
Noname manuscript No.
(will be inserted by the editor)

Scalable Texture Compression using the Wavelet Transform

Bob Andries · Jan Lemeire · Adrian Munteanu

the date of receipt and acceptance should be inserted later

Abstract 2D texture data represents one of the main

data sources in 3D graphics, requiring large amounts

of memory and bandwidth. Texture compression is of

critical importance in this context to cope with these

bottlenecks. To improve upon the available supported

texture compression systems, several transform-based

solutions have been proposed. These solutions, however

are not suitable for real-time texture sampling or

provide insufficient image quality at medium to

low rates. We propose a new scalable texture

codec based on the 2D wavelet transform suitable

for real-time rendering and filtering, using a new

subband coding technique. The codec offers superior

compression performance compared to the state-of-the-

art, resolution scalability coupled with a wide variety

of quality versus rate trade-offs as well as complexity

scalability supported by the use of different wavelet

filters.

Keywords Texture compression · Texture mapping ·
Wavelet transform · Quantization

B. Andries
Vrije Universiteit Brussel - ETRO
Pleinlaan 2
B-1050 Brussels
E-mail: bob.andries@etro.vub.ac.be

J. Lemeire
Vrije Universiteit Brussel - INDI
Pleinlaan 2
B-1050 Brussels
E-mail: jan.lemeire@etro.vub.ac.be

A. Munteanu
Vrije Universiteit Brussel - ETRO
Pleinlaan 2
B-1050 Brussels
E-mail: adrian.munteanu@etro.vub.ac.be

1 Introduction

The majority of source data in real-time 3D engines

consists of 2D images called textures. We refer to

the samples stored in these textures as texels, which

have to be mapped on the geometry of the 3D

environment. Executing this process at interactive

frame-rates and high spatial resolutions requires

high amounts of memory and bandwidth. These

requirements can be lowered by compressing the texture

data using specialized fixed-rate codecs. By using a

fixed compression ratio, accessing a single texel in

memory can be done in constant time and with little

data dependencies.

The inclusion of S3TC [1] (also known as DXTC) in

DirectX 6.0 was the beginning of widespread adoption

of hardware-accelerated texture compression, resulting

in a significantly lower memory and bandwidth

footprint for texture mapping operations. DXTC,

nowadays extended and better known as BC [2], is

a collection of texture compression formats based on

block truncation coding [3], still representing one of the

most popular texture compression technologies today.

More recently, mobile hardware support for a

potential successor of the DXTC texture formats

became available: ASTC [4]. This format surpasses

the existing hardware-supported formats in terms of

compression performance and is widely applicable

thanks to its wide range of available bitrates and

variable number of encoded color channels.

The work presented in this paper will build upon

existing texture coding techniques and leverage them to

develop a state of the art wavelet-based texture codec.

Due to the utilization of the wavelet decomposition

as transform of choice, the codec features excellent

resolution and complexity scalability.

localadmin
Text Box
Draft version, published in the Visual Computer, pp. 1-19, 2016.

2 Bob Andries et al.

2 Related work

2.1 Block truncation-based texture coding

A vector quantization based texture compression

system was proposed by Beers et. al. [5] in

1996 featuring straightforward decompression but

complicating the implementation of an efficient cache

through its large global lookup table. This issue is not

present in techniques using block truncation coding.

The general idea of block truncation-based texture

compression is to divide the texture in relatively small

(e.g. 4x4) blocks and to characterize each of these

blocks by using derived data, such as the mean and

the variance of the coefficients within each block. The

subsequent coding step then uses these figures for each

block to perform the actual quantization.

LATC [6](also known as DXT5/A) performs this

process on single-channel data, using 4x4 blocks. This

codec characterizes each block using a minimum and a

maximum, which are both stored as 8 bit normalized

values. Each block is then quantized using a 3 bit

uniform quantizer, of which the endpoints are defined

by these two 8 bit values. Each 4x4 block is thus defined

by sixteen 3 bit indices and two 8 bit values, resulting

in an average rate of 4 bits per pixel (bpp).

DXT1, a codec targeting RGB data, performs a

similar procedure: it is also using 4x4 blocks, but the

quantization is done by using a 2 bit uniform quantizer

of the 3D RGB space. The quantizer endpoints are

stored as normalized RGB565 values, requiring 32 bits

of memory per block for endpoint storage. Finding the

optimal quantizer endpoints is more complicated in this

case, as we should make sure the 16 RGB values of

each block lie as close as possible to the 4 uniformly

interpolated color values. Hence, this procedure only

performs well on correlated RGB data.

More advanced texture codecs such as BC7 [2] are

still based on the same principles, but feature additional

per-block modes, altering the way the data is quantized

and stored.

2.2 Transform-based texture coding

Several publications propose transform-based texture

compression formats, either supported by newly

designed hardware or by a programmable decoding

process performed by the pixel shader on the GPU.

One of the earliest approaches for transform-based

texture compression was made by Perebrin et. al. in

1999, proposing a format [7] based on the 2-level Haar

wavelet transform and a hardware decoding system.

Fenney proposed a texture compression format [8]

targeting low power applications, which has received

hardware support in the PowerVR chips, primarily

used in Apple smartphones and tablets. It has not

been implemented in any major AMD or NVIDIA

GPU though. In 2005, DiVerdi proposed a system

[9] featuring a pixel shader which could decompress

multi-dimensional textures using the Haar transform.

An additional codec requiring dedicated hardware was

proposed by Sun et. al. [10], which was also based

on the Haar transform. Longer wavelet filters were

combined with a tree based coding approach by Grund

et. al. [11]. However, tree based coding introduces

significant and irregular indirection, limiting real-time

performance and complicating resolution scalability

by streaming selected subbands to the GPU. Aiming

to further increase the fillrate in order to provide

both filtered texture samples and a real-time frame

rate, Hollemeersch et al. proposed a shader-based

system [12] which uses the DCT transform and LATC

texture compression. This system outperformed DXT1

and other previous works in terms of compression

performance. At the same time, Mavridis et. al.

presented a Haar-based texture compression approach

[13], also outperforming previously proposed texture

compression systems. These last two compression

techniques are considered to be the state-of-the-art

in transform-based texture coding and are used as

benchmark techniques in our work.

Other works [14], [15], [16], [17] have been focusing

on utilizing the GPU as a device to accelerate the

wavelet transform for general purposes usage. These

approaches cannot be used in real-time rendering

as they are unable to efficiently perform per pixel

reconstruction, which is a critical component of texture

sampling. Similarly, the system proposed by Treib et.

al. [18] is unable to perform in-situ texture sampling,

requiring additional GPU memory to store the decoded

data before it can be sampled.

The work presented in this paper explores and

enables efficient application of wavelet transforms

for texture encoding and real-time texture decoding,

sampling and filtering. We design, implement and test a

shader-based wavelet reconstruction system, targeting

consumer GPUs. This lies in contrast to some of the

previous designs, which require specifically-designed

reconstruction hardware [7], [8], [10].

The proposed system is able to utilize wavelet

filters of lengths beyond Haar, surpassing the work

done by DiVerdi et. al. [9] and Mavridis et. al. [13].

The proposed system reconstructs pixels independently,

making it suitable for real-time texture sampling.

Compression performance is greatly elevated by using

a new texture quantization scheme optimized for

Scalable Texture Compression using the Wavelet Transform 3

subband data. By combining the existing and our newly

proposed subband coding techniques, we can offer a

wide range of compression ratios and achieve superior

compression performance compared to the state of the

art.

The remainder of the paper is structured as follows:

in the next sections we will elaborate on the proposed

encoding architecture. Section 6 details the encoding

of subband data, including our new technique. In

section 7 we overview our rate allocation system. Per

pixel wavelet reconstruction is explained is section 8.

Sections 9 and 10 detail the design and implementation

aspects of the shader-based reconstruction. In sections

11, 12 and 13 we present the experimental results,

reporting on the compression performance, run-time

complexity and comparisons against the state-of-the-

art respectively. The conclusions of our work are drawn

in section 14.

3 Codec architecture

Similar to some of the previous works [12], [13], the

architecture of the proposed fixed-rate texture coder

consists of four stages. First, when dealing with color

textures, the three color channels are decorrelated using

the YCoCg-R transform [19], yielding a luminance

channel and two chrominance channels. Second, these

channels are decomposed into subbands using the

wavelet transform. The resulting subband coefficients

are then shifted and rescaled in the third step after

which the subbands are finally quantized and packed

as texture data according to the specified codec

configuration, ready to be sent to the GPU.

The next sections introduce the three most

important coding steps of the proposed system: the

wavelet transform, subband scaling and subband

coding. Additionally, we present the rate allocation

system which is used to determine the optimal coding

configurations for a given image.

4 Wavelet transform

For one-dimensional (1D) signals, the wavelet transform

[20] decomposes an input signal A0 into two sets of

coefficients, i.e. a low-pass subband A−1 and a high-

pass subband D−1, as illustrated in figure 1. This

decomposition is performed by convolving the input

signal with respectively the low-pass filter H̃ and

the high-pass filter G̃, followed by downsampling the

convolved signals with a factor of two. A multiresolution

representation can be achieved by repetitively applying

the decomposition to the resulting approximation signal

A 0

2G~

2H~ A -1

2G~

2H~ A -2

D -2

D -1

Fig. 1 A two-level wavelet decomposition of a discrete signal
A0 performed using a filter bank.

