
for a GPU implementation. In section IV, we expldiow

of

for more freedom than hard-coded DXT codecs. TH@rder extension can be used in conjunction with ntatrix

decomposition of an image into subbands enabletrsa
such as scalable compression, per subband bititatsation
and inherent mip-mapping support.

Most of the work in the area of transform-baseduiex
compression cannot be deployed in practical applics, as
texture filtering — an essential part of textureppiag — is
usually not implemented or has some serious petoce
drawbacks. The systems that implement the wavelastorm
in [3], [4], [5] are all limited to the Haar tramsfn, which is
known to be inferior to higher order filters readr for
efficiently compressing natural images. The appnoiac[6]
focuses on practical implementations of the wavedstsform
[7] on the GPU, but this technique still cannot ueed in
practical systems as it does not perform bilinezxture

constructed in section lll. Section V shows theultssof the
proposed implementation, followed by conclusiond furture
work given in section VI.

Il. TRANSFORM DOMAIN FILTERING

2D texture mapping is the process of mapping th@a da
contained in a 2D image onto a surface in 3D spab&h is
in turn projected onto the user's 2D screen. Bdimfltering
is an essential part of this process, merging 4himuring
texture elements (texels) into one texture sample.

Modern GPU’s can handle bilinear texture filteriog the
fly, i.e. there is no difference in performance vin
sampling just one texel or sampling an interpotatad four
neighbouring texels. In particular, performance laosuffer

Jan Lemeire
Typewritten Text
 IEEE International Workshop on Multimedia Signal Processing (MMSP), Italy, 2013

greatly if we would implement the reconstructiom diftering
operations without making use of the built-in haadev
interpolators.

A. Transform domain filtering for a block transform

Note that the filter weight® depend on the sampling
position within the current block. The GPU samplég
coefficients exactly at their centre, the hardwiaterpolation
being actually not performed in this case.

In the case of inter block filtering (Fig. 2), Hetheersch et

Hollemeersch et. al. [2] use a 4x4 2D DCT transforral. [2] propose a solution employing the hardwaegtire

decomposing an input image into 16 frequency bahdghe
lossless case, each of these 16 frequency barsémtigo the
GPU as a separate texture. The advantage of tslisrsyis its
ability to reconstruct and filter a pixel by usirjgst one
sample instruction per DCT frequency band.

The principle behind this system is the linearitly tbe
filtering operators and the transform. In each disien, two
different filtering cases have to be covered: a g
position can require samples from the same blotka(iblock
filtering), or it can require samples from two rigiguring
blocks (inter block filtering).

Frequency
domain

Spatial domain

Nl ' IEEEE

Figure 1.Intra block filtering. In this case, only DCT coefénts in the
current block are required to reconstruct a fildepéxel; the 3 adjacent spatial
domain blocks are delimited by thicker verticakln

Frequency
domain

Spatial domain

HEEEN] IBEN

Figure 2.Inter block filtering. In this case, coefficient®in neighbouring
blocks are required to reconstruct a filtered piked 3 adjacent spatial
domain blocks are delimited by thicker verticakln

Intra block filtering is straightforward (Fig. 1the linearity
of the transform is exploited and equation (1) shdvow
multiplication of the filter weightsw and the transform
matrix T can be used to achieve the desired result:

Xiitered = WX = WTCe=t[Tc, (1)

filtering units. Instead of sampling at the cerdéreach texel
in each frequency band, the sampling position itexhto a
position between neighbouring texels, by an amount
proportional to the actual sampling position betwe®o
neighbouring blocks. A block mirroring scheme makese
the neighbouring texels at the edges of the blomks be
reconstructed by using exactly the same weights;nfore
details, the interested reader is referred to [2ghould be
noted that this mirroring scheme is applied befexecuting
the transform, lowering spatial coherence and puatentially
lowering compression performance.

B. Transform domain filtering for a wavelet transform

Although the wavelet transform is not block-baséug
approach above can be applied to handle hardwteseti
wavelet reconstruction due to the localization prtips of the
wavelet transform. In order to use this approach da
arbitrary 2D wavelet transform, we have to definelack of
samples in the spatial domain and a correspondiagim
which can reconstruct the elements of this blockedaon a
corresponding set of wavelet coefficients. Thisuregment
makes sure we can perform intra block filtering.

