Parallel Simulation of ATM Switches

Liu, Erik Dirkx

Vrije Universiteit Brussel

	dept INFO

Pleinlaan 2

B - 1050 Brussels

email : erik@info.vub.ac.be

Abstract

A simulation based approach to the problem of performance evaluation of large switching fabrics is presented. Experimental results in the form of cell queuing delay and buffer occupancy distributions for switches with up to 2048 inputs and outputs operating under a wide variety of loads are presented. The traditional dilemma between simulation model validity and its run-time where a more general purpose model inevitably results in longer run-times, is eliminated by the introduction of a new parameter : the architecture of the simulation platform. With model validity as an invariant, the simulation platform can range from a sequential computer via shared memory and distributed memory general purpose parallel processors up to a dedicated emulator. An analytical model of the class of applications under study gives insight in the influence of machine and problem parameters on simulator run-time performance. Examples of its use for the choice of an optimal parallel architecture for a given problem and of its use for the estimation of application behavior on a given parallel machine architecture are presented.

1. Introduction

Design, tuning, management and optimization of high performance networks (i.e. interconnects with low latency or high bandwidth) will remain a challenging task for the immediate future. These systems consist of two relatively independent parts : the transport and the switching subsystem(s). Asynchronous Transfer Mode (ATM) technology can be considered as a unifying framework that allows network operators to transport user traffic with widely varying requirements (generally expressed as “Quality of Service” or “QoS”) on a single general purpose communication system. The problem presented in this article originated in the design of large ATM switching fabrics. The methodology and the results obtained in the field of the parallelization of well structured problems are however immediately applicable to other application domains with similar characteristics. This is certainly valid in the field of high performance network systems, i.e. combinations of switching and transmission equipment. At the cost of developing a basic model for the transmission channel(s) or protocols, a general purpose simulator with a scalable performance, that is independent of the validity of the model, can be obtained. Although all experimental results were obtained for ATM traffic, the methodology and simulation codes are generic. Hence they can be used for other transport systems (packet or circuit switched). An analytic performance model is the basis for the minimization of the overall run-time for a given problem and parallel machine.

The overall philosophy of cell based networks (including ATM) makes them particularly interesting to design, optimize and manage. Indeed : the goal of unification (with as a major economic driving force the economies of scale inherent to modern VLSI technology) implies that a single general purpose switch or family of switches (built from very few types (preferably only one) of basic building blocks) has to be able to handle traffic with very different QoS requirements. The architecture must be general purpose enough to offer a good compromise to conflicting requirements for bandwidth, burstiness, traffic correlations, protocol interpretation ambiguities, delay, delay jitter, connection setup time etc. It is the job of the switch designer to tune architectural parameters such as internal interconnect, internal switching strategy, basic switching component architecture and size, modularity and upgradability etc. in such a way that a maximal spectrum of QoS requirements can be satisfied over a range of switch sizes. The goal of this work was, and still is, to provide the switch designer (and later on the switch manager !) with a general purpose, albeit fast, simulation tool that covers at least the range of switches available within a single product family. This goal has not only been achieved, but was surpassed. Examples of results applicable in other fields are the validity of the simulation results for non-ATM type switches, the scalability of the simulator performance and the price/performance of both the development and the execution of simulation experiments.

Whereas the choice of (very) small, fixed size cells makes the hardware aspects of these systems attractive, the control and management problem becomes significantly more difficult, be it solely by the number of cells (or “flits”) to be handled per unit of time ! This is not only true for the actual switch, but of course also for its simulator(s). The severity of this problem is strongly aggravated by the size of the switch as the effects of inter-cell interactions (queuing, blocking, cell-loss etc.) potentially propagate very quickly throughout the switch (and the network). This interaction of many seemingly unrelated parameters makes the construction of “good” analytical models very hard. Nevertheless, these problems are relatively easily manageable for small switches : as long as technology allows it (i.e. can provide the required bi-sectional bandwidth) , a shared medium (memory or bus) implementation is the most cost effective. For bigger systems, as long as the hardware cost does not become prohibitive, a cross-bar switch is probably a good choice. The goal of this work was to support the design process of “large” switching fabrics from a few hundred up to 16384 inputs and outputs (each at 155.52 Mbit/s). Hence the basic architecture used in this work is a multi-stage switch which is a cost-effective, yet scalable midway solution between both extremes. It is clear that the simulation method and tools can also be used for the other basic architectures. This is shown practically by the fact that the basic simulation component of the large fabric is actually a logical cross-bar (in our case implemented by a shared memory). One of the key questions that is answered by the experiments is the size of this memory for a given configuration under a given traffic pattern and aggregate load. The key advantage of the methodology developed for this project is that once the basic simulation components are available, it is very easy to construct a valid simulator program for a user-specified configuration under user-specified loading conditions.