A 0

2 G

2 HA -1

2 G

2 HA -2

D -2

D -1

+

+

Fig. 2 The reconstruction of A0, starting from the
decomposed signals A−2, D−2 and D−1.

Aj , resulting in a single final approximation signal A−J
and a set of detail signals Dj , where 0 > j ≥ −J
and J denotes the number of decomposition levels.

An example with two decomposition levels is shown in

figure 1.

The approximation signal and the detail signal are

used to reconstruct the higher-resolution approxima-

tion signal using the filters H and G, as shown in fig-

ure 2. Specifically, the wavelet reconstruction step com-

putes Aj+1 based on the lower-resolution approxima-

tion and detail signals Aj and Dj respectively as fol-

lows:

Aj+1(i) =
∑
m

H(i− 2m)Aj(m) +
∑
m

G(i− 2m)Dj(m)

(1)

The wavelet transform can be applied to 2D image

data by performing the transform on each dimension

separately. E.g. each row first is transformed using the

1D transform, followed by column-wise filtering of the

resulting signals - for details the reader is referred to

[20]. The 2D subbands will be referred to using the LL,

HL, LH and HH notations, where HL subband contains

the coefficients resulting from the horizontal high-pass

filter and the vertical low-pass filter.

This work focuses on the Haar wavelet and the

biorthogonal (2,2) wavelet. More information about

the biorthogonal wavelet can be found in the work by

Cohen [21] and the book by Mallat [22] (section 7.4.3).

However, the proposed system is not limited to these

two and can be used with other wavelets.

4 Bob Andries et al.

0

5000

10000

15000

20000

25000

30000

35000

0 0,25 0,5 0,75

C
o

u
n

t

Normalized bin value

Original subband histogram

Fig. 3 Histogram of the biorthogonal (2,2) LH subband of
the Lena image. For this visualization, the floating point data
was quantized using 128 bins.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0,25 0,5 0,75

C
o

u
n

t

Normalized bin value

Scaled subband histogram

Fig. 4 Histogram of the scaled and clipped biorthogonal
(2,2) LH subband of the Lena image. The applied scaling
factor was 7.525. For this visualization, the rescaled and
clipped floating point data was quantized using 128 bins.

5 Subband scaling

The coefficients of each wavelet subband are rescaled

such that the dense center area of the histograms

is stretched out while sparsely populated sides are

clipped. This can result in a lower quantization error

on the quantized subband coefficients compared to the

case when no stretching is applied. To make sure the

scaling process also performs well for low-pass data, the

subband data is centered around zero before scaling and

clipping is applied, using the average coefficient value

of this particular subband.

This process is illustrated with an example subband

in figures 3 and 4. Although the clipping process alters

the high-magnitude wavelet coefficients, the overall

quantization distortion will in general be reduced by

scaling and clipping. This is shown next.

It is well know that the Laplace distribution is

a simple model for the distribution of the wavelet

coefficients in a wavelet subband - see e.g. [20]. The

variance of the quantization error of a uniformly

quantized error on a uniformly quantized and clipped

Laplace distribution can be modeled as follows:

E(K,∆, λ) =

2 ·
∫ ∆

2

0

x2 · λ
2
e−λ·xdx

+ 2 ·
K−1∑
k=1

∫ (2k+1)·∆
2

(2k−1)·∆
2

(x− k ·∆)
2 · λ

2
e−λ·xdx

+ 2 ·
∫ ∞

(2K−1)·∆
2

(
x− (2K − 1) ·∆

2

)2

· λ
2
e−λ·xdx

(2)

where K+1 is the number of reconstruction points, the

variance of the Laplace distribution is equal to 2
λ2 and

∆ is the distance between each of the reconstruction

points. The first term integrates the error over the

deadzone, the second term integrates the error on the

bins to the left and the right of the deadzone and the

last term integrates the error of the part of the curve

that is beyond the outer reconstruction points (i.e. the

overload distortion).

Performing the calculations in (2) leads to a closed

form for the variance of the quantization error. This is

given by:

E(K,∆, λ) =

2

λ2
− ∆

λ

(
1 + coth(

λ∆

2
)
)
e

−λ∆
2

−
(∆2

4
− ∆

λ
coth(

λ∆

2
)
)
e−λK∆+λ∆

2

(3)

One of the important steps in our coding approach

is to to scale the subband data prior to quantization

and clipping. It can be shown that, given K and ∆, i.e.

for a given number of quantization cells and quantizer

cell-size, one can find an optimal subband scaling factor

C for which the variance of the quantization error is

minimal.

Scaling the subband data with a factor C is

equivalent to replacing λ with λ
C in 3. By quantizing the

scaled data in the same way as in 2 and then applying

the inverse scaling operation, we get the following

expression for the variance of the quantization error:

Ẽ(K,∆, λ,C) =
E(K,∆, λC)

C2
(4)

By minimizing equation 4 with respect to C for

given parameters λ,K,∆, the optimal scaling factor C

can be found. An example plot of equation 4 is given

in figure 5.

6 Subband coding

Before introducing our new subband quantization

modes, we will first investigate the performance of both

Scalable Texture Compression using the Wavelet Transform 5

E
x
p
e
ct

e
d
 e

rr
o
r

Scaling factor C

Fig. 5 A plot of equation 4, where λ =
√

2, K = 8 and
∆ = 1

single- and multi-channel block truncation based modes

when employed to encode wavelet subbands.

6.1 Single channel versus multi-channel coding

Subbands of a single decomposition level have relatively

little inter-band correlation, as pointed out by Mavridis

et. al. [13]. Hence, the different subbands of a single

color channel are difficult to be compressed using

multi-channel texture formats, as such codecs expect

correlation between the channels.

We demonstrate this with an experiment of which

the results are shown in table 1. In this experiment

we compare two advanced multi-channel codecs, BC7

and ASTC [4], with two simple single-channel reference

encoding techniques. For each encoding technique, only

the low-pass subband and the LH and HL subbands

were encoded, while the HH subband was discarded,

similar to the way Mavridis et. al. encode the subbands.

The subbands were generated using a single-level Haar

transform of the luminance channel of each image.

The first reference technique uses essentially a single-

channel version of DXT1. This was created by using

only the green (second) channel of the DXT1 encoder.

In other words, the DXT1 encoder was forced to ignore

the data of the two other channels, effectively turning

it into a low bitrate single-channel codec. The encoded

data consists of two times 6 bpp for the quantizer

endpoints and another 32 bpp for the 16 quantization

indices, resulting in a bitrate of 2.75 bpp per channel

(corresponding to 8.25 bpp reported in Table 1).

The second single-channel reference technique has a

more finetuned distribution of bitrates over the three

channels: the low-pass subband is encoded using LATC

while the HL and LH subbands are encoded with the 2

bpp single-channel version of ASTC.

Table 1 shows that on decorrelated channels,

even a simple, non optimized single-channel version

of DXT1 can perform equally well or even better

than an advanced multi-channel codec. This inspired

Table 1 Single channel vs multi channel performance, PSNR
of the reconstructed luminance channel compared to the
original channel.

Image Rate Encoding PSNR

(bpp) (dB)

kodim01 8 BC7 (multi) 30.4

8 ASTC (multi) 30.8

8.25 DXT1 (single) 31.6

8 LATC ASTC (single) 31.8

kodim02 8 BC7 (multi) 36.7

8 ASTC (multi) 37.0

8.25 DXT1 (single) 37.5

8 LATC ASTC (single) 38.0

kodim03 8 BC7 (multi) 36.7

8 ASTC (multi) 37.0

8.25 DXT1 (single) 37.9

8 LATC ASTC (single) 38.5

us to develop relatively simple but still specialized

single quantization modes, designed to perform well on

wavelet subband data.

We notice that by independently coding the

subbands with single-channel quantization modes,

resolution scalability can be easily implemented.

Coupled with existing texture coding techniques, this

creates a solid basis to perform subband quantization

and represents the core of our wavelet-based texture

codec.

6.2 Fast local subband coding

For reasons explained in the previous section, we chose

to focus on a single-channel quantization system for

our subband data. Inspired by LATC and our previous

work [23], we propose a set of local uniform quantization

modes optimized for subband coding. Similar to LATC

[6], for each 4x4 texel block, a local uniform quantizer

is defined by storing the quantizer endpoints using a

lower and upper endpoint value. Sticking to uniform

quantization is justified, as it allows for low complexity

reconstruction and on average, the normalized 4x4

blocks feature approximately uniformly distributed

data. This can be seen in the histogram of the per-

block normalized coefficients of a high-pass subband in

figure 6.

LATC spends 16 bits per 4x4 block defining the

local quantizer endpoints in a uniform way; this is

necessary for spatial-domain data, as in that case the

global histogram approximates a uniform distribution.

