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Abstract

Data containing deterministic relations cannot be
handled by current constraint-based causal lear-
ning algorithms; they entail conditional indepen-
dencies that cannot be represented by a faithful
graph. Violation of the faithfulness property is
characterized by an information equivalence of
two sets of variables with respect to a reference
variable. The conditional independencies do not
provide information about which set should be
connected to the reference variable. We pro-
pose to use the complexity of the relationships
as criterion to determine adjacency. Correct de-
cisions are made under the assumption that the
complexity of relations does not increase along
a causal path. This paper defines an augmented
Bayesian network which explicitly models de-
terministic relations. The faithfulness property
is redefined by using a generalized definition of
the d-separation criterion, which also gives the
conditional independencies following from de-
terministic relations, and by limiting the condi-
tional independencies that are graphically des-
cribed with the simplicity condition. Based on
this, an extension to the PC learning algorithm is
developed that allows the construction of mini-
mal augmented Bayesian networks from obser-
vational data. Correct models are learned from
data generated by a set of structural equations.

1 Introduction

Graphical causal models intend to describe with a Directed
Acyclic Graph (DAG) the structure of the underlying physi-
cal mechanisms governing a system under study. The state
of each variable, represented by a node in the graph, is ge-
nerated by a stochastic process that is determined by the
values of its parent variables in the graph. They are the
direct causes.

Learning causal models from observations relies on the
probabilistic independencies that follow from the system’s
causal structure. Consider causal model X → Y → Z.
X influences Z, but is independent from Z when con-
ditioned on Y . The conditional independency is written
as X⊥⊥Z | Y . This independence is irrespective of the
nature of the mechanisms X → Y and Y → Z. The
Causal Markov Condition gives us all independencies that
follow from a causal structure: each variable is probabilisti-
cally independent of its non-effects conditional on its direct
causes. The condition links the causal interpretation of a
DAG with its probabilistic interpretation, which is defined
by Bayesian networks [Spohn, 2001]. A Bayesian network
describes the joint probability distribution P characterizing
the behavior of a system. A DAG is called faithful if all
conditional independencies of P follow from the Causal
Markov Condition.

The constraint-based learning algorithms are based on the
pioneering work of Spirtes et al. [1993]. The standard al-
gorithm is the PC algorithm. The graph is constructed in
two steps. The first step, called adjacency search, learns
the undirected graph and the second step tries to orient the
edges. The construction of the undirected graph is based
on the property that if two nodes are adjacent in the true
causal graph, they remain dependent by conditioning on
every set of nodes that does not include both nodes. This
property is called Adjacency Faithfulness [Ramsey et al.,
2006]. The orientation step is based on the identification of
v-structures, in which one node has incoming edges from
two non-adjacent nodes. Take for example X → Y ← Z.
A v-structure differs from the three other possible orien-
tations of X − Y − Z by the property that X and Z are
unconditional independent, but become dependent condi-
tional on Y . For the three other possible orientations the
opposite is true, X and Z are initially dependent, but be-
come independent by conditioning on Y .

The adjacency search of the PC algorithm fails when there
are deterministic relations present in the data. Consider
model

datatype→ data size→ cache misses. (1)



The model indicates how the datatype of the main data
structure (integer, floating point, double-precision, . . . )
used in an algorithm affects the cache misses when exe-
cuted. It is in essence the size of the datatype which deter-
mines the cache misses and not its specific type. The causal
structure implies that

datatype ⊥⊥ cache misses | data size. (2)

On the other hand, the relationship between datatype and
datasize is a function: datasize = f(datatype). Variable
datatype contains all information about variable datasize,
thus

data size ⊥⊥ cache misses | datatype. (3)

In other words, datatype and data size contain the same
information about the cache misses. We call datatype
and data size information equivalent with respect to
cache misses, which is called the reference variable. The
adjacency search will eliminate, from both conditional in-
dependencies (Eq. 2 and 3), the edge between datatype
and cache misses, and the edge between data size and
cache misses.

Since current constraint-based learning algorithms fail for
data containing functionally determined variables [Spirtes
et al., 1993, p. 57], it is required that such variables are
eliminated from the input data [Scheines et al., 1996]. The
argument is that such variables are not essential to the
model since they contain redundant information. We ar-
gue, however, that such variables provide insight in the un-
derlying mechanisms of the system and often reduce the
complexity of the model. Reconsider the model of Eq. 1.
Variable data size indeed contains redundant information.
But it is of great explanatory importance, it explains which
property of the data structure affects the cache misses. The
intermediate variable also extends the predictive power of
the model. The number of cache misses is only determined
by the size of the data, not by the exact datatype. This
knowledge enables the prediction of the cache misses for
new data types. Moreover, data size is a countable va-
riable; its domain is an ordered set. The relation with the
cache misses can be expressed by a continuous function,
which makes it possible to predict the cache misses for yet
untested sizes. The relation between the discrete variable
datatype and the cache misses is a table without predic-
tive capacities.