�

Figure � SEQ Figure * ARABIC �1�

In every simulation project, there is a balance between analytical modeling, simulation and prototyping. Valid analytical models are a very important asset as they give insight into the behavior of the system as a function of certain parameters. Unfortunately, in order to keep the system of equations tractable, strong approximations have to be made. This either results in models that give only a qualitative insight in the behavior, or models with a limited range of validity. Traditionally simulation is both complementary and similar to this approach. It makes it possible to analyze a given configuration at any level of detail, albeit at the cost of the development of a code and its run-time. If the latter becomes a problem (which is almost always the case), the solution is traditionally the same as for analytical models : build either more specialized, or less detailed models. Both approaches jeopardize the range of validity of the simulation results. This is really the strength of a prototype : measurement validity is independent of the experiments …

The strategy behind this work is to eliminate this trade-off altogether by a dual approach : “do not change the model, but the computer the simulator runs on”. The clear choice here is to use a parallel computer. This allows us not to have to make any a-priori assumptions with respect to (w.r.t.) the measurements that will be made (in order to try to define “unimportant” parameters in that context, that can be eliminated, resulting in a simpler model, i.e. one that takes less time to execute). Hence a single general purpose simulation model is developed that only has to be validated once. The platform it is executed on can vary from a single processor (sequential or time sharing) to a “small” parallel machine (e.g. shared memory that is conceptually similar to the first one), to a “big” parallel machine (e.g. a message passing multi-computer that consists of a “large” number of processors, interconnected by a high performance switch) or even a “dedicated” parallel machine (i.e. an “emulator” for the real hardware, e.g. built from re-programmable hardware such as field programmable gate arrays). The actual experiments were (and are still) done on the first three types of platforms, with a special emphasis on the message passing parallel processor. The reason for this bias is the inherent scalability of this class of multiprocessors. The specific platform the (parallel) simulator is executed on does not influence the model (nor it’s validity) : it only influences simulator performance (i.e. run-time) and of course also cost.

In section 2, the multistage switch architecture will be presented, in section 3 it will be shown how a generic simulation tool was developed for the class of switches presented in the previous section. In section 4 the actual experiments and their outputs will be illustrated. In section 5, the performance of these simulation experiments will be evaluated for various platforms. A model that allows the prediction and optimization of simulator run-time performance on a specific parallel platform will be presented. Finally in section 6, conclusions and opportunities for future work will be discussed.

2. Switch Architecture

Multistage switch architectures are a compromise between resource demanding cross-bar based systems and global resource sharing systems with a limited scalability. Their modular structure allows designers to optimize (internal) resource utilization, fault tolerance, scalability, load balancing etc. for their particular class of applications. The actual family of switches the simulation tool was developed for is the Multi-Path Self-Routing Switch (MPSR) family of ATM switches [Henr 93]. As the switch itself is general purpose, i.e. it is not limited to ATM cell based traffic, the simulator tool also has a broader application range than this type of traffic. The independence of the transport protocol is implemented by converting all types of traffic arriving at an input to a generic internal format (“multi-slot cell”). The “self-routing” aspect of the architecture indicates that each multi-slot cell is packet switched through the fabric. It is routed independently from its predecessors and successors on the same input line. Nevertheless, all slots of a single multi-slot cell propagate together through the switch as a single entity. Once arrived at the correct output, the multi-slot cell is converted back into the format used by that I/O channel.

All experimental results (hence all simulation code implementations) have been developed and obtained for ATM traffic consisting of 53 byte long cells. From the viewpoint of the external input and output lines, the MPSR switch family is a Clos type non-blocking switch architecture [Henr 93]. This is realized by converting every external link into two internal links operating at the same bitrate, albeit with a proprietary protocol. Current simulators only model the datapath part of the system. The control part (e.g. connection setup, global internal management, monitoring etc.) is not (yet) included. Fault tolerance is provided by the intrinsic re-arrangeability characteristic of this switch, in combination with its internal routing strategy. Internally, the switch operates in packet switching mode, i.e. there is no internal (virtual) circuit. Load balancing, resource utilization optimization, scalability and fault-tolerance are all realized through the internal routing strategy. A randomized routing algorithm is used. The basic idea behind randomization is to first send a packet/cell to a random address and only then to its final destination. This strategy avoids source/destination address and traffic type dependent load variations on internal resources. This is at the cost of an increase of the “distance”, i.e. the number of hops, between input and output. Logically, the switch consists of two parts : a “distribution” section and a “routing” section.

A maximal configuration is illustrated in figure 1. Traffic on every input link is distributed over two internal links. Hence this fabric has 2048 external (ATM) inputs and outputs and 4096 internal (multislot cell) links between every stage. At this level of abstraction, the Clos structure has 3 levels : switching “planes” in the middle, preceded and followed by “access switches”. Every N*N switching block of this level of abstraction is in its own right a multistage switch.

