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Abstract

Data containing deterministic relations entail conditional independencies
that cannot be represented by a faithful graph, due to violations of the inter-
section condition. Such data can not be handled by current constraint-based
learning algorithms. More generally, these violations are characterized by
information equivalence of two sets of variables with respect to a target vari-
able. We argue that deterministically related variables contain valuable in-
formation and should not be eliminated from the data. This paper proposes
augmented Bayesian networks that explicitly model such information equiv-
alences. For attaining minimality, only the set which has the simplest relation
with the target variable is connected to it. Under the assumption that com-
plexity does not increase along a causal path, this selection criterion results
in consistent models. Under weak transitivity, faithfulness of the graph is
reestablished by using the generalized definition of the d-separation crite-
rion, called Deq-separation, and by limiting the conditional independencies
that are graphically described with the simplicity condition. Based on this,
an extension to the PC learning algorithm is developed that allows the con-
struction of minimal augmented Bayesian networks from observational data.
Correct models are learned from data generated by a set of structural equa-
tions.

1 Introduction

Bayesian networks are widely used as dense representations of probability dis-
tributions. They consist of a Directed Acyclic Graph (DAG) and a Conditional
Probability Distribution (CPD) for each variable. The DAG provides an explicit
characterization of the conditional independencies present in the distribution that
follow from the Markov condition.
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If the DAG represents all conditional independencies, it is called faithful to
the distribution. Faithfulness is an important property. First, it enables qualitative
reasoning based on the DAG, to answer questions like ‘if we know variable X , does
Y have information about Z’. Second, the rationale of the causal interpretation of
a Bayesian network is that when a model is capable of explaining all qualitative
properties - the conditional independencies - observed in the data, the model must
come close to reality. Finally, the existence of a faithful graph is required by the
constraint-based learning algorithms that are able to learn causal models from data.

One of the necessary conditions for faithfulness is the intersection condition
(Pearl, 1988):

X⊥⊥Z | W, Y & Y⊥⊥Z | W, X ⇒ X, Y⊥⊥Z | W (1)

where the notation A⊥⊥B | C stands for the independency of A and B by con-
ditioning on C. Single stochastic variables are denoted by capital letters, sets of
variables by boldface capital letters. The condition states that if two variables ren-
der the other irrelevant with respect to a third variable, neither of both can depend
on that variable. This condition is violated when 2 variables contain the same infor-
mation about a third variable, Z. We call them information equivalent with respect
to Z. While both are marginally dependent on Z, either becomes conditionally
independent from Z by conditioning on the other variable.

A well-known case for which the intersection condition is invalid, is when
the data contains deterministic relations. Take model X → Y → Z with Y =
f(X). The model implies that X⊥⊥Z | Y , but from the function it follows that
also Y⊥⊥Z | X; X contains all information about Y . This cannot be represented
by a faithful graph and poses problems for algorithms that try to learn the model
from data. Since X and Y contain the same information about Z, it is not clear
which of the two should be connected to Z. Connecting both to Z would represent
redundant information. We propose to connect the one having the simplest relation
with Z.

The approach developed in this paper is to reestablish the faithfulness of Bayesian
networks as representation of conditional independencies by characterizing infor-
mation equivalences and integrating them into an augmented model.

The next section introduces causal models, it is followed by a related work
section. Section 4 defines information equivalence and the augmented models.
Section 5 discusses how minimality can lead to a selection criterion for informa-
tion equivalent relations and section 6 shows how faithfulness can be reestablished
for data containing deterministic relations. Finally, section 7 extends the PC algo-
rithm so that it can learn augmented models and section 8 reports on experimental
verification of the extended learning algorithm.
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Figure 1: Example causal model.

2 Bayesian Networks

Bayesian networks offer dense representations of joint distributions. The Directed
Acyclic Graph (DAG) of Fig. 1 corresponds to the following factorization:

P (R,S, T, U, V, W ) = P (R)P (S | R)P (T | S, V )P (U)P (V | R,U)P (W | V )
(2)

The structure of the DAG implies conditional independencies. The indepen-
dence of U and W conditional on V , written as U⊥⊥W | V , is a qualitative rela-
tional property, defined by

P (U | v, w) = P (U | v) whenever P (v, w) > 0 (3)

The knowledge of W does not provide additional information about U once V is
known. By an independency, the conditional distribution can be rewritten as:

U⊥⊥W | V ⇔ P (U | w) =
∑
v∈V

P (U | v)P (v | w) whenever P (v, w) > 0

(4)

The information shared by U and W is also present in V . It is a consequence of
the model of Fig. 1.

The graphical d-separation criterion allows us to retrieve the conditional inde-
pendencies from the graph that follow from the Markov condition. It states that
a node becomes independent from all its non-descendants by conditioning on its
parents. Let p be a path between a node U and a node W of a DAG G. Path p is
called blocked given subset V of nodes in G if there is a node v on p satisfying one
of the following conditions:

1. v has converging arrows (along p) and neither v nor any of its descendants
are in V, or

2. v does not have converging arrows (along p) and v is in V.
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V is said to d-separate U from W in G, denoted U⊥W | V, iff members of V
block every path from U to W . In the model of Fig. 1, U gets d-separated from W
by V ; R from T by S and V . R and U are d-separated, but are not d-separated if V
is given. R→ V ← U is called a v-structure. Conditioning unblocks a v-structure
in a path, whereas it blocks non-v-structures.