To enable inter block filtering, using the blockskd
approach of [2], just as many equally sized subdbaare
required in the wavelet transform representatiothase are
pixels in the reconstruction block. The classicahvelet
transform [3] does not fulfil this requirement, ths, the size
of wavelet subbands decreases with a factor of Vietlr each
decomposition level. In general, the wavelet packet
decomposition is an example of a transform that madluce
equally sized of sub-bands. For ease of implemiemtatve
start from a conventional 2D discrete wavelet tiams and
apply polyphase decompositions of the high-frequdrands,
which are appropriately performed at each resaiutevel
until equally sized subbands are obtained acrd$svals. The
next section will elaborate on the constructiom @D wavelet
reconstruction matrix suitable for transform domfdiering.

[ll. 2D DWT RECONSTRUCTION

In classical multiresolution representations, thavelet
transform is a global transform applied on the renthput
image, which is performed row- and column-wise,ngsi
either conventional low- and band-pass filteringrmpions [7]
or the lifting scheme [8].

Each texture sample has to be calculated indep#gdzhn
its neighbours on a GPU. Performing a global invevavelet
transform on the entire image to get a single texgample

whereX is a column vector denoting the spatial-domairebixyould be completely inefficient; that is, employiripe
values in the current bloclg is a column vector denoting theconventional filter-bank or lifting-based implemation of the
corresponding DCT coefficients, aridis the resulting row inverse wavelet transform followed by bilineardiiing in the
vector performing joint reconstruction and integian. spatial domain does not make sense in practiceh&mumore,

we cannot benefit either of the well-known halviaf the
computational burden [8] brought by lifting whemmoared to
traditional filtering. Even when GPGPU is used&oanstruct
the entire image, it has been shown [6] that thi@di scheme
[8] does not bring any performance improvementsadaPU
when compared to a conventional filtering-based@ggh [7].
Therefore, we will base our approach on the tradi
filter bank implementation [7], which can be cagrieut as a
matrix-vector multiplication. This matrix enables to easily
analyse the data dependencies for each texel irsphgal
domain and identify the corresponding samples éenvthvelet
domain that are necessary for its accurate recanin.
Additionally, writing the transform as a matrix-vec
multiplication allows for grouping the filtering dninverse
transform operations, similar to (1). We will firgtesent the
trivial cases, corresponding to the single-level abd 2D
matrices. Using these notations and algorithmsyilidinally
construct a multi-level 2D wavelet reconstructioatrix.

C. 1D case
Equations (2) and (3) below can be used to expiess

a@,p

— ab&,p ~ IhD2 ~

X,p = ba , =Tp hip, = Tap W p 4)
btkp thA

where D, are sets of indices in the corresponding wavelet
subbands (LL, LH, HL, HH) indicating the wavelet
coefficients needed to reconstrugt,,. Examples of such sets
are given in [9].

Generating the single level matrix for the 2D wavel
reconstruction is done by convolving two 1D tramsfs. A
first step is to generate the new elements ofrdnesformation
matrix, along with their input and output mappiag, seen in
Table 1. The second step is to assemble a commiapgping
of all unique inputs, defining the input vector atimlis the
number of columns of the new 2D reconstruction il .
Similarly, the number of output offsets determities number
of rows in the new matrix. Each coefficient canrthoe put in

single level 1D wavelet transform as a matrix-vectQha matrix according to its input and output magpin

multiplication:

c
, b
{h} =T : (2)
a,
b,
% = {Ej S 3

whereg;,h are even and odd spatial-domain samples need

to compute the low- and high-pass coefficienth

respectively, . is the vector containing the reconstructed

spatial-domain pair of sampleg,b, . T4, T4 are the 1D
decomposition and reconstruction matrices respagtivand
G, is the vector of wavelet coefficients needed wonstruct
X . To further fully define the 1D reconstruction miatwe
introduce an input mapping composed kmﬁnd_d(i) and

inputoffsefy () , which define the band and the offset af

which the coefficient can be found for indexof vectorc, :
& [i] =b[k+inputOffset; (J]; b= bang()i

In other words, given the index one identifies the banid

corresponding toi , and one extracts

I§+input0ﬁsell;,() from this band. The matricef, and

T,y can be easily constructed making use of the filt

coefficients for each filter bank instantiation ioging that
perfect reconstruction is attained for aRy.

D. 2D case

In 2D, the reconstruction footprint has four eletseas can
be seen in equation (4) where the 2D equivalertgoftion (2)
is given:

the element

Table 1. Pseudo-code describing the generation dfet reconstruction
matrix T,q for a one level inverse wavelet transform.