�

Figure � SEQ Figure * ARABIC �2�

Figure 2 illustrates the internal structure of one switching “plane”. It is built from instances of the basic 16*16 switching component. In order to be able to exploit VLSI technology economies of scale, a delicate balance between functionality and configurability on the one side, and component cost of this basic switching component that is duplicated throughout the whole system on the other side, has to be decided upon. Key quantitative parameters to be determined for this problem are the number of serial channels per switching component and the size and management algorithm of its buffer memory. Although for the latter conceptually a choice between input buffering, output buffering or shared buffering has to be made, only the latter strategy combines the advantages of sharing scarce memory resources (i.e. silicon area) with avoiding head-of-line blocking [DePr91]. A basic switching component is illustrated in figure 3. When a multi-slot cell arrives at such a component by one of its inputs and the output it requests is busy, it is buffered in the shared memory at a location determined by the local buffer controller. When the output link is free, the multi-slot cell is forwarded. If the shared memory is full, the multi-slot cell is discarded. Hence the cell is lost. The shared memory controller maintains a logical FIFO queue for each output link. Physically, all logical queues share the single buffer memory. A switching component can perform different functions, depending on its position in the switch : in the distribution part, it “distributes” the incoming multi-slot cells over (groups of) output links, irrespective of their destination. In the routing part, it routes the multi-slot cell to the output link indicated by its internal self-routing tag.

The exploration of the multidimensional design parameter space is the real driving force behind the development of a general purpose, yet fast, set of simulation tools. This approach can only work if the validity of a simulation code is independent of the particular inputs or system configuration. Otherwise, a validation would have to be performed by the user for every individual simulator code. In traditional simulation and modeling, there is no solution to this dilemma : more general purpose models have a broader range of validity, albeit at the cost of a (much?) longer run-time that is incurred for every experiment. It is this fundamental problem that is solved, or at least strongly reduced in importance, by using a parallel computer as the platform for the execution of simulation experiments. The trade-off validity vs. run-time is transformed into a trade-off run-time vs. machine cost. The validity of simulator codes becomes independent of the input and system configuration as all simulator codes are built from the same library of (validated) basic components (the basic switching component, inter-stage and intra-stage connection, input and output format conversion etc.).

�

Figure � SEQ Figure * ARABIC �3�

3. Simulation Tool

A successful simulation strategy depends on several important design decisions. Although some of these issues are problem dependent, the majority are issues that have to be solved in every simulation.

System timing is a problem that potentially introduces a trade-off between validity, i.e. the extent to which simulation results correspond to measurements on a real (prototype) system, on the one hand vs. run-time of the simulator on the other. Decreasing the latter (through very detailed simulation) increases the range of validity of the model, albeit at the cost of a longer run-time. This dilemma is unsolvable in a sequential context : it reflects the fundamental limit of sequential instruction execution in Von Neumann computers. The only partial solution to this trade-off in sequential simulation is the strategy of “event driven” simulation where only instants in time where an “event” (potentially) changes the state are considered. Hence time periods where the state remains unchanged are skipped and time resolution becomes independent of execution time. This strategy trades code complexity for run-time performance : this is indeed the only possibility on sequential computers. The timing strategy that was chosen for the actual experiments is the time driven method. This is also due to the fact that the real hardware operates in “time slots” : every cell that arrives at the fabric is aligned (during reformatting) to the next “slot”. Hence, although a “slot” is a relatively coarse time unit (1 cell is divided in 8 slots), this choice does not negatively influence the validity of the simulation results, i.e. the basic dilemma time resolution (and validity of the results) vs. run-time is solved. Time driven implementations are simpler than event driven codes. Currently it remains an open question whether the complexity of the event driven strategy is justified (by performance gains) in parallel implementations of the class of problems under study.

A model for a particular simulation experiment is built at two levels : the basic component level and the structural level. Basic components are models of the basic switching element, input and output (re)formatting, statistics collection modules, error sources etc. These are combined into a global simulator at the structural level. This methodology allows the generation of simulators that are “valid by construction” over the intersection of the ranges of validity of the basic component models. The price of this approach is run-time : building less detailed (hence faster executable) models of parts of the switch allows a user to trade run-time for model accuracy. A fact that is often not accounted for however is that in the latter case the validity of the combined model must be verified for each configuration, hence each particular simulation experiment. One of the by-products of our strategy is exactly to trade this (human) effort for run-time (i.e. machine effort) by solving the run-time problem through a careful tuning of the parallel implementation or using a larger number of processors.

Based on this strategy, a whole continuum of solutions becomes available. On the one end, there is a sequential implementation that trades an increased range of validity for long run-times (when compared to more dedicated models). On the other end, there is the massively parallel implementation where each basic switching component is “simulated” or emulated by a dedicated processing element. This could be considered as an “emulation” of the actual hardware. When the processing elements would be implemented in general purpose hardware, e.g. field programmable gate array technology, with a physical implementation of the interconnect (instead of a simulation on a general purpose interconnect of the parallel computer) the simulator could even be considered as a prototype that behaves as the actual hardware, albeit at a (very) high implementation cost when compared against an implementation with dedicated chips. From the simulation viewpoint, the key issue is that the validity of the spectrum of simulators is an invariant. It only depends on the range of validity of the models of the basic building blocks, but not on a specific implementation or performance optimization. In principle, validity only has to be verified once. If structural model construction is not automatic, potential errors have still to be checked for at this level. As these can only involve an erroneous interconnection of correctly operating building blocks, they are not hard to diagnose and eliminate. From then on, the only problem of the simulator user is to specify input and system configurations and to decide upon the amount of resources (i.e. processors) to be used for a specific experiment. The latter choice is purely an economic one and is unrelated to the simulation result and its validity : the more processing elements that can be dedicated to the run-time execution, the faster it could execute (when an adequate interconnect is also provided !). The fact that this relationship is not always trivial led to the development of a theoretical model of the simulator. This tool gives insight into where to put more resources or what parts of the implementation limit run-time performance.