For our subband oriented technique, we are spending

2·M bits per block: our system stores the local quantizer

6 Bob Andries et al.

0

2000

4000

6000

8000

10000

12000

14000

Normalized 4x4 block data histogram

0 1

Fig. 6 Each local quantizer scales and clips the data by
choosing both a discretized minimum and maximum value.
By using this local minimum and maximum value in each
block, the data of each block is rescaled to a range between
0 and 1. The resulting normalized floating point data of all
blocks is visualized in this figure using a histogram featuring
128 bins.

0

2000

4000

6000

8000

10000

12000

Scaled high pass data - 4x4 local minima histogram

0 0.5

Fig. 7 The minima of the blocks are not uniformly
distributed. This figure shows a 128-bin histogram of the
minima of the 4x4 blocks of a high-pass subband containing
coefficients normalized to a range between 0 and 1.

endpoints using two M bit indices which point to values

in a global lookup table. Each of the modes features

an N bit uniform quantizer. For example, choosing

M = 4 and N ∈ [1..6] results in 2 ·M/16 = 0.5 bpp

for quantizer endpoint storage and N bpp for index

storage.

The ideal local quantizer endpoints in each 4x4

block are dependent on each blocks’ content. Hence,

this would result in a very large set of optimal

endpoints. However, the global lookup table can only

contain a limited set of quantizer endpoints: 2M for

the lower endpoints and 2M for the upper endpoints.

Hence, the block bounds have to be discretized globally

in an optimal way. Figure 7 shows the distribution of

the lower bounds of 4x4 blocks of an arbitrary high-

pass subband. The performance impact of different

discretizations is shown in figure 8, where a sample

subband was encoded at six different rates, using two

different lookup tables for the quantizer endpoints. The

actual values generated by the discretization are shown

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7

A
v
e

ra
g

e
 P

S
N

R
 d

if
fe

re
n

ce
 (

d
B

)

Rate (bpp)

K-means bounds-discretatization performance increase

Fig. 8 A visualization of the averaged impact of the k-
means discretization method for the per block quantizer
endpoints of a high-pass subband. The level 2 luminance
LH subbands of the first 10 Kodim images were used to
evaluate the performance of both the uniform and the k-
means discretization methods. The resulting PSNR numbers
were averaged, after which for each of the available bitrates
the average performance difference was calculated.

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

Lower bounds discretization

uniform kmeans

Fig. 9 A visualization of the different discretizations of the
lower quantizer endpoints. The k-means discretization puts
more emphasis on more prevalent lower bounds close to the
center of the subband coefficients distribution.

in figure 9. The final discretization used in the proposed

system was achieved by performing k-means clustering

on the observed block bounds.

We note that we have also investigated Lloyd-

Max quantization of the wavelet subbands in the past

[23]. However, it turns out that, due to its local

adaptive, data-dependent nature, the proposed block-

based quantization scheme yields better results than

global Lloyd-Max quantization of the wavelet subbands.

For this reason, the experimental section focuses only

on the proposed adaptive quantization scheme.

7 Rate allocation

Essentially, for each subband, a number of coding

modes is evaluated in terms of rate and distortion.

The mode that yields the steepest distortion-rate

Scalable Texture Compression using the Wavelet Transform 7

slope is selected. In this way we build a global

rate distortion function for the system. Note that no

explicit downsampling of the chrominance channels is

performed. Instead, the rate allocation system is free to

perform implicit downsampling by allocating zero bits

to certain high pass subbands, effectively erasing the

high pass chrominance data.

In terms of coding modes, we evaluate the proposed

adaptive quantization approach of section 6.2 but also

assess established texture codecs (e.g. LATC) adapted

to subband data. Details on the later are given in

section 11.1.

This rate allocation process can be speeded up, if

necessary, by utilizing heuristics: instead of building a

global rate-distortion curve, one targets fixed texture

coding rates, which speeds up rate allocation. E.g.

it is of no use encoding the low-pass luminance

subband with very low rate quantization methods

while targeting a relatively high bitrate. Vice versa,

when targeting low bitrates, one should not evaluate

the quantization error of high rate quantizers on

the sparsely populated high pass subbands. This was

implemented using a constraint on the subband rates

using a hierarchy. E.g. for a single level decomposition,

the rate of the LL subband should be higher or equal

to the rate of the LH or the HL subband, of which the

rate should be higher than the rate of the HH subband.

8 Per pixel 2D wavelet reconstruction

As stated in the introduction, a performant GPU

shader program is characterized by many independent

lightweight threads, each outputting one element: a

reconstructed and filtered spatial-domain pixel in our

case.

We can generalize our problem as follows:

each shader instance (thread) should independently

reconstruct a set of spatial domain pixels, which are

then filtered and output as a single value. This section

focuses on one aspect of the proposed shader code:

the wavelet reconstruction algorithm. The subsequent

sections will focus on the algorithmic developments

required to perform filtering and multi-level wavelet

reconstruction.

We will give first the mathematical expressions

required to reconstruct a single pixel located in a

spatial-domain position (2m + a, 2n + b), with m,n

positive integers, and a, b ∈ {0, 1}. The values a and b

indicate the parity of the spatial-domain position where

the reconstruction is performed.

First, we introduce a couple of notations to ease the

identification of the reconstruction dependencies of a

single spatial-domain element.

p p

p p

q

qq

q

Wn+p,m+q
(LL)

(0,0) Wn+p,m+q
(HL)

(0,0)

Wn+p,m+q
(LH)

Wn+p,m+q
(HH)

(0,0) (0,0)

q(a,b,L)low

m
q(a,b,L)high q(a,b,H)low

m
q(a,b,H)high

q(a,b,L)low
m

q(a,b,L)high q(a,b,H)low
m

q(a,b,H)high

p(a,b,L)high

p(a,b,L)low
n

p(a,b,H)high

p(a,b,H)low
n

p(a,b,L)high

p(a,b,L)low
n

p(a,b,H)high

p(a,b,H)low
n

Fig. 10 2D wavelet reconstruction notations. The depen-
dency domain in each subband is defined a set of offsets (p, q),
depending on the parity (a, b) of the reconstruction element.
Each of the four illustrations depicts on of the four avail-
able parity combinations, which imply different reconstruc-
tion weights.

The set of offsets relative to (m,n) in a single

subband s associated with the reconstruction at spatial-

domain positions (2m + a, 2n + b) with parity (a, b) is

given by:

O(a, b, s) =
{

(p, q)
∣∣∣ p ∈ {p(a,b,s)low, . . . , p(a,b,s)high},
q ∈ {q(a,b,s)low, . . . , q(a,b,s)high}

}
(5)

By adding these offsets to (m,n) we get the

positions of the samples in subband s required to

perform the reconstruction of the texture values at

spatial-domain locations (2m + a, 2n + b). We refer

to figure 10, which clarifies the notations in equation

5. As shown in the figure, reconstructing a spatial-

domain pixel at position 2m+ a, 2n+ b requires all the

wavelet coefficients depicted by the four rectangles in

the four subbands. For more details on the identification

of these dependencies, we refer to our past work - see

[24] (section 2.1.1), [25] (section II-A).

The set of total dependencies for reconstruction at

a position with parity (a, b) is thus expressed by:

O(a, b) =
{

(s,O(a, b, s))
∣∣∣ s ∈ S} (6)

where S denotes the set of the four subbands s.

The set of subband samples required to reconstruct

a spatial-domain element at position (2m + a, 2n + b)

is defined by:

dep(2m+a, 2n+b) = {W (s)
m+p,n+q|(s, p, q) ∈ O(a, b)} (7)

8 Bob Andries et al.

p

q

p

q

p

q

p

q

-0.75
-0.375
-0.1875
1.125
0.5
0.25
0.125
0.0625
0.03125

LL

LH

HL

HH

x2n,2m

x2n+1,2m

x2n+1,2m+1

x2n,2m+1

Fig. 11 2D wavelet reconstruction weights for the
biorthogonal (2,2) [21] filter.

where W
(s)
m+p,n+q represents a sample at position (m+

p, n+ q) in subband s.

Using these notations, the 2D wavelet reconstruc-

tion of a single element can be written as [24], [25]:

x2m+a,2n+b =
∑

(s,p,q)∈O(a,b)

k
(s)
p,q,a,bW

(s)
m+p,n+q (8)

where k
(s)
p,q,a,b represents a 2D reconstruction coefficient

derived from the 1D reconstruction filter coefficients.

As an example, the 2D reconstruction coefficients

k
(s)
p,q,a,b for the biorthogonal (2,2) wavelet transform are

depicted in figure 11. Equation 8 can be applied to other

wavelet transforms as well.

Often, more than one spatial domain pixel will be

required; e.g. whenever a filtered pixel is desired. For

each of these pixels, equation 8 has to be evaluated. By

examining the combined set of subband dependencies,

redundant memory accesses can be avoided by buffering

the necessary subband samples before performing the

reconstruction calculations. The next section shows how

a set of dependencies can be derived to enable the

reconstruction of a single filtered spatial-domain pixel.

9 Shader design

The equations presented in the previous chapter allow

us to reconstruct spatial-domain texture values depend-

ing on corresponding wavelet-domain coefficients. In

practice, texture mapping is an operation which usu-

ally combines (1) fetching spatial-domain values and

(2) filtering them to a single value which can be dis-

played as a pixel on the screen. This minimizes aliasing

artifacts and provides a more smooth appearance for

close-up views of objects.