A Bayesian network is called an I-map since all independencies it represents
are present in the distribution. A Bayesian network not necessarily represents all
independencies. The faithfulness property insists that each conditional indepen-
dency in the distribution corresponds to a d-separation in the graph; that for all
disjoint subsets A, B, C:

A⊥⊥B | C⇔ A⊥B | C (5)

A Bayesian network is minimal in the sense that no edge can be destroyed
without destroying its I-mapness. Multiple Bayesian networks exist representing
the same distribution though, depending on the chosen variable ordering when con-
structing the network. Oliver and Smith define the conditions for sound transfor-
mations of Bayesian networks, where sound means that the transformation does
not introduce extraneous independencies (Oliver & Smith, 1990). No edge re-
moval is permitted, only reorientation and addition of edges. Such transformations
however eliminate some independencies represented by the original graph. Thus,
if a faithful Bayesian network exists, it is the edge-minimal Bayesian network. All
other Bayesian networks have more edges and represent less independencies.

Multiple faithful models can exist for a distribution though. These models
represent the same set of independencies and are therefore statistically indistin-
guishable. They define a Markov-equivalence class. It is proved that they share the
same v-structures and only differ in the orientation of the edges (Pearl, 2000).

3 Related Work

Recent research has developed methods for performing inferences in Bayesian Net-
works with functional dependencies (Cowell, Dawid, Lauritzen, & Spiegelhalter,
1999; Cobb & Shenoy, 2004). Dechter and Mateescu introduce mixed networks for
expressing probabilistic and deterministic information in the form of constraints
(Dechter & Mateescu, 2004), whereas we view deterministic relations as proper
causal relations. Geiger, Spirtes et al. extended the d-separation criterion for re-
trieving the dependencies entailed by deterministic relations, which they called
D-separation (Geiger, 1990; Spirtes, Glymour, & Scheines, 1993).

Pearl uses stability as the main motivation for the faithfulness of causal models
(Pearl, 2000). Consider the model of Fig. 1. In general, T depends on R. T and
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R are independent only when the stochastic parameterization is such that the influ-
ences via paths R→ S → T and R→ V → T cancel out exactly . This system is
called unstable because a small change in the parameterization will result in a de-
pendency. The unhappy balancing act is a measure zero event, the chance of such
a coincidence can therefore be regarded as having zero probability. Deterministic
relations, however, appear in nature and are not coincidences.

Current constraint-based learning algorithms fail for data containing function-
ally determined variables (Spirtes et al., 1993), they require that such variables are
eliminated from the input data (Scheines, Spirtes, Glymour, Meek, & Richardson,
1996). The argument is that such variables are not essential to the model since
they contain redundant information. In section 4.2 we show, however, that such
variables provide insight in the underlying mechanisms and often reduce the com-
plexity of the model. Moreover, determinism is not always known a priori.

For the faithfulness of graphical models, many conditions should hold (Pearl,
1988). Therefore, other representation schemes of independency information were
developed, such as the imsets of Studeny (Studeny, 2001), which can model any
conditional independence structure. Our approach claims that if violations of faith-
fulness come from local properties, these properties should be integrated into the
causal modeling framework.

4 Augmented Bayesian Networks

A necessary condition for the existence of a faithful graph is the intersection con-
dition. This condition is violated by information equivalence.

4.1 Information equivalence

Definition 1 (information equivalence) X and Y are called information equiva-
lent with respect to Z, the target variable, if

• X 2Z and Y 2Z

• Y⊥⊥Z | X

• X⊥⊥Z | Y

Knowledge of either X or Y is completely equivalent from the viewpoint of Z.
A variable Y is determined by a set of variables X if the relation between Y

and the set X is a function, written as Y = f(X). A functional relation implies
that the variables X contain all information about Y . If Y is correlated to a third
variable Z, all information from Y about Z is also present in X. If additionally
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Figure 2: Causal model of SGS (Fig. 3.23) in which Z equals X

X⊥⊥Z | Y holds, meaning that X contains no additional information about Z, then
Y and X are information equivalent with respect to Z. For a bijection, Y = g(X)
and X = g−1(Y ), each variable dependent on X or Y implies an information
equivalence.

Consider the coder-decoder example, taken from SGS (Fig. 3.23) (Spirtes
et al., 1993), shown in Fig. 2. Variable Y encodes the values of both R and X ,
and Z decodes Y to match the value of X . This is possible because it is the first bit
of Y that corresponds to the value of X . X is therefore deterministically related
to Z, though not adjacent in the graph. Both X and Y are information equivalent
with respect to Z.

Information equivalences follow from a broader class of relations than just de-
terministic ones. By applying Eq. 3 on both conditional independencies of equiv-
alence X and Y for Z it follows that

P (Z | x) = P (Z | y) whenever p(x, y) > 0 (6)

This shown in Fig. 3. The domain of Y is partitioned into subsets grouping
the y values having the same P (Z | y). Information equivalence appears when
the domain of X can be partitioned into subsets such that P (x, y) > 0 only if
P (Z | x) = P (Z | y). Each subset of Ydom maps to a subset of Xdom.