4. Experiments

A number of simulation experiments on a set of configurations of the MPSR switch family operating under a spectrum of loading conditions have been implemented and validated. The most important consequence of the methodology presented in this work is that all experiments are based on a single, general purpose simulator that had to be validated only once. The parameter that is tuned is the architecture of the (parallel or distributed) computer it is executed on. Depending on the requirements and resources of the user, price, performance or a user-defined price/performance indicator can be chosen as the optimization criterion.

The set of experiments presented in this section is intended to give an overview of the type of work the simulator and its associated analytical model can be used for. A detailed explanation and interpretation of the respective experimental results is outside the scope of this article. All models exhibit “infinite” buffers, i.e. cell loss probability is computed as a percentile. Time and space units are expressed in “slots”, where 1 ATM cell, transmitted at 155.52 Mbit/s equals 8 slots. Hence a space slot is 68 bit and a time slot is 68 bit/155.52 Mbit/s ~ 0.437 (s.

The first experiment is the simulation of a 2048*2048 switch under normal operating conditions and a load of 80% on every (external) input link with a uniform destination address distribution. For each of the 4096 internal links this results in an average load of [155.52*0.8*68/53]/2 Mbit/s or 51% of its nominal bandwidth. Figure 4 represents the cell queuing delay distribution and figure 5 represents the cell buffer occupancy distribution. Although the quantitative details of the results depend on the specific configuration of the switch, the macroscopic behavior is clear. Due to the distribution-routing strategy, queuing only occurs in the second half of the switch. The distribution section balances the load evenly over the switching components of the routing stages. The macroscopic behavior of the buffers is that of a distributed global queue, where the final stage (stage 12) shows most congestion. This stage accounts for the bulk of the total latency and cell loss under this mode of operation.

A second experiment was designed to evaluate the behavior of the switch under abnormal operation. Figure 6 and 7 illustrate the same performance indicators as in the previous example for a 128*128 (external links) fabric with one faulty switching plane. A plane is the switching component in the middle of the 3-stage Clos structure. Qualitatively, the experiment shows that the waiting time in front of the planes increases (stage 4) due to re-routing of the traffic that would normally have been handled by the faulty plane, but that the load distribution strategy still successfully handles this loading condition.

A third experiment involves correlated traffic. As ATM switching fabrics will have to handle periodic signals, generated by legacy equipment, their behavior under these loading conditions has to be investigated. Figure 8 and 9 illustrate the distributions for traffic that consists of periodic frames of 125(s (i.e. 8 kHz). Each frame on every input line, contains a cell with the same destination address. This experiment involved a 128*128 (external links) switch. The results of experiments for 32 (“syn-32”), 64 (“syn-64”) and all 128 inputs (“syn-128”) loaded with this type of periodic traffic are represented.

A related experiment on the same switch where the number of correlated cells per frame is varied is represented in fig 10 and 11. Only the worst case, i.e. every (of the 128 external) inputs is offered periodic traffic for the same destination, is represented for 1 up to 4 cells per frame. The influence of the correlation period is investigated in the last experiment, whose results are represented in fig 12 and 13. As could be expected, an increase of the correlation period will decrease the negative effects.

�
� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\AUS0696.XLS" "5.10&5.11![AUS0696.XLS]5.10&5.11 Chart 2" \a \p ���

Figure � SEQ Figure * ARABIC �4�

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\FIG13.XLS" "5.10&5.11![FIG13.XLS]5.10&5.11 Chart 4" \a \p ���Figure � SEQ Figure * ARABIC �5�

�
� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\AUS0696.XLS" "5.16&17![AUS0696.XLS]5.16&17 Chart 4" \a \p ���Figure � SEQ Figure * ARABIC �6�

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\AUS0696.XLS" "5.16&17![AUS0696.XLS]5.16&17 Chart 2" \a \p ���Figure � SEQ Figure * ARABIC �7�

�
� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\AUS0696.XLS" "5.26&27![AUS0696.XLS]5.26&27 Chart 1" \a \p ���Figure � SEQ Figure * ARABIC �8�

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\AUS0696.XLS" "5.26&27![AUS0696.XLS]5.26&27 Chart 2" \a \p ���Figure � SEQ Figure * ARABIC �9�

�
� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\AUS0696.XLS" "5.28&29![AUS0696.XLS]5.28&29 Chart 2" \a \p ���Figure � SEQ Figure * ARABIC �10�

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\AUS0696.XLS" "5.28&29![AUS0696.XLS]5.28&29 Chart 1" \a \p ���Figure � SEQ Figure * ARABIC �11�

�
� LINK Excel.Sheet.5 \\\\INFOS1\\EFDIRKX\\WORDPROC\\ARTICLES\\fig13.xls "5.30&32![fig13.xls]5.30&32 Chart 1" \a \p ���Figure� SEQ Figure * ARABIC �12�

� LINK Excel.Sheet.5 \\\\INFOS1\\EFDIRKX\\WORDPROC\\ARTICLES\\fig13.xls "5.30&32![fig13.xls]5.30&32 Chart 3" \a \p ���Figure � SEQ Figure * ARABIC �13�

�
5. Performance Model

Granularity

By trading run-time for validity, the fundamental problem has really shifted from the user (i.e. the person who understands the application field and who develops the model(s)) to the implementer (i.e. the person who makes the actual code). The price of maintaining validity over a range of implementation alternatives is a more general purpose model, which results in increased demand for run-time performance. In this work, this issue was addressed by targeting parallel computer architectures as the implementation platform. Although these machines have evolved very rapidly in recent years, fundamental issues w.r.t. software, such as adequate tools, operating systems and run-time support, load balancing, etc. remain unsolved. Hence, it is vital to use a well structured strategy to tackle the implementation aspects of the (parallel) simulators ! Indeed, ad hoc solutions tend to suffer from the same problems as current sequential implementations such as limited portability, lack of adequate tools and run-time support. This implies that the application specialist also has to be implementation specialist or vice-versa.

A key observation in all parallel algorithms is that there are different levels of “granularity”. This parameter can informally be defined as the ratio of compute time to communication time of a “process” or “thread”. A “structured” approach to the exploitation of parallelism is to adopt a layered approach, similar to the strategy employed in computer networks. This work covers three layers of granularity.

The parallel execution of independent simulation runs can be interpreted as the highest level (i.e. it has the “coarsest” granularity). Normally, there is no communication between the experiments and the overhead due to the master process that manages a queue of jobs can be neglected. This approach is extremely successful for parameter space exploration and sampling. With careful consideration of the statistical implications, the execution of multiple concurrent simulation experiments can also be useful for speeding up the computation of statistical parameters (e.g. averages and higher order moments). This is orthogonal to the first application, i.e. it can be done for a single point or for multiple points in the parameter space under study (e.g. buffer sizes, routing algorithms etc.). Experimentally, it was clear that this level should remain the responsibility of the application specialist. Indeed : very limited, if any, knowledge about the parallel execution is required because of the very large “granularity” (hence negligible influence of the performance of the parallel processor interconnect) and all important parameters are typically problem dependent (e.g. the length of transients, free parameter space size and sampling strategy etc.). Although not mentioned explicitly, this method was used in every experiment : due to its high efficiency, only when a single simulator could not be performed on a single processor, lower levels of granularity were considered.

The next layer of granularity addresses the partitioning of a single simulator over multiple processors. This is the layer to which the analytical model is a contribution. Due to the smaller granularity, much more attention must be paid to the parallel implementation, i.e. the matching between application inter-process communication requirements and parallel platform interconnect performance (bandwidth, latency, addressing, routing etc.). Our modeling strategy makes this problem the sole responsibility of the implementers as simulation result validity is de-coupled from the implementation. The only objective at this level is to minimize run-time through an optimal allocation of resources (processors, interconnect, I/O) to the parallel simulator code(s). The analytical model is the key to the solution of this issue.

The lowest layer of parallelism is instruction and function/procedure level parallelism. Whereas the former can be considered to be solved by “superscalar” processor architectures, the latter remains much more application dependent. This level results in the elimination of bottlenecks from the sequential code, typically by the acceleration of (performance) critical sections by hardware. For discrete event simulation this approach was shown to be successful [Tou96].

Distributed Simulation Algorithm

The most general approach to distributed discrete event simulation are parallel algorithms [Fuji90]. Their basic model is a network of “logical processes” that communicate by exchanging time stamped event messages that (potentially) change the recipient’s state or cause new event messages. Optimistic and conservative execution models have been proposed for this problem. Both strategies have been shown to result in limited speed-up for the class of problem under study [Liu95]. The fundamental reason is that both approaches are geared towards the detection and exploitation of independent (hence concurrently executable) events, either through explicit (null) messages or implicitly through speculative execution. Due to the time driven approach, the overhead of these methods is incurred without the possibility for an improved performance. On the contrary, implicit synchronization by means of the propagation of data messages provides the lowest overhead for the chosen timing strategy. The packing of multiple logical messages into a single physical packet allows for the minimization of packet start-up latency.

�

Figure � SEQ Figure * ARABIC �14�

The most important disadvantage of time driven simulation (compared to event driven) is its poor performance under low load conditions, i.e. when the number of events per time step is (very) small. High load conditions are however the operating regime that is most interesting for the investigation of critical situations. In these circumstances, the overhead associated with processing empty time slots is negligible compared to the overhead of distributed simulation algorithms. This choice is less obvious under non-uniform loading conditions where high and correlated loads are only applied to a subset of the inputs, but where the timing overhead is incurred on every input. The exploration of this trade-off and the quantization of the break-even point with general purpose distributed algorithms remains an issue for further study.