This section will first detail generic texture filtering,

after which we will investigate the relation between

texture filtering and wavelet reconstruction. A solution

using transform-domain filtering is proposed. Finally,

details about border extension for GPU-based wavelet

reconstruction are presented.

9.1 Filtering

Using the spatial-domain samples (texels) x and the

filter weights f , the generic filtering equation is given

by:

xfiltered = fT · x (9)

When traditional texture sampling and filtering is

performed on a spatial-domain texture, the filtering

operation is performed efficiently by the GPU. The

filter weights f are derived from a given floating point

texture coordinate t, where 0 < tx < 1 and 0 < ty < 1

and t corresponds to a normalized position on the

texture. The GPU reads the required texels x from

texture memory and blends them according to equation

9.

The set of spatial-domain positions covering the

texels x required for a filtering operation can be written

as:

P (t, Xf) =
⋃

o∈Xf

(p(t) + o) (10)

where Xf is a set of filter-specific spatial-domain offsets

and p(t) is an integer position derived from texture

coordinate t:

p(t) = b(Nxtx − 0.5, Nyty − 0.5)c = (2m+ a, 2n+ b)

(11)

with N = (Nx, Ny) the size of the texture.

Scalable Texture Compression using the Wavelet Transform 9

Equation 10 shows that spatial-domain filtering

depends on as many spatial-domain pixels as there

are offsets in Xf . In our case, the textures contain

decomposed data and the spatial-domain pixels covered

by Xf have to be reconstructed using equation 8.

Hence, we cannot simply perform the spatial-domain

filtering process using hardware-supported filtering,

as equation 8 requires separate unfiltered subband

samples. The filtering hardware would provide blended

texels instead of separate texels, which are of no use to

the reconstruction process.

Given the filter weights wi,j , the interpolated pixel

value is calculated as follows:

xfiltered =
∑

(i,j)∈Xf

wi,j · x(p(t) + (i, j)) (12)

The combined reconstruction and filtering equation

can always be written as:

xfiltered = fT ·M · c (13)

where M · c reconstructs the spatial-domain pixels

specified by equation 10 and fT is the column vector

containing the filter weights as specified in equation

12. The elements of the matrix M are the 2D

reconstruction coefficients k
(s)
p,q,a,b while the vector c

contains subband samples at positions (m + p, n + q)

as seen in equation 8.

9.2 Dealing with parity at run-time

As illustrated in Figure 11, the weights in equation 8

depend on the parity of (a, b). That is, equation 13
depends on the parity of (a, b). This is problematic,

as this implies very heavy non localized branching at

run time. This is caused by the way the shader is

executed on the GPU: for each screen space pixel, a

’thread’ is launched which ideally should execute the

same instructions as its neighboring pixel-threads but

with different data.

Avoiding this issue can be done by altering the

outputs of the matrix M and the corresponding

sampling positions. Instead of using outputs based on

Xf and p(t) - a set of positions of which the parity is

unknown until run time - we use an altered version of

equation 11:

peven(t) = 2b(t ·N− 0.5)/2c = (2m, 2n) (14)

As the parity of (2m, 2n) always equals (0, 0),

the offsets in Xf thereby define the parity of each

of the reconstructed elements. Hence, each elements

reconstruction equation is known at compile-time,

avoiding costly indirection operations in the pixel

(2m,2n)

Fig. 12 Enlargement of the set of offsets Xf to Xf+p to
cover all four parity cases of 2m + a, 2n + b. In this case,
the original Xf covers a 2 by 2 window to support bilinear
filtering.

shader. A direct consequence is that by applying

the offsets of Xf relative to (2m, 2n) instead of the

unaltered reconstruction position (2m+ a, 2n+ b) with

parity (a, b), in 3 out of the 4 different parity cases we do

not reconstruct the intended spatial-domain samples.

Because of this, we have to use an enlarged window of

output offsets Xf+p, as shown in the example in figure

12. This enlarged window is one pixel larger in each

dimension to cover each of the parity cases. Selection

and filtering of the correct spatial-domain samples of

the enlarged window is then ensured by calculating and

applying an extended set of filter weights f , which can

be constructed based on the equation 12.

In our work we employ bilinear filtering, which is

the most commonly chosen method in GPU texture

mapping. Bilinear filtering takes 4 neighboring input

samples and applies 2D linear interpolation to produce

one filtered pixel value. Hence, Xf contains the 4 offsets

(0, 0), (0, 1), (1, 0) and (1, 1), whereas in Xf+p this set

is extended with 5 additional positions.

9.3 Transform-domain filtering

The preceding sections covered a generic way to

reconstruct spatial-domain pixels, after which they

are explicitly filtered by executing shader commands.

However, the GPU hardware can perform texture

sampling and bilinear filtering at the same time; more

specifically, we can get a bilinear interpolation of four

neighboring texture samples at the cost of one texture

sampling operation.

A bilinear filtering operation is traditionally

expressed as:

xfiltered =
1

n
·
[
w(0,0) w(0,1) w(1,0) w(1,1)

]
·

x(0,0)
x(0,1)
x(1,0)
x(1,1)

 (15)

10 Bob Andries et al.

where the normalization factor is n = w(0,0) + w(0,1) +

w(1,0) + w(1,1) and the weights w are subject to the

following constraints:

w(0,0)

w(0,1)
=
w(1,0)

w(1,1)
and

w(0,0)

w(1,0)
=
w(0,1)

w(1,1)
(16)

We can use this hardware-supported filtering and

sampling process to perform parts of the reconstruction

shown in equation 13.

We introduce the following notation representing a

subset of (13):

x∗filtered = fT ·M∗ · c∗ (17)

where M∗ contains four specific columns of M and

c∗ contains the elements of c corresponding to these

columns. This subset of equations can be selected from

(13) under the following circumstances:

– c∗ should form a group of 4 neighboring samples of

the same subband.

– The values of the 4-element vector fT ·M∗ should

adhere to the same constraints as four bilinear

weights, apart from a normalization value. This can

be verified at compile-time.

When these conditions are fulfilled, a temporary

texture coordinate ttemp and a normalization factor

n are calculated. We can then perform hardware-

accelerated bilinear sampling on the subband s:

x∗filtered = n · sample(ttemp, s) (18)

In practice, these conditions are fulfilled when

sampling and reconstructing from the LL subband

using the Haar or the bior(2,2) filter.

Note that the way [12] uses the GPU to perform

transform-domain filtering requires manipulation of

the original image before decomposing, resulting in

degraded compression performance. Our approach

avoids this problem.

9.4 Border extension

Wavelet filters with a wider footprint than Haar require

border extension to avoid additional reconstruction

errors at the borders. Whenever (m + p, n + q) (eq. 8)

refers to pixels outside the actual subband texture, the

correct extension mechanism must be used.

Most literature covers border extension as it is

performed on interleaved decomposed data. In our

case - where reconstruction is performed using non

interleaved data - it is beneficial to perform the

extension during the sampling operation itself, as half-

point extension can be handled by the GPU hardware

Table 2 Extension mechanisms for odd wavelet filters during
texture sampling. Odd wavelet filters use point extension on
traditional interleaved subband data.

lower extension upper extension

low-pass point half-point

high-pass half-point point

without any performance penalty. Consequently, the

GPU performs half-point extension by default, without

any modification to the reconstruction algorithms1. To

perform extension correctly in all cases, we must use

the correct extension mechanism depending on the

boundary and whether or not a band is high-pass.

Table 2 shows how the classic point extension

translates to extension mechanisms that can be used

during texture sampling on non interleaved data.

A one-dimensional texture coordinate t ∈ [0, 1] can

be modified such that the GPU sampler, which can

perform half-point extension by default, performs point

symmetric extension on a one-dimensional texture of

length N as

t = t− (1.0/N) ∗ (1− d(t− 0.5/N)e) (19)

This equation moves the location of t one texel to

the left whenever t < 0.5/N . Note that this particular

equation is used when we are performing a lower-bound

extension, i.e. the texture coordinate t approaches 0 and

we have to deal with samples with a negative index.

In the same way a texture coordinate t is modified

for upper bound point symmetric extension as:

t = t+ (1.0/N) ∗ (d(t+ 0.5/N)e − 1) (20)

10 Multi-level wavelet reconstruction shaders

The preceding sections focused on the algorithms

needed to develop a single-level wavelet reconstruction

shader. This section covers the changes required to

develop a multi-level wavelet reconstruction shader.

10.1 Immediate multi-level wavelet reconstruction

The immediate reconstruction algorithm does not

use any intermediate buffers nor does it require

any indirection instructions; the contribution of any

subband sample to the spatial domain result can

be immediately calculated. Hence, the parity of the

1 We can do this by setting the OpenGL texture coordinate
wrapping mode to GL MIRRORED REPEAT.

Scalable Texture Compression using the Wavelet Transform 11

spatial-domain elements has to be known at compile-

time. Once again, this implies the enlargement of the

filter-specific spatial-domain window Xf to cover all the

parity cases possible. These additional spatial-domain

parities are a result of the parities of the intermediate

low-pass dependencies. E.g., a two-level decomposition

features a 4 by 4 sized window with 16 unique parity

combinations, whereas a single level decomposition

features only 4 unique parity combinations.