If, besides the independencies of Definition 1, additionally X⊥⊥Y | Z holds,
then all three variables contain the same information about each other and are in-
formation equivalent. We call this a multi-node equivalence.

4.2 Example

Fig. 4 represents a causal model of performance related data of a quicksort algo-
rithm. The overall performance is measured by the computation time (Tcomp). #op
represents the number of basic compare-swap operations, which is affected by the
array size. The time to compute one compare-swap operation (Top) depends on
the number of processor cycles for one operation (Cop) and the processor’s clock
frequency (fclock). The number of cycles consists of the cycles spent executing
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Figure 3: Variables X and Y are information equivalent for Z. P (x, y) is only
strictly positive for values that affect P (Z) similarly. These values are related by
relation R.

the instructions of one operation (#instrop) and the cycles spent waiting due to
memory accesses, which are triggered by the cachemisses. These are determined
by the memory capacity, the array size and element size, which is the size in
bytes of the elements of the array. Finally, the data type of the elements (variable
element type) affects Cop, and determines #instrop and the element size. The
causal interpretation of the edges should be read as “a change of the state of A
causes a change of the state of B”.

Deterministic variables are depicted with double-bordered circles, they are de-
termined by their parents in the graph. Even the other non-input variables are
quasi-determined by their parents, since a serial computer is deterministic. One
can argue that these deterministic variables can be omitted and that the computa-
tion time can directly be expressed in function of the parameters. The intermediate
variables, however, are of great explanatory importance and extend the predictive
power of the model. The cache misses, for example, are only determined by the
size of the data, not by the data type. This knowledge enables the prediction of
the cache misses for new data types. Moreover, element size is a countable vari-
able, whose domain is an ordered set. The relation with the cache misses can be
expressed by a continuous function, which makes it possible to predict the cache
misses for yet unknown sizes. The relation of the discrete variable element type
and the cache misses is a table without predictive capacities.

4.3 Assumptions

In order to be able to investigate the effect of an information equivalence on the
conditional independencies between other variables, we will assume a condition
that expresses a kind of transitivity.
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Figure 4: Causal model of the performance of the quicksort algorithm.

Assumption 1 Weak Transitivity

T⊥⊥V | W & T⊥⊥V | W, U ⇒ T⊥⊥U | W or U⊥⊥V | W (7)

Or, put the other way around:

T 2U | W & U 2V | W ⇒ T 2V | W or T 2V | W, U (8)

It is one of the necessary conditions for the existence of a faithful graph (Pearl,
1988). Eq. 8 says that if T depends on U and U depends on V , it implies that
either T depends on V (e.g. as in model T → U → V ) or becomes dependent by
conditioning on U (e.g. as by v-structure T → U ← V )

Take again the coder-decoder example shown in Fig. 2. X determines the first
bit of Y and R the second. The decoding of Z is determined by the first bit of
Y . This model, however, violates the weak transitivity condition. Y depends on
X , R and Z; but R is independent from X and Z, also after conditioning on Y .
The values of variable Y reflect two separate quantities, one that is determined by
X and one by R. Each value of Y combines both quantities. The coder-decoder
system is designed to exhibit this specific behavior.

The following assumptions are introduced to simplify the discussion. They ex-
clude some exotic cases in which the probability distributions exhibit very specific
regularities. For the experiments presented in section 8 these assumptions hold.

Assumption 2

X 2Z & X⊥⊥Z | Y & X⊥⊥Z | C ⇒ X⊥⊥Z | Y, C (9)
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Assumption 3 If X and Y are information equivalent with respect to a variable
Z, it follows that

X⊥⊥Y | D ⇒ X, Y⊥⊥Z | D (10)

If D contains all information shared by X and Y , D also contains the information
that X and Y have about Z.

4.4 Properties of Information Equivalences

The following properties prove that information equivalences can be reduced to a
set of fundamental equivalences. An example model where these properties hold
for the variables with the same names as in the property descriptions is given in
Fig. 8. The first property shows that an information equivalence remains for all
variables related to the information equivalent variables via the target variable.

Property 1 If X and Y are information equivalent with respect to a variable Z
and for variable A it holds that A 2Z and Z screens off X and Y from A (X⊥⊥A |
Z and Y⊥⊥A | Z), then X and Y are information equivalent with respect to A.

Proof:
From X⊥⊥A | Z it follows that (using Eq. 4)

P (A | X) =
∑
z∈Z

P (A | z).P (z | X)

=
∑
z∈Z

P (A | z).P (z | Y ) = P (A | Y ) (11)

The last step is true by Y⊥⊥A | Z.

The next property says something about the conditional independencies im-
plied by information equivalences. If among information equivalent variables,
one contains all information that a variable has about the target variable, the other
equivalent variables also contain this information.

Property 2 If X and Y are information equivalent with respect to a variable Z, it
follows that

Z⊥⊥B | X ⇔ Z⊥⊥B | Y (12)
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Proof:
We partition de domain of X into subsets Xk

dom for which P (Z | x) is the same,
namely P (Z | k). There are two such subsets, since P (Z | x) 6= P (Z).