Milan Studeny was one of the first to point out that Baye-
sian networks cannot represent all possible sets of inde-
pendencies. He constructed a different framework, called
imsets [Studeny, 2001], which is capable of representing
broader sets of independencies. We advocate a different
approach. We will not look for a different representation
of conditional independencies, but stick to Bayesian net-
works. Yet, we will try to find explanations in the form of
deterministic relations for the presence of conditional inde-
pendencies not coming from the causal structure.

Our approach is organized as follows. In the next sec-
tion we will define information equivalences and add the
information about deterministic relations to an augmented
Bayesian network. In Section 3, we introduce the com-
plexity of relationships as the decision criterion for choos-
ing which of information equivalent variables directly re-
lates to the reference variable. Based on the complexity
criterion we can define which independencies are represen-
ted by the model and extend the PC learning algorithm.
The latter is done in Section 4. It is proven under which
assumptions the algorithm returns a correct model. Sec-
tion 5 shows that correct models are learned from data re-
trieved from structural equations that contain deterministic
relations.

2 Information Equivalence

The conditional independencies that follow from determi-
nistic relations result in violations of the intersection condi-
tion, one of the necessary conditions for faithfulness [Pearl,
1988]:

X⊥⊥Z | W, Y & Y⊥⊥Z | W, X ⇒ X, Y⊥⊥Z | W. (4)

Note that single stochastic variables are denoted by capital
letters, sets of variables by boldface capital letters. Vio-
lation of the condition is characterized by a kind of rela-
tive information equivalence: knowledge of either X or Y
is completely equivalent from the viewpoint of Z.

Definition 1 (Information Equivalence). X and Y are
called information equivalent with respect to Z - the re-
ference variable - if

X 2Z, Y 2Z, Y⊥⊥Z | X, and X⊥⊥Z | Y. (5)

If additionally, there is a set Z containing Z but disjoint
with X and Y, for which X⊥⊥Y | Z holds, all three sets con-
tain the same information about each other and are infor-
mation equivalent. We call this a multi-node equivalence.

Information equivalences follow from a broader class of
relations than just deterministic ones. Recall that indepen-
dence U⊥⊥W | V is defined as

∀v ∈ Vdom, w ∈Wdom :
P (U | v, w) = P (U | v) whenever P (v, w) > 0, (6)

with Xdom the domain of variable X . By applying the de-
finition on both conditional independencies of equivalence
X and Y for Z it follows that [Lemeire, 2007]

∀x ∈ Xdom, y ∈ Ydom :
P (Z | x) = P (Z | y) whenever p(x, y) > 0. (7)

This is shown in Fig. 1 for an equivalence of single varia-
bles. The domain of Y , Ydom, is partitioned into subsets



Figure 1: If X and Y are information equivalent for Z,
P (x, y) is only strictly positive for values of the domains
of X and Y that affect P (Z) similarly. These values are
related by relation R.

grouping the y values having the same conditional distri-
bution P (Z | y). Information equivalence appears when
the domain of X can be partitioned into subsets such that
P (x, y) > 0 only if P (Z | x) = P (Z | y). Each subset of
Ydom maps to a subset of Xdom.

The impact of deterministic relationships on causal models
and the learning algorithms forces us to take them into ac-
count. We explicitly add the information about determinis-
tic relations to the model.

Definition 2 (Bayesian NetworkD). A deterministic re-
lations augmented Bayesian network consists of a DAG
G over variables V, the conditional probability distri-
butions P (Vi | parents(Vi)) and the deterministic re-
lations Deterministic(V). Deterministic(V) is the
set of ordered tuples of variables in V, where for each
tuple 〈V1, . . . , Vn〉, Vn is a deterministic function of
V1, . . . , Vn−1 and is not a deterministic function of any
subset of V1, . . . , Vn−1.

Pearl and Verma constructed a graphical criterion, called d-
separation, denoted with the symbol ⊥, for retrieving from
the causal graph all independencies following from the
Causal Markov Condition. Deterministic relationships en-
tail additional independencies. Spirtes et al. [1993], based
on the work of Geiger [1990], enlarged the concept of d-
separation for also retrieving them.

Definition 3. (D-separation) Let p be a path between a
node X and a node Y of a DAG G. Path p is called blocked
given subset Z of nodes in G if there is a node w on p
satisfying one of the following conditions:

1. w has converging arrows (along p) and neither w nor
any of its descendants are in Z, or

2. w does not have converging arrows (along p) and w
is in Z or is determined by Z.