Starting from two-levels, the output window of

the reconstruction matrix M has to be significantly

enlarged to cover the parity cases of all levels. The filter

weights f ensure the extraction of the filtered value of

this enlarged output window. Hence, the final equation

can still be written as equation 13.

The construction of the matrix M starts with the

extension of the output vector, corresponding to the

enlarged set of offsets Xf+p. For instance, a two-level

decomposition implies a 4 by 4 output footprint to

cover all the parity cases, enlarged to 5 by 5 to be

able to perform bilinear filtering. The coefficients of

M are based on the coefficients used in equation 8.

For each additional decomposition level (> 1), M

will feature low-pass coefficient dependencies which

cannot be sampled. These dependencies are converted

to dependencies on the next decomposition level,

according to the appropriate reconstruction equations,

leading to multiplications of filter coefficients.

Although this approach might seem wasteful due

to the increased size of M at first sight, it is in

practice very efficient when reconstructing just the

low pass contributions, especially when combined with

transform domain filtering.

10.2 Recursive reconstruction

This algorithm mirrors classical wavelet reconstruction:

for a given Mallat decomposition, the low-pass subband

and its corresponding equally sized high-pass subbands

are assembled to form a new low-pass band. This

process is repeated until the desired resolution level has

been reconstructed.

Given a final window of spatial-domain pixels to

be reconstructed, as defined by Xf+p, we identify the

low-pass dependencies using equation 5, resulting in a

set of low-pass offsets X−1 (see figure 13), which in

turn will have to be reconstructed if more than one

decomposition was performed on the original image

data.

While the parity of each of the spatial-domain

elements is known at compile-time, the parity of

the elements of the intermediate low-pass levels

+0 +1 +2

+0 +1

X0
Spatial domain
offset: 2m

A-2 +0 +1 Subband
offset: m/2

Subband
offset: m

Unknown
parity @ CT

A-1

Subband
offset: 2⌊m/2⌋

Known
parity @ CT

X-1 +0 +1 +2

Conditional shift and discard
based on parity of m

Constant reconstruction math

Constant reconstruction math

Fig. 13 A visualization of the recursive reconstruction
process for the GPU, using a two-level Haar transform. Note
the use of a conditional shift for the intermediate low-pass
samples of A−1. This step makes sure the correct samples
are used for the last reconstruction step.

is not known. E.g. when reconstructing elements

of A−1 (notation as in figure 2), the offsets of

X−1 will be applied to (2m, 2n)/2. In contrast to

equation 11, any compile-time information about the

parity of this position is lost. Consequently, the

calculations to reconstruct the elements of A−1 would

require conditional equations. Therefore, this particular

algorithm opts to reconstruct intermediate elements

of A−1 relative to position 2b(m,n)/2c. Once again,

in 3 out of 4 cases, we will lack values which are

required according to the window of offsets relative to

(2m, 2n)/2. To alleviate this, we enlarge the window

of low-pass dependencies with one element in each

dimension, in the same way as shown in figure 12. The

intermediate samples are calculated, stored in a buffer

and finally, based on the actual (run time) parity of

(2m, 2n)/2, the values are rearranged in memory such

that they are in the correct position for the next stage

of reconstruction. Note that rearranging the values

does require conditional instructions, but the related

divergent code path is very short compared to actual

conditional reconstruction equations.

This procedure is repeated for each additional

decomposition level, e.g. in case of three decomposition

levels an additional set of intermediate samples is

constructed as defined by X−2 and 2b(m,n)/4c.

An overview of this reconstruction process using a

two-level one-dimensional Haar transform is given in

figure 13.

12 Bob Andries et al.

(2m,2n)(2m,2n) (0,0) (1,0) (0,0)

(0,1) (1,1) (0,1)

(0,0) (1,0) (0,0)

Fig. 14 On the left, we show how Xf features 9 offsets and
4 different parities. On the right, we show the 4 different
areas in which bilinear filtering is performed, each using just
4 spatial-domain elements with parities (0, 0), (0, 1), (1, 0)
and (1, 1). Note how each of the areas depends on the middle
(1, 1) element, while the position of the (0, 0), (0, 1) and (1, 0)
dependencies is variable.

10.3 Recursive reconstruction with indirection

A modification of the previous algorithm allows

us to reduce the number of calculations in the

final reconstruction step (reconstructing the elements

defined by Xf) at the cost of some indirection. In

the previous section, we reconstructed 9 spatial-domain

elements, while we actually only need 4 elements to

perform bilinear filtering at a given position t. We

exploit this by reconstructing exactly one element of

each of the four parity combinations, which covers the

source elements of each of the 4 filtering areas shown in

figure 14.

For simplicity, we will explain this process for 1D

reconstruction, where just two spatial-domain parities

exist, even and odd, as defined by a in 2m + a. We

calculate two values: xeven and xodd. Depending on a,

we alter the reconstruction of xeven by shifting its input

dependencies by one position. This shift in the wavelet

domain allows us to shift between the reconstruction of

2m + 0 and 2m + 2, both even elements. At position

2m + 1, xodd is reconstructed as usual. A downside of

this approach is the introduction of additional memory

indirection, as the positions of the samples needed for

the reconstruction of the even element now depend

on a and m, while the samples needed for the odd

element only depend on m. To minimize the impact of

the memory indirection, a sample buffer is filled with

dependencies for all 3 potential reconstructed elements

at positions 2m + 0, 2m + 1 and 2m + 2. Values

in this buffer are then shifted whenever necessary

during construction, which turns out to be faster than

accessing the buffer using the extra indirection variable

a.

Linear filtering can in this case be efficiently

computed as:

x =

{
(1− α)xeven + αxodd if btN − 0.5− pc = 0

(1− α)xodd + αxeven else

(21)

11 Subband coding performance

This section compares the performance of the

quantization modes proposed in section 6.2 to

some of the most efficient existing single-channel

texture compression systems, justifying our choice to

incorporate these quantization modes in the proposed

texture compression system.

We will briefly overview these codecs, explain how

they are used to compress subband data and assess their

performance.

11.1 Evaluated subband coding methods

11.1.1 Subband encoding using NVTT LATC

LATC [6] works on 4x4 blocks of texels. For each block,

a lower and upper bound value is encoded using 8 bits

each. These values are the bounds of a 3 bit uniform

quantizer, hence sixteen 3 bit indices are stored for

each block. On the GPU, dequantization is performed

using dedicated hardware at no additional cost. This

particular encoder implementation is found in the open

source project NVIDIA Texture Tools [26]. Subband

data is converted to an 8 bit integer representation
before being compressed.

11.1.2 Subband encoding using floating point

customized LATC

This custom-made floating point encoder uses floating

point values as input data instead of 8 bit integers. This

can make a significant difference, as it allows each of the

4x4 block quantizations to optimize for floating point

reconstruction points. Subband data is scaled to a [0..1]

floating point range before being compressed.

11.1.3 Subband encoding using ASTC

Adaptive Scalable Texture Compression [4] is a new

texture codec developed by ARM and AMD and

is currently supported on certain mobile platforms.

Although mainly developed for multi-channel content,

it also supports single-channel data. Subband data is

converted to an 8 bit integer representation before being

Scalable Texture Compression using the Wavelet Transform 13

10

15

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Rate (bpp)

Haar LL - Kodak set average PSNR

Proposed

ASTC

LATC

Uniform

Fig. 15 2 level Haar LL subband compression performance
averaged over the entire Kodak image set.

compressed. Compression software is freely available at

[27]. Note that current desktop GPUs do not support

this format; support is only available on certain mobile

devices. Still, we include this format as it is a good

experimental benchmark.

11.1.4 Subband encoding using global uniform

quantization

For reference, 8 bit and 4 bit uniform quantization is

also performed. In the figures in this section this mode

is grouped together with the only encoding mode that

does not store any data at all, effectively zeroing the

values of the subband in question.

11.1.5 Subband encoding using the proposed subband

coding technique

Our proposed subband coding system, explained in

section 6.2, was developed focusing on single-channel,

zero centered subband data. All four modes work on 4x4

blocks and spend 8 bits on quantizer endpoint storage

per block. The different versions use respectively 1, 2,

3, 4, 5 or 6 bits per texel for the quantization indices,

resulting in respectively 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5

bpp.

11.2 Subband compression performance

Evaluation of the previously mentioned subband codecs

was done on subbands of the images of the Kodak set

[28]. These subbands were the result of single wavelet

decomposition of a luminance channel, either using the

Haar or the bior(2,2) 2D wavelet transform. Before

quantization, the values of each subband were optimally

rescaled. Low pass data was shifted using the average

coefficient value whenever this resulted in improved

compression performance.

30

35

40

45

50

55

60

65

70

0 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Rate (bpp)

Haar LH - Kodak set average PSNR

Proposed

ASTC

LATC

Uniform

Fig. 16 2 level Haar LH subband compression performance
averaged over the entire Kodak image set.