P (Z | B) =
∑

x∈Xdom

P (Z | x).P (x | B) =
∑

k

∑
x∈Xk

dom

P (Z | x).P (x | B) (13)

=
∑

k

P (Z | k)
∑

x∈Xk
dom

P (x | B) (14)

=
∑

k

P (Z | k)
∑

x∈Xk
dom

∑
y∈Ydom

P (x | y,B).P (y | B) (15)

Each subset Xk
dom maps to a subset Y l

dom for which P (Z | k) = P (Z | l). By Eq.
6, P (x | y, B) is only positive whenever x ∈ Xk

dom and y ∈ Y l
dom, thus:

P (Z | B) =
∑

k

P (Z | k)
∑

y∈Y l
dom

P (y | B)
∑

x∈Xk
dom

P (x | y, B) (16)

The equivalence also implies that
∑

x∈Xk
dom

P (x | y, B) = 1 if y ∈ Y l
dom, so:

P (Z | B) =
∑

l

P (Z | l)
∑

y∈Y l
dom

P (y | B) (17)

=
∑

y∈Ydom

P (Z | y).P (y | B) ⇔ Z⊥⊥B | Y (18)

The following property proves that an information equivalence can be reduced
to another if there is a variable which makes the target independent from the infor-
mation equivalent variables.

Property 3 If X and Y are information equivalent with respect to a variable Z
and assumptions (1), (2) and (3) hold, it follows that

X⊥⊥Z | C ⇔ Y⊥⊥Z | C (19)

If additionally C 2Z | X , then X and Y are also information equivalent for C.
Otherwise, C is together with X and Y information equivalent for Z.

Proof:
By assumption 2, X⊥⊥Z | C, Y holds. Weak transitivity (Eq. 7) then demands that
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X⊥⊥Y | C or Y⊥⊥Z | C holds. This proves the second independency, because
if the first is true, the second follows from assumption 3. Then, by assumption 2
again, Y⊥⊥Z | C, X holds, which means that the information equivalence remains
under conditioning on C.

For proving the equivalence, we have to show that (a) Y⊥⊥C | X and (b)
X⊥⊥C | Y . From Y⊥⊥Z | X and Y⊥⊥Z | C, X , weak transitivity demands that
Y⊥⊥C | X or C⊥⊥Z | X . The second independence is false, which proves the first
independence and thus (a). Independence (b) is proved with the same arguments.
C 2Z | Y holds, because C⊥⊥Z | Y would mean that C and Y are information
equivalent with respect to Z. But then, by transitivity of information equivalences
(follows directly from Eq. 6), C and X would be information equivalent for Z,
contradicting the given C 2Z | X .

Finally, if C⊥⊥Z | X , then, by transitivity, X , C and Y are equivalent for Z.

Property 4 Under assumptions (1), (2) and (3), information equivalent variables
are adjacent and at least one of the variables is adjacent to the target variable of
a basic information equivalence.

Proof:
Take X and Y information equivalent for Z. X and Y are dependent, so there is
a path connecting both. If there is another variable on the path, for example D,
making X and Y independent: X⊥⊥Y | D. By assumption 3, X⊥⊥Z | D follows.
Then, by property 3, either D is also information equivalent for Z or X and Y are
information equivalent with respect to D. With the given X⊥⊥Y | D, the three
variables form a multi-node equivalence.

By the dependency of the equivalent variables with the target variable, there
must be a path connecting them. If this path is blocked by a variable C, by prop-
erty 3, variable C is also equivalent for Z; or X and Y form a basic information
equivalence for C, while X and Y do not for Z.

4.5 Definition and Notation

An information equivalence is called basic if no variable exists that contains more
information about the target variable than the equivalent variables. The previ-
ous section showed that the basic information equivalences suffice to augment the
model. Other equivalences can easily be derived from it. Deterministically related
variables, however, possibly generate multiple equivalences. Since for Y = f(X),
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Figure 5: Augmented Causal Model with a Functional Relation (a), a Bijection (b)
and an Information Equivalence (c).

X is equivalent for all variables related to Y . A deterministic relation is thus more
fundamental and is added to the model instead of all equivalences that follow from
it.

Definition 2 An information equivalence augmented Bayesian network consists
of a DAG G over variables V , the conditional probability distributions P (Vi |
parents(Vi)), the deterministic relations Deterministic(V) and the information
equivalences Equivalences(V). Deterministic(V) is the set of ordered tuples of
variables in V , where for each tuple 〈V1, . . . , Vn〉, Vn is a deterministic function
of V1, . . . , Vn−1 and is not a deterministic function of any subset of V1, . . . , Vn−1.
Equivalences(V) is the set of ordered tuples of sets of variables in V , where for
each tuple 〈W1, . . . , Wn〉, the sets W1, . . . , Wn−1 are information equivalent with
respect to Wn.

We propose the following notation. Deterministic nodes are depicted with double-
bordered circles with dashed edges coming from the determining variables, as
shown in Fig. 5 (a). If the parents comprise all the determining variables, the
dashed edges may be omitted. Two variables related by a bijection are linked with
an unoriented dashed edge (Fig. 5 (b)). Information equivalent variables are con-
nected by a dashed edge annotated with the target variable (Fig. 5 (c)). We do not
provide a notation for equivalences of sets of variables, this would require hyper-
edges. Such equivalences can be added as text to the graph. Besides, they rarely
occur in practice.