The parallelization strategy can be considered to be a combination of pipelining, functional and data level parallelism [Alm89][Sto93]. Pipelining is applied in the “horizontal” direction (inter-stage), whereas the latter two are applied in the “vertical” direction (intra-stage) (Figure 14). Factors that have to be taken into account are load balancing and the minimization of communication overhead. From the structure of the switch architecture, it is to be expected that both issues will be more easily solved in the “horizontal” direction than in the “vertical” one. Hence already intuitively, an implementer would first dedicate processors to the simulator code of one or a few stages. Only when the number of processors is larger than the number of stages, the simulator of a single stage should be decomposed further (in the “vertical” direction). This has been confirmed experimentally and is also a result of the analytical model.

Measurements

Table 1 gives simulator run-times for switches of various sizes. These values were obtained for the first experiment of section 4. Each run simulated five million time slots. One slot is 1/8 of a multi-slot cell, i.e. the internal representation of an ATM cell. Hence a slot is (68*8/155.52)/8 (s or 437ns. Hence approximately 1.7 s of operation of the switch is simulated. Although actual run-times can be interesting to get an impression of the complexity of the problem, a much more relevant parameter is the “speed-up”. Speed-up S is defined as

� EMBED Equation.2 ���

with T1 the run-time of a sequential implementation and Tn the run-time of the parallel simulator on n processors. If both implementations are done on the same or similar processors, this measure of performance becomes processor independent. Hence it gives an insight in the quality of parallelization, and more particularly the extent to which interprocessor communication overhead has been tackled (for a particular class of problems, as the communication pattern is application dependent). T1 is often very hard to measure, as a sequential machine with (almost) the total amount of central memory of the parallel machine has to be found … If this is not possible, T1 is defined as the sum over all processor nodes of the actual application compute times. An equivalent measure of the quality of parallelization is the “efficiency” E(n). It is defined as

� EMBED Equation.2 ���

It can be considered as the average utilization of a processor, or the percentage of processors that is actually performing useful work.

Table � SEQ Table * ARABIC �1�

Internal Switch Size�
Number of Stages�
Run-time (h)�
Speed-up�
Efficiency(%)�
Number of Processors�
�
256�
6�
44�
4.5�
75�
6�
�
512�
10�
79�
8.7�
87�
10�
�
4096�
12�
301�
18.7�
72�
26�
�

In the first two experiments, parallelization was only performed in the “horizontal” direction. This is equivalent to (coarse grain) pipelining. In the last experiment, after pipelining, each simulator of a single stage was on its turn divided over multiple processors. Even though the global run-time is rather long, the efficiencies indicate that processors have a good utilization, i.e. the communication overhead of parallel implementations has been kept under control. The decrease in efficiency of the last experiment is caused by the communication overhead introduced by simulating every stage with multiple processors.

Analytical Model

The experiments indicate the importance of a reduction of the overhead caused by communication between the (sequential) processes the parallel simulator is built from. From the definition of efficiency and speed-up, it is clear that this should be one of the goals of every parallel code design. Communication overhead time, that can be derived as � EMBED Equation.2 ���, is the result of two factors : application requirements and behavior of the interconnect of the parallel machine under these requirements. For portability, but also for scalability, partitioning and modularity, it is necessary to be able to quantify each component separately. Experimentally, this would not only be expensive, but measurements would also be prone to errors, e.g. due to unpredictable interactions of different applications. This can occur directly, e.g. by time sharing of processes on workstations, or indirectly, e.g. by congestion in the I/O system of a parallel machine.

Because insight in the communication behavior of parallel programs is key to maximizing S(n) and E(n) an analytical model was developed. The model gives E(n) and S(n), with n the number of processors, as a function of problem size with as a parameter the parallel architecture the simulator will be executed on. Both components of the overhead are uncoupled and can be quantified independently. Their influence on the global behavior or interaction is also available from the expression for E(n) or S(n). These formulas also indicate on which type of parallel architecture the application would perform well as a function of problem or machine size. This avoids unnecessary porting or tuning effort.

Definitions

The application is characterized by the following parameters :

N : the number of (internal) inputs and outputs of the switching fabric

n : the number of inputs and outputs of the basic switching element. One stage contains N/n basic switching elements, each logically operating as an n*n switch.

k : the factor by which the number of stages is larger than the minimum of lognN for this type of switch , e.g. for fault tolerance, blocking probability reduction etc... Hence there are k*lognN stages in the “horizontal” direction.

Z : the number of time slots the simulation will take, where 1 time slot is the basic unit of time.

a : compute time to simulate the operation of a basic switching element during 1 slot

b : compute time overhead associated with the simulation of a stage. Hence the simulation of a whole stage takes a*N/n+b [sec].

u : message size necessary to communicate the state of one link during one time slot, expressed in bytes.

The parallel computer is characterized by the following parameters :

s : communication set-up time, i.e. the latency before arrival of the first bit at the destination.

t : transmission time for 1 byte, i.e. 8/bit-rate, i.e. the time needed for one more byte to arrive at the destination address

P : the number of stages in a pipeline of processors

(: intra-stage communication overhead. If (s+t*u*N) is the time necessary to transmit the state of a stage to the next one over the interconnect of the parallel machine where a stage is simulated by a single processor in a*N/n+b, (1+()(s+t*u*N) is the time required when a stage is simulated by multiple processors, hence including intrastage communication overhead.