35

40

45

50

55

60

65

70

75

0 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Rate (bpp)

Haar HH - Kodak set average PSNR

Proposed

ASTC

LATC

Uniform

Fig. 17 2 level Haar HH subband compression performance
averaged over the entire Kodak image set.

25

30

35

40

45

50

55

60

65

70

75

0 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Rate (bpp)

bior(2,2) LL - Kodak set average PSNR

Proposed

ASTC

LATC

Uniform

Fig. 18 2 level bior(2,2) LL subband compression perfor-
mance averaged over the entire Kodak image set.

40

45

50

55

60

65

70

75

80

0 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Rate (bpp)

bior(2,2) LH - Kodak set average PSNR

Proposed

ASTC

LATC

Uniform

Fig. 19 2 level bior(2,2) LH subband compression
performance averaged over the entire Kodak image set.

14 Bob Andries et al.

40

45

50

55

60

65

70

75

80

0 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Rate (bpp)

bior(2,2) HH - Kodak set average PSNR

Proposed

ASTC

LATC

Uniform

Fig. 20 2 level bior(2,2) HH subband compression
performance averaged over the entire Kodak image set.

The charts in figures 15 - 20 depict the Peak Signal

to Noise Ratio - PSNR (dB) as a function of bit-

rate when encoding the subbands of the images of the

Kodak set. The charts show that the proposed system

has a clear advantage when coding high-pass subband

data, except for the lowest bitrate. As can also be seen

in the charts, the added complexity of ASTC does

not pay off in single-channel scenario’s, as LATC - a

much simpler codec - on average outperforms ASTC.

Moreover, although the method used to discretize the

local block’s bounds used in our proposed method was

optimized for high-pass subbands, the results show

that our proposed method still outperforms existing

implementations at most rates when applied to low-

pass subband data.

12 Compression results

This section presents the spatial domain compression

performance of the proposed texture compression

system.

As each of the two state-of-the-art transform-based

reference works ([13], [12]) has provided results for a

different data set, separate comparisons will be made

for each of these two techniques. First, we compare the

proposed system with state-of-the-art spatial-domain

techniques.

12.1 Comparison with conventional techniques

Although ASTC is not yet available on desktop GPUs,

we include it as a baseline, as it offers a wide variety

of bitrates. The test subjects are the images from the

Kodak image set [28].

The results featured in this comparison were

produced using the following set of subband quantizers:

our local quantizers presented in section 6.2, LATC

and ASTC. These schemes were picked whenever

appropriate by the rate allocation algorithm.

28

33

38

43

48

1 2 3 4 5 6 7 8 9 10

P
S

N
R

 (
d

B
)

Rate (bpp)

Kodim01 RGB PSNR

Proposed bior(2,2)

Proposed Haar

ASTC

ASTC RS

DXT1

DXT1 RS

Fig. 21 Kodim01 - Proposed compression performance
compared to spatial-domain codecs.

31

33

35

37

39

41

43

45

47

49

51

1 2 3 4 5 6 7 8 9 10

P
S

N
R

 (
d

B
)

Rate (bpp)

Kodim02 RGB PSNR

Proposed bior(2,2)

Proposed Haar

ASTC

ASTC RS

DXT1

DXT1 RS

Fig. 22 Kodim02 - Proposed compression performance
compared to spatial-domain codecs.

Note that our proposed codec uses a two-level

wavelet transform in these results. Hence, it features

resolution scalability and inherently includes data that

should be included in a mip map pyramid. One notes

that ASTC would require 1 + 1/4 + 1/16 = 1.3125

as much rate as the proposed solution if a mip

map pyramid was required. Therefore, for ASTC we

report two sets of results, one corresponding to single-

resolution decoding, and a second corresponding to

a resolution scalable (RS) version producing a two-

level pyramid; this later version is indicated with the

acronym ASTC RS in the graphs.

The results of these experiments are shown in figures

21 and 22, where we show the rate distortion curve of

these two images. A summary of the experiments is

shown in figure 23, where the average PSNR gain or

loss is shown of both the Haar and bior(2,2) method

versus ASTC RS.

The summary in figure 23 reveals that while the

bior(2,2) version of our codec performs very well, the

Haar version of our codec struggles with some of the

images of the Kodak set. These images feature both

smooth areas and areas with lots of high frequency

detail. Hence, the resulting subband data also features

areas with small magnitude coefficients and other areas

with large coefficients. However, each subband is scaled

using just one global scaling value, which fails to

optimally scale the values of both regions. Note that

Scalable Texture Compression using the Wavelet Transform 15

-1,5

-0,5

0,5

1,5

2,5

3,5

k
o

d
im

0
1

k
o

d
im

0
2

k
o

d
im

0
3

k
o

d
im

0
4

k
o

d
im

0
5

k
o

d
im

0
6

k
o

d
im

0
7

k
o

d
im

0
8

k
o

d
im

0
9

k
o

d
im

1
0

k
o

d
im

1
1

k
o

d
im

1
2

k
o

d
im

1
3

k
o

d
im

1
4

k
o

d
im

1
5

k
o

d
im

1
6

k
o

d
im

1
7

k
o

d
im

1
8

k
o

d
im

1
9

k
o

d
im

2
0

k
o

d
im

2
1

k
o

d
im

2
2

k
o

d
im

2
3

k
o

d
im

2
4

P
S

N
R

 d
e

lt
a

 (
d

B
)

Average PSNR delta

Proposed vs ASTC RS

Haar bior(2,2)

Fig. 23 Average quality difference between the proposed
method and ASTC RS. The average PSNR delta was
calculated using the method by Bjontegaard [29].

the bior(2,2) transform manages to capture first order

transitions (smoothness) in the low pass subband,

which is which is de facto encoded at higher rates and

less vulnerable to scaling issues.

12.2 Comparison with Mavridis et al.

The work by Mavridis et. al. [13] features 4 encoding

modes. The luminance 2 bpp mode performs a single-

level partially inverted Haar transform. The resulting

subbands are encoded using DXT5 or BC7. The 2.25

bpp and 3 bpp color modes encode the luminance data

using the 2 bpp mode, and perform downsampling on

the color channels, after which they are also encoded

using the 2 bpp mode. The 5 bpp mode does not utilize

the wavelet transform for the luminance channel, which

is instead encoded as spatial domain data using LATC.

In this comparison, our codec performs similarly

a single-level Haar or biorthogonal transform on the

luminance channel. The color channels are decomposed

using the corresponding 3 level wavelet transform. We

do not downsample the color channels and simply

rely on the rate allocation algorithm to optimally

encode the image, given the quality metric - which

is RGB PSNR in this case. The subband encoding

methods used for this comparison are our proposed

local quantization methods and LATC. Note that the

three decompositions on the chrominance data result

in a theoretical increase in computational complexity.

However, in practice the rate allocation algorithm

always discards the higher frequency bands of the

chrominance data, which enables negating this effect.

The results are shown in figures 24 - 26 for the first

two images of the Kodak image set and the rooftiles

images used by Mavridis et.al.

Figure 27 shows the average PSNR gain or loss of

both the Haar and bior(2,2) method versus the methods

by Mavridis et. al.

23

28

33

38

43

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

P
S

N
R

 (
d

B
)

Rate (bpp)

Kodim01 RGB PSNR

Mavridis Proposed Haar Proposed bior(2,2)

Fig. 24 Compression results for kodim01.

29

31

33

35

37

39

41

43

45

47

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

P
S

N
R

 (
d

B
)

Rate (bpp)

Kodim02 RGB PSNR

Mavridis Proposed Haar Proposed bior(2,2)

Fig. 25 Compression results for kodim02.

29

31

33

35

37

39

41

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

P
S

N
R

 (
d

B
)

Rate (bpp)

Roof tiles RGB PSNR

Mavridis Proposed Haar Proposed bior(2,2)

Fig. 26 RGB compression results for the rooftiles image used
by Mavridis et. al.

0

1

2

3

4

5

6

k
o

d
im

0
1

k
o

d
im

0
2

k
o

d
im

0
3

k
o

d
im

0
4

k
o

d
im

0
5

k
o

d
im

0
6

k
o

d
im

0
7

k
o

d
im

0
8

k
o

d
im

0
9

k
o

d
im

1
0

k
o

d
im

1
1

k
o

d
im

1
2

k
o

d
im

1
3

k
o

d
im

1
4

k
o

d
im

1
5

k
o

d
im

1
6

k
o

d
im

1
7

k
o

d
im

1
8

k
o

d
im

1
9

k
o

d
im

2
0

k
o

d
im

2
1

k
o

d
im

2
2

k
o

d
im

2
3

k
o

d
im

2
4

P
S

N
R

 d
e

lt
a

 (
d

B
)

Average PSNR delta

Proposed vs Mavridis et. al.

Haar bior(2,2)

Fig. 27 Average quality difference between the proposed
method and the method by Mavridis et.al. The average PSNR
delta was calculated using the method by Bjontegaard [29].

16 Bob Andries et al.

Figures 28, 29 and 30 show 64x64 areas of three

different sample images, decompressed at various rates

using the method by Mavridis et. al. and our method.