5 The Complexity Criterion

Modeling is based on the minimality criterion, i.e. we should seek, in spirit of
Occam’s Razor, the simplest model that is able to describe the data. In the con-
text of causal models, basically, dependent variables are connected with an edge,
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whereas variables that become independent when conditioned on others are not di-
rectly related. For a basic information equivalence, X and Y for Z, there is no
other variable that makes X and Y independent from Z. This implies that they
should be related. For a faithful representation however, the two independencies,
Y⊥⊥Z | X and X⊥⊥Z | Y , suggest that neither X or Y is adjacent to Z. On
the other hand, including both edges would disrupt the minimality condition, since
both variables have the same information about the target. Relating one of both
with Z suffices to model the information they contain about Z. Except if addition-
ally X⊥⊥Y | Z, when the three variables form a multi-node equivalence. Then,
two of the three possible edges between the three variables are sufficient to reflect
the dependencies. In the coder-decoder model of Fig. 2, X , Y and Z reflect this
case.

5.1 Complexity of Relations

The relations of information equivalent variables with the target variable represent
the same ‘information transfer’. We therefore need criteria, different from condi-
tional independencies, to select among information equivalent relations. In absence
of background knowledge, the only objective criterion is the complexity of the rela-
tions, according to which simpler relations should be preferred over complex ones.
The choice between two equivalent variables X and Y for being adjacent to the
target node Z is decided upon which relation, Z −X or Z − Y , is the simplest.

Shannon’s mutual information, defined by the decrease in entropy (uncertainty)
of a variable due to knowledge of another, measures the information one variable
conveys about the other. But it does not take the complexity of the relation into
account. Therefore we will rely on the analogous algorithmic mutual informa-
tion, denoted as IA(x : y), defined as the decrease in Kolmogorov complexity
(Grünwald & Vitányi, 2003):

IA(x : y) = K(x)−K(x | y) (20)

It reflects the additional compression of x thanks to the knowledge of y, where
simpler relations lead to higher values. This measure is proved to be symmetric
(Grünwald & Vitányi, 2003). The complexity of an individual object x is mea-
sured by its Kolmogorov complexity K(x), defined as the length of the shortest
program that prints the object and then halts. The conditional Kolmogorov com-
plexity K(x | y) of x given y is the length of the shortest program that given y as
input prints x and then halts. The simplicity of relation X − Y can then be quan-
tified by estimating IA(xn : yn), where xn and yn are the vectors of the observed
data with sample size n.
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When the complexities of the relations match, we have to decide upon other
criteria. If, for example, X and Y are related by a linear bijection, the relation with
any other variable will be similar. We will then connect the target to the variable(s)
which is/are cause(s) of the other equivalent variable(s).

5.2 Practical Complexity Measurement

For a relation among continuous variables, a regression analysis is used for esti-
mating K(xn | yn). It seeks the most appropriate function that fits the data, such
that the function minimizes

fbest = arg minf∈F{K(f) + K(en)} (21)

with F the set of admissible functions and en the error vector defined as ei =
xi − f(yi) with i from 1 to n. This method guarantees a trade-off between hy-
pothesis complexity and goodness-of-fit on the data. This approach corresponds to
the Minimum Description Length (MDL) approach, according to which we should
pick the model which minimizes the sum of the description length of the hypothe-
sis, and the description length of the data encoded with the help of the hypothesis
(Grünwald, Myung, & Pitt, 2005). The set of functions F is filled with functions
appropriate for the system under study. We added the polynomial functions up to
degree 5, the inverse, power, square root and step function, and a limited number
of combinations of these basic functions. The complexity of the functions is calcu-
lated as the sum of the complexities of the functions parameters and the function
type, for which we count 1 byte for each operation (addition, subtraction, product,
power and condition) in the function 1. A floating-point value is encoded with d
bits, whereas an integer value i requires log(i) bits.

It has been shown that the optimal precision d for each parameter is given by
d = 1/2 log n+ c, with n the sample size and c a constant (Rissanen, 1989). Thus

K(f) = #parameters.
log(n)

2
+ 8.#operations + C (22)

with C a constant term that does not depend on H and that therefore does not play
a role in finding the minimal description. The second part of the description reflects
the goodness-of-fit of the curve y = f(x). By choosing the normal distribution as

1This choice of complexity measurement attributes shorter description lengths for simpler func-
tions, but nevertheless is somewhat arbitrary. The objectivity of Kolmogorov complexity is based on
the Invariance Theorem. The shortest program that outputs a given string, when written in different
universal computer languages will be of equal length up to a certain constant (Li & Vitányi, 1997).
A complete objective measure is thus not possible.
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probability distribution of the errors (the deviances of the data with respect to the
curve), L(D | H) equals the sum of squared errors:

K(en) =
n∑

i=1

(yi − f(xi))2 (23)

where the values of xi and yi are encoded with precision p. For calculating IA(xn :
yn), we assume that xi is randomly drawn from [xmin, xmax], so that K(xn) =
n.(xmax − xmin)/p.

The regression analysis has to minimize the sum of Eq. 22 and Eq. 23. The
Java library, written by Dr Michael Thomas Flanagan (http://www.ee.ucl.
ac.uk/˜mflanaga), is used for calculating the closest fit of each function. If
some of the parents are discrete variables, several distinct curves are considered,
one for each value combination of the discrete variables. The total complexity
is then the summation over all individual functions, except that equal parameter
values or function types are only counted once.