H : the number of processors simulating a single stage. Hence each processor simulates N/(n*H) basic switching elements, which reduces the compute time for a single stage, albeit at the introduction of a communication overhead of (.(s+t*u*N).

Sequential Run-Time

The time for simulating Z time slots on a sequential computer is

� EMBED Equation.2 ���

with Ts the time to (sequentially) simulate the operation of a stage for one slot.

Parallel Run-Time : Pipelining

If only a few processors are available, experimentally and intuitively, it is clear that they are best configured as a pipeline. Assume there are P (� EMBED Equation.2 ���) processors available. An example with 2 stages per processor is illustrated in figure 15. The time to communicate the results of one stage to the next one over the interconnect of the parallel processor is Tc=(s+t*u*N). Hence the time to simulate Z time slots is

� EMBED Equation.2 ���

The speed-up is given by

� EMBED Equation.2 ���

In all realistic cases, � EMBED Equation.2 ���, i.e. the number of time slots to be simulated is much larger than the pipeline depth. Hence

� EMBED Equation.2 ���

or the efficiency E(P) is

� EMBED Equation.2 ���

�

Figure � SEQ Figure * ARABIC �15�

This result for a very simple parallel implementation already illustrates some very important general trends.

Problem dependency is given by the parameter (Ts/Tc). A first observation is that for a given architecture and number of processors efficiency increases with increasing problem size. This is true when the load is balanced, i.e. k*lognN divisible by P. An unbalanced load implies that the compute time of a single stage is larger than Ts/P. If we represent this overhead as (Ts/P)*(1+e) the efficiency becomes

� EMBED Equation.2 ���

Hence load unbalance is immediately reflected in a loss of efficiency (and speed-up). This illustrates the importance of load balancing and justifies the efforts to optimize this parameter in a parallel program.

Machine dependency is given by the parameter P*Tc. For a fixed problem size Ts, efficiency decreases with increasing parallelism. Depending upon the amount of data to be transferred between pipeline stages u*N and the characteristics of the parallel machine interconnect (latency s and throughput t-1), the performance will be latency limited (s>t*u*N) or bandwidth limited(s<t*u*N). Hence, depending on the application a “better” architecture has a lower latency or a higher bandwidth.

Parallel Run-Time : Pipelining and Functional Parallelism

This approach combines pipelining with parallelism inside the simulation of a single stage. The total number of processors is P*H. Figure 16 illustrates such a partitioning for 12 processors. The time required for simulating Z time slots is

� EMBED Equation.2 ���

Hence speed-up is

� EMBED Equation.2 ���

for the same reason as before.

�

Figure � SEQ Figure * ARABIC �16�

Efficiency is given by

� EMBED Equation.2 ���

In this expression, the range for H is � EMBED Equation.2 ���and the range for P is � EMBED Equation.2 ���. For the maximum number of processors, i.e. where each basic switching element is simulated by a separate processor, the efficiency is given by :

� EMBED Equation.2 ���

where a*N/n >> b is assumed. This expression shows another characteristic of parallel algorithms : for a (very) fine grain solution, application performance is ultimately determined by the interconnect. Indeed, only for a very good interconnect will the denominator (a) dominate the numerator (total communication time), i.e. will a reasonable efficiency be obtained.

Numerical Examples

To illustrate key conclusions of the model, two examples are presented numerically. In the first example, actual measurements are used to estimate the efficiency. This illustrates the use of the analytical model to predict the scalability of a given problem as a function of the number of processors. The second example is an illustration of the use of the formula to choose an optimal parallel platform.

Actual parameter values measured during the experiments that have been presented earlier are :

s = 1461 (s : a long message start-up latency mainly due to software overhead

t = 0.56 (s /byte

u= 12 bytes

(= 0 for 2 and 4 processors, 1 for 8 processors and 3 for 16 processors.

For a small switch with

N = 16

n = 4

k = 4

a = 1560 (s

b = 0

Speedup and efficiency as a function of the number of processors can be computed :

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\MOD0696.XLS" "Sheet1![MOD0696.XLS]Sheet1 Chart 2" \a \p ���

Figure � SEQ Figure * ARABIC �17�

This very small example already shows the (negative) influence of inter-processor communication : due to intra-stage communication, speed-up with 16 processors is lower than with 8 processors …

A second example is an estimation of the behavior of the first experiment presented earlier on a larger parallel processor. Machine parameters are estimated to be :

s = 10 (s .

t = 0.08 (s /byte

u= 12 bytes

(= (H-1)*0.5 : this is an estimate of the intra-stage communication overhead that depends on the type and amount of statistics collection, routing and distribution algorithm etc.

For the large switch with

N = 4096

n = 16

k = 4

a = 1560 (s

b = 0

speedup and efficiency as a function of the number of processors are represented in figure 18.

It is clear that from a certain point on, intra-stage communication overhead reduces efficiency significantly. The model predicts a point where adding more processors will increase the run-time of the application. Although speed-up and efficiency are relative measures, it is also interesting to consider the absolute values : for this problem, sequential execution time would be approximately 9 months, whereas on 192 processors execution time would be reduced to less than 4 days.