The denoted rate and PSNR values are measured on

the entire images. The first two images feature lots of

high frequency details and could be used as textures

in games. The third image is an image taken from the

Kodak image set.

Figure 28 shows some banding artifacts in our

proposed lowest rate Haar image, whereas in the

leftmost image (Mavridis et. al.) there is a is a bit more

loss of high frequency details. The top three images

(highest quality) show that the Haar based images show

more pronounced high frequency detail at virtually

equal RGB PSNR values.

Original image Original crop

2.25 bpp 32.6 dB 2.13 bpp 32.7 dB 1.59 bpp 32.7 dB

3 bpp 33.7 dB 2.34 bpp 33.8 dB 2.09 bpp 34.0 dB

5 bpp 37.2 dB 4.18 bpp 37.8 dB 3.48 bpp 37.4 dB

Mavridis Haar bior(2,2)

Fig. 28 A visual comparison of the rooftiles image provided
by Mavridis et. al. The leftmost column features the images
encoded with the three modes designed by Mavridis et. al.,
the two other columns feature images encoded using our
solution at comparable qualities.

The image used in figure 29 is less dependent on

color accuracy. This clearly shows in the lowest quality

comparison, where our proposed images which feature

much more luminance detail.

Original image Original crop

2.25 bpp 29.9 dB 1.81 bpp 30.6 dB 1.68 bpp 30.8 dB

5 bpp 41.0 dB 4.18 bpp 41.0 dB 3.48 bpp 41.1 dB

Mavridis Haar bior(2,2)

Fig. 29 A visual comparison of the stone image provided
by Mavridis et. al. The leftmost column features the images
encoded with the three modes designed by Mavridis et.
al., the two other columns feature images encoded using
our solution at comparable qualities. The 3 bpp result by
Mavridis et. al. was omitted as it improved the PSNR by less
than 0.2 dB compared to the 2.25 bpp version.

Figure 30 shows a crop of the kodim21 image,

featuring sharp color transitions. This results in a

visible color blocking artifact in our 1.81 bpp Haar

image.

For future reference, we included compression re-

sults achieved with the previously explained configura-

tion on the entire Kodak set in table 3.

12.3 Comparison with Hollemeersch et al.

The core of the codec presented by Hollemeersch et al.

[12] is a 4x4 DCT transform, after which the coefficients

are packed into 16 frequency bands. Each of these

frequency bands is then either discarded or encoded

using LATC. The work presented by Hollemeersch et

al. reports PSNR values measured on the luminance

channel only. To make a fair comparison possible, the

bitrates of these results were transformed such that

only the rate related to the luminance channel is taken

into account. The subband encoding methods used for

this comparison are our proposed local quantization

methods and LATC.

Our proposed codec was configured to perform two

decompositions on the luminance channel in order to

feature at least the same resolution scalability as the

Scalable Texture Compression using the Wavelet Transform 17

Original image Original crop 1.96 bpp 32.2 dB

Haar - bior(2,2)

2.25 bpp 31.3 dB 1.98 bpp 32.0 dB 1.73 bpp 31.9 dB

5 bpp 39.4 dB 4.27 bpp 39.9 dB 3.58 bpp 39.4 dB

Mavridis Haar bior(2,2)

Fig. 30 A visual comparison of the kodim21 image. The 3
bpp result by Mavridis et. al. was omitted as it improved
the PSNR by less than 0.3 dB compared to the 2.25 bpp
version. The lower right image was produced using Haar
for the luminance channel and bior(2,2) for the chrominance
channels.

Haar bior(2,2)
image 2 4 6 2 4 6

01 30.5 37.7 43.1 31.5 39.7 46.0
02 33.4 38.4 41.4 34.0 41.4 48.2
03 34.9 40.6 43.9 36.2 43.0 47.6
04 33.9 39.0 42.9 35.0 41.5 46.2
05 28.0 34.9 39.6 29.4 37.7 43.8
06 32.2 39.2 43.7 33.5 40.7 46.3
07 33.6 39.1 43.1 35.3 42.3 47.8
08 28.6 35.7 40.7 29.7 37.8 43.6
09 34.3 40.1 44.6 36.0 42.0 47.1
10 33.9 40.4 44.5 35.1 42.3 46.6
11 31.5 38.5 43.2 32.7 40.4 46.9
12 35.6 41.1 45.3 36.3 43.2 48.5
13 27.5 35.7 40.8 28.4 36.9 42.7
14 29.8 35.5 39.6 31.4 38.3 44.6
15 33.5 39.0 42.3 34.2 41.1 46.1
16 34.8 41.9 46.8 36.9 44.0 49.3
17 34.0 40.4 44.8 35.1 42.3 46.2
18 29.5 36.8 41.0 30.8 38.8 43.2
19 32.1 39.8 44.1 33.9 41.4 46.3
20 33.5 39.8 43.1 34.5 41.3 45.6
21 32.0 39.1 43.5 33.4 40.7 45.7
22 32.4 37.9 41.7 33.6 39.9 44.6
23 33.9 39.1 43.0 36.4 42.0 46.9
24 29.6 36.2 39.7 30.8 37.4 41.2

Table 3 Compression results for the Kodak image set using
the compression configuration described in section 12.2. The
row on top shows the rate in bits per pixel, the results below
are RGB PSNR measured in dB.

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6

P
S

N
R

 (
d

B
)

Rate (bpp)

Lena luminance PSNR

Hollemeersch et. al. Haar 2 levels Bior22 2 levels

Fig. 31 Lena luminance PSNR. Compression was performed
using the proposed system employing the Haar and bior(2,2)
filter, and compared with the DCT system by Hollemeersch
et al. [12]

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6

P
S

N
R

 (
d

B
)

Rate (bpp)

Baboon luminance PSNR

Hollemeersch et. al. Haar 2 levels Bior22 2 levels

Fig. 32 Baboon luminance PSNR. Compression was
performed using the proposed system employing the Haar
and bior(2,2) filter, and compared with the DCT system by
Hollemeersch et al. [12]

codec by Hollemeersch et al. Figures 31 and 32 show

the obtained PSNR results on the luminance channel,

compared with the results of Hollemeersch et al. Our

Haar-based system performs at least as well, while our

bior(2,2)-based system clearly outperforms the DCT-

based results of [12].

13 Run-time performance

This section covers the complexity of the proposed

system. Three aspects are independently evaluated:

the complexity of the wavelet reconstruction, the

performance of the different wavelet reconstruction

algorithms, and a shader implementation of the

proposed quantization scheme.

18 Bob Andries et al.

Filter Subbands Instr. Fillr. (GP/s)
Haar LL 1 25.3

bior(2,2) LL 1 23.5
Haar LL, LH, HL 3 20.7

bior(2,2) LL, LH, HL 5 12.5
bior(4,4) LL, LH, HL 16 4.34

Haar 2 levels, 5 bands 6 11.4
bior(2,2) 2 levels, 5 bands 13 6.0
bior(4,4) 2 levels, 5 bands 60 1.9

Table 4 Single channel wavelet reconstruction complexity,
given by the the amount of texture sampling instructions
required when using the recursive reconstruction scheme.
Note that a single texture sampling instruction can yield 4
samples at the same time, e.g. when using textureGather. The
fill rate was calculated for the reconstruction of the highest
detail level using bilinear filtering on an NVIDIA GTX 980.

13.1 Reconstruction complexity analysis

As the amount of configurations of our system are

virtually unlimited, we will limit the complexity

analysis to a few cases. The configurations range from

Haar low-pass data with all high-pass data discarded

(essentially no difference with a downsampled texture)

to long wavelet filters such as bior(4,4) featuring many

decomposition levels. The complexity and the run-time

performance of a selection of configurations is shown in

table 4.

The big jump in complexity in case of the bior(2,2)

filter when moving from the three-band single level

configuration to the five-band two level configuration

is caused by the inclusion of an HH subband. This

introduces in the case of the bior(2,2) filter a 3x3 texel

dependency, which requires 4 separate texture sampling

instructions, as the textureGather instruction can only

sample a 2x2 area.

13.2 Wavelet reconstruction performance

Similar to the benchmarking setup in the work by

Mavridis et. al. [13], a tunnel scene was created and

the performance of each compression configuration was

compared to a native DXT1 texture. Our compression

configuration used 5 compressed textures: 3 low-pass

textures for each of the three channels and 2 additional

high-pass luminance textures. For the trilinear filtering

configuration (linear mip linear) an additional texture

was used featuring the required mip levels. Two filtering

configurations were tested: linear, featuring bilinear

magnification filtering and thus suffering from filtering

artifacts further away from the rendered objects, and

linear mip linear, also known as trilinear filtering.

This mode in turn was tested in two additional

configurations. The naive shader first performs wavelet

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Native - linear

Haar - linear

Bior22 - linear

Native - linear_mip_linear

Haar - linear_mip_linear naïve

Haar - linear_mip_linear branch

Bior22 - linear_mip_linear naïve

Bior22 - linear_mip_linear branch

Relative performance numbers

Fig. 33 Relative performance of the proposed reconstruction
system.

reconstruction and filters the values afterwards. The

second one uses indirection; whenever appropriate,

wavelet reconstruction is skipped and low resolution

data is sampled instead. The relative performance

figures are shown in figure 33.