For discrete variables, the conditional distributions P (xi | parents(xi)) are
described by discrete distributions. The number of probabilities (written with pre-
cision d) in the probability table determine its complexity.

We will assume that if one of two information equivalent sets has fewer ele-
ments, the relation with the target variable is simpler.

5.3 Complexity Increase

The complexity criterion makes sense by making the following assumptions:

Assumption 4 The Complexity Increase assumption:

A 2C & A⊥⊥C | B
⇒ IA(A : C) ≤ IA(A : B) & IA(A : C) ≤ IA(B : C) (24)

A 2D & A⊥⊥D | B & C 2D & C⊥⊥D | B :
IA(A : B) < IA(B : C) ⇔ IA(A : D) < IA(C : D) (25)

This assumption implies that if X → Y → Z is the true model and X and Y
are information equivalent for Z, connecting the nodes having the simplest relation
gives the correct model. Fig. 6 illustrates both cases of the assumption. The com-
plexities of the relations do not decrease when variables are more distant in a causal
model. This would happen by correspondences of the relations and neutralization
of its complexities. Note the similarity with the data processing inequality, which
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Figure 6: Example causal model with IA(A : B) < IA(B : C).

Figure 7: Simplest, but incorrect model for the system of Fig. 2.

states that, if A⊥⊥C | B, the mutual information of A and C cannot be higher than
that of A and B.

In case of independent causal mechanisms, complexity increase is what we
‘normally’ can expect. It will only rarely lead to cancellation of complexities.
Except in specially-designed systems, such as the coder-decoder model of Fig.
2. In which X and Y are equivalent for Z, but the relation X − Z is simpler
than Y − Z. The complexity increase assumption is violated, due to a complete
dependence of the decoding relation Y → Z on both X → Y and R → Y .
Hence, a learning algorithm would consider the X − Z relation as a direct one
and not the more complex Y − Z relation, as shown in Fig. 7. In the context of
learning, choosing the simplest model is the best strategy (Grünwald et al., 2005).
It overcomes overfitting and even if the learned model deviates from the true model,
it will give good predictions about the behavior of the system. The model of Fig. 7
will correctly predict the behavior of the coder-decoder and presumably represent
the aim of the system.

6 Faithfulness

Faithful models provide a compact representation of all independencies of a distri-
bution. To capture the independencies that follow from information equivalences,
causal models are augmented. The complexity criterion determines which inde-
pendencies are considered to build the graph.
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6.1 Conditional Independence and Simplicity

An information equivalence cannot be modeled faithfully. Therefore we restrict
the conditional independencies that are shown graphically with the requirement
that the conditioning set should provide a simpler relation in case of information
equivalence.

Definition 3 (Conditional independence and simplicity) Conditional independence
and simplicity between two sets of variables X, Y and a conditioning set Z, written
as X⊥⊥SY | Z, occurs when

• X⊥⊥Y | Z, and

• IA(Z : Y) > IA(X : Y) if Z⊥⊥Y | X (Z and X are information equivalent
regarding Y), and

• IA(Z : X) > IA(X : Y) if X⊥⊥Z | Y (Z and Y are information equivalent
regarding X).

6.2 Deq-separation

When there are deterministic relationships among variables, there are conditional
independencies that are not entailed by the Markov condition alone. SGS (Spirtes
et al., 1993), based on the work of Geiger (Geiger, 1990), enlarged the concept
of d-separation to create a graphical condition for retrieving all conditional inde-
pendencies from a graph and a set of deterministic relations. They called it D-
separation. We enlarge the criterion to also capture independencies following from
information equivalences.

Definition 4 (Deq-separation) Let p be a path between a node U and a node W
of a DAG G. Path p is called blocked given subset V of nodes in G and a set
of deterministic relations and information equivalences if there is a node v on p
satisfying one of the following conditions:

1. v has converging arrows (along p) and neither v nor any of its descendants
are in V, or

2. v does not have converging arrows (along p) and v is in V or is determined
by V.

V and the set of deterministic relations and information equivalences is said to
Deq-separate U from W in G, denoted U⊥eqW | V, iff members of V block every
path from U to W or there is an equivalence of X and Y with respect to Z such that
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Figure 8: Model with X and Y information equivalent for Z and additional nodes
depicting the possible consequences.

1. Y ⊂ V, and

2. the members of (V \ Y) ∪ X block every path from U to W , and

3. the members of (V \ Y) ∪ {Z} block every path from U to W , and

4. members of (V \ Y) do not unblock a path between U and W that is not
blocked by X.

Take the model of Fig. 8, A and B are d-separated by X , but not by Y . If,
however, X and Y are information equivalent with respect of C, A and B are
Deq-separated by conditioning on Y .

6.3 Faithfulness Revisited

Given the additional independencies that information equivalences entail, the def-
inition of faithfulness should be reconsidered. In cases of information equiva-
lence, the independencies depicted graphically are restricted by the definition of
conditional independency and simplicity (⊥⊥s). On the other hand, the extended
d-separation criterion (⊥eq) makes it possible to retrieve the independencies fol-
lowing from information equivalences.