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\MOD0696.XLS" "Sheet2![MOD0696.XLS]Sheet2 Chart 2" \a \p ���

Figure � SEQ Figure * ARABIC �18�

An obvious platform for every parallel application is a “network of workstations” (N.O.W.) [And95]. Based on the model presented, it is easy to compute up to which number of processors this platform could be useful, i.e. when one should consider migration to a dedicated parallel platform.

A first N.O.W. would be built from typical workstations, interconnected by an Ethernet network. Based on the following parameters for the model :

s = 1 ms .

t = 800 ns /byte

u= 12 bytes

(= (H-1)*4 : this includes congestion on the medium or in the switch.

Problem parameters remain :

N = 4096

n = 16

k = 4

a = 1560 (s

b = 0

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\MOD0696.XLS" "Sheet4![MOD0696.XLS]Sheet4 Chart 1" \a \p ���

Figure � SEQ Figure * ARABIC �19�

It is clear that the poor interconnect seriously jeopardizes application performance. Speed-up is not only severely limited, but also peaks at a very low number of processors. On the contrary, if a N.O.W. would be built from the same typical workstations interconnected by an ATM switch (parameters are estimated for the type of switch that is being simulated):

s = 64 (s : switch latency

t = 51.4 ns /byte : 155.52 Mb/s data rate

u= 12 bytes

(= (H-1) : this includes queuing in the switch.

� LINK Excel.Sheet.5 "infos1:/u/infos1/fs.par/efdirkx\\WORDPROC\\ARTICLES\\MOD0696.XLS" "Sheet3![MOD0696.XLS]Sheet3 Chart 1" \a \p ���

Figure � SEQ Figure * ARABIC �20�

Although not as good as a dedicated parallel machine, this platform provides a good price/performance compromise for all but the most demanding problems.

6. Conclusions

	Parallel computers have been found to be a very cost effective platform for the detailed simulation of large multistage switching fabrics. Experimental results for a class of multistage networks, switching under a wide variety of loads and operating conditions have been presented. From the viewpoint of validation, the single most important characteristic is that all experiments are performed with the same basic simulator code. Hence validation has to be performed only once, independently of a parallel implementation.

Although parallel software development efforts are not to be underestimated, the choice of a distributed memory parallel computer provides the scalability of the platform that allows for the decoupling of model validity from simulator run-time. A structured approach to the implementation of parallel simulators based on different levels of granularity has been presented. With machine architecture as a parameter, a user can make a trade-off of run-time for machine cost, or vice-versa. The key problem of mapping a parallel simulator, i.e. a set of processes with computational and communication requirements, onto a hardware architecture, i.e. a set of processors with computational and communication resources is addressed by an analytical model. This expression gives efficiency and speed-up as a function of the number of processors, with as parameters application and machine characteristics. It was shown how this model can be used to determine which type and size of application a single processor, a legacy network of workstations (N.O.W.) or a general purpose parallel processor is best suited for.

Future work includes, but is not limited to, the development of a more user friendly front-end to the computational back-end; further refinement of the analytical model for more unbalanced loads and the expansion of the basic data path simulator with control and management functions.

7. References

[Alm89] Almasi G. & Gottlieb A, “Highly Parallel Computing”, B. Cummings, 1989

[And95] Anderson T. et al., “A Case for NOW (Networks of Workstations)”, IEEE Micro, Feb. 1995, vol. 15, nr. 1, pp. 54-64

[DePr91] De Prycker M., “Asynchronous Transfer Mode : A Solution for Broadband ISDN”, Ellis Horwood, London, 1991

[Fuji90] Fujimoto R., “Parallel Discrete Event Simulations”, CACM, 33(10), pp.31-55, Oct. 1990.

[Henr93] Henrion M., Elienberger G., Petit G. and Parmentier P : “A Multi-Path Self-Routing Switch”, IEEE Communications Magazine, Aug. 1993

[Hwa85] Hwang, K Briggs F.A., “Computer Architecture and Parallel Processing”, Mc Graw-Hill, 1985

[Liu95] Liu W., Petit G., Dirkx E., “Distributed and Scalable Simulation of ATM Exchanges”, Proceedings of ParCo’95, Gent, Sept. 1995, Belgium.

[Rig89] Righter R, Walrand J, “Distributed Simulation of Discrete Event Systems”, Proceedings of the IEEE, 77(1), pp. 99-113, Jan. 1989.

[Sak91] Sakurai Y et al, “Large-Scale ATM Multi-Stage Switching Network with Shared Buffer Memory Switches”, IEEE Communications Magazine, pp. 90-96, Jan. 1991

[Sto93] Stone H., “High Performance Computer Architecture”, Addison Wesley, 1993.

[Tob91] Tobagi F.A. et al, “Architecture, Performance and Implementation of the Tandem Banyan Fast Packet Switch”, IEEE Journal on Selected Areas in Communications, SAC-9(8), pp.1173-1193, Oct. 1991

[Tou96] Touhafi A. et al, “Implementation of a Field Programmable Logic Based Co-Processor for the Acceleration of Discrete Event Simulators”, Proceedings of the 6th International Workshop on Field Programmable Logic and its Applications, Aug. 1996.