We note that the performance loss compared to

a bare shader is to be expected, and an actual

implementation should combine the variants of the

proposed algorithms into a heavily optimized shader.

At sampling rates up to 25 GP/s, increased streaming

capacity and decreased memory consumption is an

interesting option in exchange for a lower sampling rate.

An additional fill rate test on Haar low-pass

reconstruction showed a 6 % performance improvement

for transform-domain filtering over a straightforward

filtering implementation.

13.3 Fast local subband decoding performance

The proposed texture compression technique can

be likely efficiently implemented in hardware, as

it is very similar to already implemented texture

coding techniques. Still, we implemented a proof

of concept reconstruction shader. The implemented

shader decodes a 1.5 bpp texture and a 2.5 bpp texture

at the same time. This configuration is a relevant one,

as it was often selected by the exhaustive search system

of our proposed codec to encode both the LH and HL

band.

The encoded texture data was packed in blocks of

64 bit by using a 32 bit unsigned integer texture and

packing the data of a 4x4 block as two integers. Hence,

consecutive integer ’texels’ would actually encode 32

texels, 16 belonging to the 1.5 bpp encoded subband

and 16 belonging to the 2.5 bpp subband. The actual

packing of each 4x4 block was done as follows: 8 bits

were used for the two indices of the quantizer bounds

of the 1.5 bpp local quantizer, followed by 8 bits for the

bounds of the quantizer of the 2.5 bpp block. Then, 16

Scalable Texture Compression using the Wavelet Transform 19

bits were used to store the quantization indices of the

16 texels of the 1.5 bpp block. The remaining 32 bits

were used for the 16 quantization indices of the 2.5 bpp

values.

A straightforward shader-based implementation of a

decoder for this packed texture data resulted in 47 % of

the native fillrate of a hardware decoded DXT1 texture

with an equal memory footprint. This strengthens our

claim that an efficient hardware implementation will

not be a significant challenge. The only main difference

is the usage of a small lookup table for the quantizer

bounds, compared to an integer to float conversion for

the bounds of LATC and DXT1 style quantizers.

14 Conclusions

In this paper we presented a wavelet-based texture

codec which outperforms the state-of-the-art in

compression performance. A wide range of bitrates

is available, ensuring that the user-defined quality

requirements for each texture can be met. The codec

performs combined decoding and texture sampling in

real-time on commonly available consumer GPUs. The

proposed system is able to utilize wavelet filters of

lengths beyond Haar, which was the only wavelet

transform used in the coding literature so far for

texture compression. It was found that a good trade-

off between compression performance and complexity

is given by the bior(2,2) wavelet transform, resulting

in real-time decompression and high reconstruction

quality. Dynamic shader code generation and multiple

reconstruction algorithms allow for per GPU optimized

code and make it possible to adapt the system to

future changes and improvements to consumer GPUs.

The system in its entirety is highly flexible thanks

to its inherent resolution scalability and configuration

possibilities. It can be deployed in a wide range of

applications as a drop-in GPU shader, significantly

lowering the required memory and bandwidth.

Acknowledgements The Kodim test images used in this
paper are courtesy of KODAK [28].

References

1. K. I. Iourcha, K. S. Nayak, and Z. Hong, “Fixed-
rate block-based image compression with inferred pixel
values,” Dec. 2 2003. US Patent 6,658,146.

2. Microsoft, “Texture Block Compression in Direct3D 11.”
https://msdn.microsoft.com/en-us/library/windows/

desktop/hh308955. Accessed 20 Jan 2016.
3. E. Delp and O. Mitchell, “Image compression using

block truncation coding,” IEEE Transactions on
Communications, vol. 27, no. 9, pp. 1335–1342, 1979.

4. J. Nystad, A. Lassen, A. Pomianowski, S. Ellis,
and T. Olson, “Adaptive Scalable Texture Compres-
sion.,” in High Performance Graphics (C. Dachsbacher,
J. Munkberg, and J. Pantaleoni, eds.), pp. 105–114, Eu-
rographics Association, 2012.

5. A. C. Beers, M. Agrawala, and N. Chaddha, “Rendering
from Compressed Textures,” in Proceedings of the
23rd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’96, (New York, NY,
USA), pp. 373–378, ACM, 1996.

6. M. J. Kilgard, P. Brown, Y. Zhang, and A. Barsi,
“LATC OpenGL extension.” https://www.opengl.org/

registry/specs/EXT/texture/compression/latc.txt,
2009. Accessed 20 Jan 2016.

7. A. V. Pereberin et al., “Hierarchical approach for texture
compression,” in Proceedings of GraphiCon ¿99, pp. 195–
199, 1999.

8. S. Fenney, “Texture Compression Using Low-frequency
Signal Modulation,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graph-
ics Hardware, HWWS ’03, (Aire-la-Ville, Switzerland,
Switzerland), pp. 84–91, Eurographics Association, 2003.

9. S. Diverdi, N. Candussi, and T. Höllerer, “Real-time
rendering with wavelet-compressed multi-dimensional
textures on the GPU,” in University of California, Santa
Barbara, Citeseer, 2005.

10. C.-H. Sun, Y.-M. Tsao, and S.-Y. Chien, “High-quality
mipmapping texture compression with alpha maps
for graphics processing units,” IEEE Transactions on
Multimedia, vol. 11, no. 4, pp. 589–599, 2009.

11. N. Grund, N. Menzel, and R. Klein, “High-Quality
Wavelet Compressed Textures for Real-time Rendering,”
in WSCG Short Papers, no. 18, pp. 207–212, 2010.

12. C.-F. Hollemeersch, B. Pieters, P. Lambert, and R. Van
de Walle, “A new approach to combine texture
compression and filtering,” The Visual Computer,
vol. 28, no. 4, pp. 371–385, 2012.

13. P. Mavridis and G. Papaioannou, “Texture compression
using wavelet decomposition,” in Computer Graphics
Forum, vol. 31, pp. 2107–2116, Wiley Online Library,
2012.

14. C. Tenllado, R. Lario, M. Prieto, and F. Tirado,
“The 2d discrete wavelet transform on programmable
graphics hardware,” in IASTED Visualization, Imaging
and Image Processing Conference, 2004.

15. T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang,
“Discrete wavelet transform on consumer-level graphics
hardware,” IEEE Transactions on Multimedia, vol. 9,
no. 3, pp. 668–673, 2007.

16. C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, and
F. Tirado, “Parallel implementation of the 2d discrete
wavelet transform on graphics processing units: Filter
bank versus lifting,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 3, pp. 299–310, 2008.

17. W. J. van der Laan, A. C. Jalba, and J. Roerdink,
“Accelerating wavelet lifting on graphics hardware using
CUDA,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 1, pp. 132–146, 2011.

18. M. Treib, F. Reichl, S. Auer, and R. Westermann,
“Interactive editing of gigasample terrain fields,” in
Computer Graphics Forum, vol. 31, pp. 383–392, Wiley
Online Library, 2012.

19. H. Malvar and G. Sullivan, “YCoCg-R: A color
space with RGB reversibility and low dynamic range,”
ISO/IEC JTC1/SC29/WG11 and ITU, 2003.

20. S. G. Mallat, “A theory for multiresolution signal decom-
position: the wavelet representation,” IEEE Transactions

20 Bob Andries et al.

on Pattern Analysis and Machine Intelligence, vol. 11,
no. 7, pp. 674–693, 1989.

21. A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthog-
onal bases of compactly supported wavelets,” Communi-
cations on pure and applied mathematics, vol. 45, no. 5,
pp. 485–560, 1992.

22. S. Mallat, “A Wavelet Tour of Signal Processing
Academic,” New York, vol. 16, 1998.

23. B. Andries, J. Lemeire, and A. Munteanu, “Optimized
quantization of wavelet subbands for high quality
real-time texture compression,” in IEEE International
Conference on Image Processing 2014, (Paris, France),
2014.

24. A. Alecu, A. Munteanu, P. Schelkens, J. Cornelis,
and S. Dewitte, “Wavelet-based fixed and embedded
L-infinite-constrained image coding.,” J. Electronic
Imaging, vol. 12, no. 3, pp. 522–538, 2003.

25. A. Alecu, A. Munteanu, J. Cornelis, and P. Schelkens,
“Wavelet-based scalable L-infinity-oriented compres-
sion.,” IEEE Transactions on Image Processing, vol. 15,
no. 9, pp. 2499–2512, 2006.

26. “Nvidia Texture Tools.” https://github.com/castano/

nvidia-texture-tools, 2010. Accessed 20 Jan 2016.
27. “ASTC encoder.” https://github.com/ARM-software/

astc-encoder, 2015. Accessed 20 Jan 2016.
28. “Kodak image set.” http://r0k.us/graphics/kodak/.

Accessed: 2015-08-10.
29. G. Bjontegaard, “Calcuation of average PSNR differences

between RD-curves,” Doc. VCEG-M33 ITU-T Q6/16,
Austin, TX, USA, 2-4 April 2001, 2001.