Definition 5 A causal model is called faithfuleq to a probability distribution con-
taining information equivalences if

X⊥eqY | Z ⇔ X⊥⊥Y | Z (26)

X⊥Y | Z ⇔ X⊥⊥sY | Z (27)

We show that the definition makes sense by proving that the consequences of
combinations of an information equivalence and conditional independencies that
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follow from the Markov condition can be captured by a model that is faithfuleq.
Take X and Y equivalent for Z and X − Z the simplest relation, IA(X : Z) >
IA(Y : Z). Consider the conditional independence statements containing at least
two of the three variables of the information equivalence. There are ten possible
combinations.

1. X 2A and X⊥⊥A | Z:

• If also Y⊥⊥A | Z, by property 1 it follows that X are Y equivalent
for A. The second part of the Complexity Increase Assumption assures
that IA(X : A) > IA(Y : A), thus Y⊥⊥SA | X , but X 2SA | Y . An
example is shown in Fig. 8.

• On the other hand, if Y 2A | Z, then Y is connected to A via an alter-
native path and has more information about A than X .

2. Z 2B and Z⊥⊥B | X:
Independency Z⊥⊥B | Y follows property 2. Then, there are two possibili-
ties:

• If B has less information about Z (Z 2X | B), it is related to Z via X ,
as shown in Fig. 8. By Deq-separation the conditional independency
Z⊥⊥B | Y can be retrieved from the graph.

• If on the contrary variable B contains as much information about Z as
X , all three nodes are equivalent for Z. This is shown by node D in
Fig. 8. The node having the simplest relation with Z is related to Z,
which is X in the figure.

3. Z 2C and X⊥⊥Z | C:
By property 3, Y also gets independent, Y⊥⊥Z | C. Then, there are two
possible cases:

• If C⊥⊥Z | X , then C is also information equivalent with respect to Z,
which is discussed in the previous case.

• If C 2Z | X , then C has more information about Z. Property 3 proves
that X or Y are information equivalent for C as well. This case is
shown by node C in Fig. 8. By the second part of the Complex-
ity Increase Assumption, X − C must be simpler than Y − C, thus
Y⊥⊥SC | X .
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4. X⊥⊥Y | D:
By assumption 3, it follows that X⊥⊥Z | D, which is discussed by case 3.

5. Independency X⊥⊥E | Y only interferes with the equivalence if there is an
independence with Z. This is discussed by the previous cases.

The 5 remaining cases, Y⊥⊥A | Z, Z⊥⊥B | Y , X⊥⊥Z | C, Y⊥⊥Z | D and
Y⊥⊥D | X , are equivalent to respectively cases 1, 2, 3, 4 and 5.

7 Constraint-based Learning Algorithms

The constraint-based learning algorithms are based on the pioneering work of
Spirtes, Glymour and Scheines (Spirtes et al., 1993). The standard algorithm
is the PC algorithm. The graph is constructed in two steps. The first step, called
adjacency search, learns the undirected graph and the second step tries to orient
the edges.

The construction of the undirected graph is based on the property that two
nodes are adjacent if they remain dependent by conditioning on every set of nodes
that does not include both nodes. The algorithm starts with a complete undirected
graph and removes edges for each independency that is found. The number of
nodes in the conditioning set is gradually increased up to a certain maximal num-
ber, called the depth of the search. The orientation step is based on the identifica-
tion of v-structures of the form X → Y ← Z, for which X and Z are independent,
but become dependent conditional on Y . Recall that for all three other possible
orientations of X − Y − Z the opposite is true, X and Z are initially dependent,
but become independent by conditioning on Y .

Besides 6 general assumptions (Scheines et al., 1996), the PC algorithm re-
quires causal sufficiency, which means that all common causes should be known:
variables that are the direct cause of at least two variables. Basically, if the data
is random and faithful to at least one graph, the PC algorithm leads to a set of
observationally indistinguishable models, which all describe the same conditional
independencies. These models have the same undirected graph and v-structures,
they only differ in the orientation of edges, which could not be directed due to the
absence of v-structures.

7.1 Equivalence Detection

Information equivalences pose a problem for the constraint-based algorithms. Take
X and Y equivalent for Z, by Y⊥⊥Z | X the algorithm would remove the Y − Z
edge and X⊥⊥Z | Y deletes the X − Z edge. Information equivalences should
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therefore be detected during the construction of the undirected graph. For each
conditional independency that is found, it should be tested whether an equivalence
can be found by swapping variables of the conditioning set with one of both argu-
ments. Furthermore, equivalences imply independencies. For equivalence X and
Y for Z, any independency Y⊥⊥Z | X, U would be a consequence of the informa-
tion equivalence. Such tests can thus be skipped in the procedure. This results in
the following algorithm.

Algorithm 1 Information equivalence detection during adjacency search of PC
algorithm

For each test U⊥⊥V | W during the adjacency search:

1. Skip test if an equivalence U+ and W− for V , or V+ and W− for U has
been found previously. U+ is defined as a set containing U and some other
nodes and W− denotes a subset of W.

2. If the independence test turns out positive, check for equivalences U∗ and
W for V , and V∗ and W for U , with U∗ and V∗ sets containing U and V
respectively and some nodes adjacent to V and U respectively such that
they have the same number of elements as W.

3. If an equivalence is found, it is added to the model. Unless there was
already an equivalence found of one of both equivalent nodes sets with for
the same target, then the other set is added to that equivalence.