Inputs:

matrix T,y , the 1D wavelet reconstruction matrix

the mappingsbandy (i) and inputoffsefy() , mapping
each row index in ¢, to a corresponding input band a
an input offset

the mappingoutputoffse, (J , mapping each row indeix
in X pto a corresponding 2D output offset in the 2 b
block of reconstructed elements

Outputs:

ed.

matrix T,4 , the 2D wavelet reconstruction matrix
the mappingsband, (i) and inputoffsef, (J , mapping eac
row indexi in G ,to a corresponding 2D input band &
2D offset
for each index in X , 5
rowX = get row outputoffsety (). >in Tyy
rowY = get row outputoffseg, (). yin Ty
for each indexx in rowX
for each indexy in rowY
value= rowX[}OrowY ¥
inputBand= ban@ ¢ bang()x bapd)y
inputOffset= 2 dOffsdt inputOffsg() x inputOtigdy))
index= findOrCreatelndex inputBand inputGefs
band,q (indey = inputBan
inputoffses, (index=inputOffse
Toq [i.index| = \al ue
end
end
rend

nd

E. Multiple levels

When dealing with multiple levels, the size of weckK, ,
increases; in the case of 2 levels, the 4 elemetmtub vector
in equation (4) becomes a 16 element output vetTmcreate
the corresponding extended matrix, we first apphe t
algorithm in Table 1 on an extended output vecibine

corresponding mappingand,q (i) will still depend on a level
1 low-pass sub-band, which is not available wher» N
decompositions have been performed. Conceptuaigh of
the level 1 low-pass sub-band coefficients can reurn
expressed using (4) as a function of the coefftsien the
level 2 subbands. Similar to (4), this will finaljyeld a 2D
transformation matrix for 2 decomposition levelshieh
multiplies the coefficients of the level 1 and Ie2esubbands.

A last issue is the requirement of using equathgdibands.
The generated reconstruction matrices can be easitified
to support polyphase reconstruction in which cdme ihput
mappings have to be appropriately adapted.

IV. BORDER EXTENSION

Border extension has to be performed on the 2Dasifpm
any wavelet transform except for the simple Haawvelet
transform. Commonly used extension methods arehttiie
point and the point symmetric extensions. One ef¢htwo

extension techniques has to be applied both whe

decomposing and reconstructing the signal.

When reconstructing a sample, several texels from
wavelet sub-bands are required for reconstructihich
texels are exactly required is determined by thsitipm of the

desired reconstructed sample and the subband #sdtf

stored in the input mappingsand,, (i) andinputoffseq ().

Figure 1. Sequence of operations for the generatiaf the GLSL code.

Wavelet filter
Nr. decomposition
levels

Vv

Single step matrix
Sampling offsets

Vv

GLSL code

A second advantage of this system is that it allowgo
easily calculate the theoretical complexity of
nfiguration. This might differ from the actual nritime
complexity as the GLSL compiler is free to optimiaad

[merge the unrolled calculations in the GLSL code.

G. Results

The run time performance of the proposed 2D wavelet

reconstruction and bilinear texture filtering degg@mainly on
two factors: the number of texture sample instarciand the

Calculating the sample positions for a single levalymper of floating point operations. These two geuwof

decomposition is straightforward: for each element, ,
add the corresponding offset to the sample posaiok, p),
followed by the application of border extension.dDéating
the positions for a decomposition with more thae tevel is
more complicated. These positions should be deffinged the
sample positions from the level
complicates the construction of the one pass ma#$xwe

cannot simply use offsets anymore to define theutinpbiorxy, x andy indicate the number of vanishing moments for

mapping. This can be alleviated by replacing théseté
introduced in section II.C by referenced positions.

referenced position consists of an offset and aergar

relationship. At runtime, this results in a treeelidatabase of
positions, which can only be resolved by first oddting the
root value, after which its children can be caltedaand so on
until all the sampling positions have been resalved

V. COMPLEXITY AND PERFORMANCE

F. GLSL shader generation

As a rather unbiased platform and because of thpast
for multiple platforms, GLSL was chosen as impletaéaon
language. To facilitate benchmarking and fast engpion of
different algorithms, an automatic GLSL shader gatien
system was developed. The core of this systemeigrtatrix
generation described in section Il and the bordension
given in section IV. The system can generate aeshadth
just two parameters: the 1D wavelet reconstructilber and
the number of decomposition levels. It allows uséad fully
unrolled GLSL code to the OpenGL drivers, whichthen
further optimized and compiled into a binary shaategram.

instructions compose the majority of the generaBdSL
code. As modern GPUs still have a hard time perifagrwvell
on non-locally grouped branching instructions, &easere
entirely avoided.