4. If both equivalences hold, U∗, V∗ and W form a multi-node equivalence.

5. Edge U − V is not removed from the graph.

7.2 Equivalence selection

The second step of the extended PC algorithm alternates selection among equiv-
alent relations, given by algorithm 2, with the original orientation step until no
more equivalences or undirected edges can be resolved. For orientation, the origi-
nal orientation rules can be applied on the graph. If for an information equivalence
relation X − Z is considered simpler than relation Y − Z, node Y has to be re-
garded as separated from Z by X , while X is not separated from Z by Y . This
d-separation information is used by the orientation rules. For the remaining equiv-
alences, the equivalent node set that are causes of the other equivalent node set are
chosen as adjacent to the target.
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Algorithm 2 Edge selection among information equivalences by the complexity
criterion

To evaluate information equivalences of W1, . . . , Wn with respect to Z, compare
the complexities of the following functions fi with i from 1 to n, only if the
nodes Wi,j ∈ Wi are still connected to Z.

1. if all edges connecting the equivalent nodes and the target are oriented:

(a) if the edges are oriented toward the target, consider the following
functions: Z = fi(Wi, other nodes with edges oriented to target
node Z).

(b) if the edges are oriented from the target, in order to evaluate Wi,
count up the complexities of the functions Wi,j = fi(Z, other nodes
with incoming edges to Wi,j), for all Wi,j ∈ Wi.

2. if some edges are not oriented, consider the following functions: Z =
fi(Wi).

The complexity of the functions is estimated as explained in section 5.1. If
the complexity of the simplest function differs by at least 8 bits (this threshold
corresponds to 1 operation) with the complexities of the other functions, the
corresponding equivalent nodes can be related with the target, the edges of the
other equivalent nodes with the target are removed. For multi-node equivalences,
the simplest edges should remain in the graph such that all nodes are connected.
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Figure 9: Model learned from random data generated by a set of structural equa-
tions.

8 Experiments

We report on learning models based on generated data. 150 data points were gen-
erated using the following structural equations:

G = A + B K = D + 0.4I + err O = 10 + 1.3L− F
H = 4C2 L = 1.5 + 0.35K + 0.35E + err P = L.F + err
I = 0.4C3 M = 1 + 0.04K2 Q = 10N/O + err
J = G + 0.4H N = 10 + L + F R = M + 0.4Q + err

Variables A, B, C, D, E and F are randomly chosen between 0 and 10 and
err is an error term, reflecting a random disturbance with maximal size 1/8 of the
variable’s range (the difference between its maximal and minimal value). There
are 7 deterministic variables (G, H , I , J , M , N and O). The system incorporates
the different cases discussed in this paper: a bijective relation between K and M ,
G is determined by A and B, multi-node equivalence C, H and I , and equivalence
of (L, F ) and (N , O).

The extended PC algorithm with default options is applied onto the data. By
default, Tetrad uses the Pearson correlation coefficient for continuous, linearly re-
lated variables. To handle data with non-linear relations, our independence test is
based on the conditional mutual information I(U : V | W ) (Cover & Thomas,

23



1991). To calculate the entropies in the definition, the underlying probability dis-
tribution of the data is estimated using kernel density estimation (Lemeire, Dirkx,
& Verbist, 2007). The augmented Bayesian network learned by the extended PC
algorithm, depicted in Fig. 9, provides a correct model. Remark that the algorithm
does not check for deterministic relations, only for information equivalences. This
strategy was followed to verify that the algorithm works.

We also verified the correctness of the assumptions. Assumptions 2 and 3 hold
for the generated data. However, weak transitivity was violated in 31 out of the
1022 cases in which Eq. 7 applies. The cases are characterized by a failure of the
independence test in detecting dependencies between ‘distant’ variables, when the
influence of a variable on another variable happens via multiple variables so that
the random disturbances dominate the influence. For example, the test classified A
and M as independent, while weak transitivity expects dependence (or A 2M | J ,
which is also not true), since A 2J and J 2M . The test also returned E⊥⊥K and
E⊥⊥K | N , but E 2N and K 2N demand a dependence. Note that the learning
algorithm relies on the correctness of the independence test. The contribution of
the dependent variables in the structural equations must be sufficiently large in
order to correctly learn the model.

9 Conclusions

The theory of causal models and the accompanying learning algorithms are based
on the faithfulness property. The existence of a faithful graph is not guaranteed
when the intersection condition is violated. This violation can be characterized
by an information equivalence, when two sets of variables in some sense have the
same information about another variable. Under weak transitivity and two other
assumptions, information equivalences can be characterized by basic information
equivalences, which are added to an augmented Bayesian network. To retrieve
the conditional independencies that follow from information equivalences and the
Markov condition from the graph, the d-separation criterion was enlarged. To en-
sure minimality of the model, the complexity of the relations was introduced to de-
termine adjacency among information equivalent relations. Faithfulness can then
be reestablished by enlarging the definition of conditional independency with the
requirement of simplicity. The complexity criterion leads to consistent models un-
der the assumption that the complexity of the relations increases for more distant
variables (Complexity Increase Assumption). The PC algorithm could easily be
extended for learning the augmented models. Experiments with generated data
show that the assumptions hold and correct models are learned.
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A Appendix: Experimental Data

We have provided the learning module together with the experimental data on the
web. They can be accessed at http://parallel.vub.ac.be.
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