The results obtained for wavelet filters having ivas

above them, whiatumber of vanishing moments for 1 and 2 decompmuositi

levels are given in Tables 2 and 3. In the namioigvention

the decomposition and
respectively.

reconstruction band-pas<erdilt

Table 2. Computational complexity for various filte kernels and
decomposition levels.

configuration Texture Matrix size
samples / jixel (elementy
1 level Haar 4 16
1 level biorl3 16 64
1 level bior31 36 144
1 level bior2: 25 10C
1 level bior44 81 324
2 levelHaal 16 25€
2 level biorl3 48 768
2 level bior3: 84 134¢
2 level bior22 65 1040
2 level bior44 265 4240

The fill rate was derived by rendering a textureatd024
by 1024 render target. This number can be usedgagaline
when the average number of visible textures andstiteen
resolution of a real time application is known. F@mple,
our render target of about 1 Mpixel was used taleerthe

each

same texture 32 times during each render passhweguires having up to 4 vanishing moments in total for the
a fill rate of at least 1 Gpixel/s to achieve a sthdrame rate decomposition and reconstruction band-pass filters.

of 30 fps. As for the complexity, we notice thaed is very The next step is to avoid mirroring the blocks (seetion
little relation between the size of the reconsiarcmatrix and 11.A), as this has a detrimental effect on compmss
the real time performance on the GPU; the perfonead the performance. Recent developments in GPU shadirgutage,
analysed GPU shaders is probably constrained byetttare especially the newer sampling instructions, migidb#e us to
sampling units, which have to process a high amafnt employ some more fundamental methods to avoid this
sample instructions per pixel. problem.

VIIl. REFERENCES

[1] P. Brown, S3 texture compression specification,
http://www.opengl.org/registry/specs/EXT/texturempression_s3tc.txt
[2] C.-F. Hollemeersch, B. Pieters, P. Lambert, Ba/an de Walle, “A new

Table 3. Fill rates for different filter kernels and decomposition levels
for two different GPUs. Several OpenGL drivers hadroubles compiling
the GLSL source of the 2 level bior44 reconstructio shader.

Fill rate (Gpixel/s) approach to combine texture compression and figg'tiThe Visual Computer
configuration | AMD 7970 NVIDIA vol. 28, no. 4, pp. 371385, 2012. e N
GTX 660 Ti [3] S. Diverdi, N. Candgss_l, anq T. Hollerer, “Réiahe rend_enng_ with
wavelet-compressed multi-dimensional textures enGPRU,” InUniversity of
1 level H_aar 208 125 California, Santa BarbaraCiteseer, 2005.
1 level biorl! 6.31 6.7¢ [4] A. V. Pereberin et al. “Hierarchical approaalr texture compression,”
1 level bior31 2.52 3.34 Proceedings of GraphiCon '99p. 195-199, 1999.
1 level bior2: 5.02 4.47 [5] C. Sun, Y. Tsao, and S. Chien, “High-quality pmiapping texture
1 level bior44 1.29 1.36 compression with alpha maps for graphics processimis,” |EEE
2 level Haar 2.29 525 Transactions on Multimedjaol. 11, no. 4, pp. 589-599, 2009.
—— - o= [6] C. Tenllado, J. Setoain, M. Prieto, L. Pifiuahd F. Tirado. Parallel
2 level biorl: 148 1.9t implementation of the 2d discrete wavelet transfommgraphics processing
2 level bior31 0.88 1.10 units: Filter bank versus lifting|EEE Transactions on Parallel and
2 level bior2: 1.2¢ 1.44 Distributed Systemol. 19, no. 3, pp. 299-310, 2008.
2 level biord4 0.072 N/A [7]1 S. Mallat, “A Theory for multiresolution signatlecomposition: the

wavelet representationlEEE Transactions on Pattern Analysis and Machine
Intelligence vol. 11, no. 7, pp. 674-693, July 1989.
[8] W. Sweldens, “The Lifting Scheme: a Custom BasiConstruction of
VI. CONCLUSIONS AND FUTURE WORK Biorthogonal Wavelets,Journal of Appl. and Comput. Harmonic Analysis
This paper presents a system which enables theonsé[’;]'-iv nXI- 2, pPAlf:\f'Z?Ov 199% ehelkens.). Cometind S. Deuit

. L . . . Alecu, A. Munteanu, P. Schelkens, J. Comeland S. Dewitte,
wavelet reconstruction in filtered texture _mappfmynquos. “Wavelet-based Fixed and Embedded Linf-constraimeabe Coding,"SPIE
The performance results show that real-time impleat®ns joumal of Electronic Imagingrol. 12, no. 3, pp. 522-538, July 2003.

are achievable for 2 level wavelet transforms witters