Z and the set of deterministic relations is said to D-separate
X from Y in G, denoted X⊥DY | Z, iff they block every
path from X to Y .

Thus, every D-separation implies a conditional indepen-
dence:

X⊥DY | Z ⇒ X⊥⊥Y | Z. (8)

3 The Complexity Criterion

In case of an information equivalence, the amount of in-
formation that one variable conveys about another does not
give us a criterion to decide upon adjacency. We introduce
the complexity of relationships as a criterion together with
the Complexity Increase Assumption.

3.1 Algorithmic Mutual Information

In classical information theory, the amount of information
is measured by the mutual information (we come back to
this in Section 4.1). But this measure does not take the
complexity of the relation into account. To do so, we will
rely on the analogous concept of algorithmic mutual infor-
mation, denoted as IA(x : y), defined as the decrease in
Kolmogorov complexity of data sequence x when knowing
y [Grünwald and Vitányi, 2003]:

IA(x : y) = K(x)−K(x | y) (9)

where the conditional Kolmogorov complexity K(x | y) of
x given y is the length of the shortest program that given y
as input prints x and then halts. IA(x : y) expresses the
additional compression of x thanks to the knowledge of y.
Simpler relations lead to higher values. The complexity of
the relationship between X and Y can then be quantified by
estimating IA(xn : yn), where xn and yn are the vectors
of the observed data, with n the sample size.

For calculating K(xn), we assume that xi is randomly
drawn from a uniform distribution in range [xmin, xmax],
so that K(xn) = n.(xmax − xmin).

A regression analysis is used for estimating K(xn | yn). It
seeks the most appropriate function that fits the data, such
that the function minimizes

fmin = arg minf∈F{K(f) + K(en)}, (10)

with F the set of admissible functions and en the error vec-
tor defined as ei = xi − f(yi) with i from 1 to n. The
model class F is populated with the polynomials up to de-
gree 5, the inverse, the power, the square root and the step
function. The description of the hypothesis then contains
the values of the function’s parameters, each needing d bits
(the precision), and the function type, for which we count
1 byte for each operation (addition, subtraction, multipli-
cation, division, power, square root and logarithm) in the
function1. A floating-point value is encoded with d bits,
whereas an integer value i requires log(i) bits.

1This choice of description method attributes shorter descrip-
tion lengths for simpler function, but nevertheless is somewhat



It is shown that the optimal precision d for each parameter
is given by d = 1/2 log2 n + c, with n the sample size and
c some constant [Rissanen, 1989]. Hence

K(f) = #parameters.
log2(n)

2
+ 8.#operations + K

(11)
with K a constant term that does not depend on f . There-
fore it does not play any role in finding the minimal des-
cription. The second part of Eq. 10, K(en), reflects the
goodness-of-fit of the curve Y = f(X). By choosing the
normal distribution as probability distribution of the errors
(the deviances of the data with respect to the curve), K(en)
equals the sum of squared errors:

K(en) =
n∑

i=1

(yi − f(xi))2 (12)

A regression analysis thus has to minimize the sum of Eq.
11 and Eq. 12.

3.2 Matching Complexities

If two variables X and Y are related by a linear bijection,
the relation of X and Y with any other variable will be
completely similar, qualitatively and quantitatively. Both
variables contain the same information about any other va-
riable and in the same form, so - in the absence of back-
ground knowledge - they represent equivalent quantities.
The variables are indistinguishable from the perspective of
the system under study. Then, they are redundant and one
can be removed from the data.

3.3 Increase of Complexity

The complexity criterion makes sense by the following as-
sumption:

Assumption 1 (Complexity Increase Assumption). Given
a set of variables V whose causal structure can be repre-
sented by a DAG G, for all disjoint subsets X, Y, Z of V it
holds that

X⊥Z | Y in G ⇒ IA(X : Z) ≤ IA(X : Y). (13)

The complexities of the relations do not decrease along a
causal path. Take a system with causal structure X →
Y → Z. In general the complexity of the relation X − Z
will not be lower than that of X − Y . Except if there is an
exact correspondence of the relations X − Y and Y − Z

arbitrary. The objectivity of the Kolmogorov complexity is based
on the Invariance Theorem. The shortest programs that outputs a
given string written in different universal computer languages are
of equal length up to a certain constant [Li and Vitányi, 1997]. A
complete objective measure does not exist.

and a neutralization of the complexities. Consider for ex-
ample that Y = X2 and Z =

√
Y , the relation between X

and Z is then a simpler linear relation. The Complexity
Increase Assumption is violated. This changes however
when the relations are not deterministic: Y = X2 + ε1 and
Z =

√
Y +ε2, with ε the random disturbances. Now, in the

calculation of the algorithmic mutual information between
X and Z the description of the function (Eq. 11) is still
smaller, but the error term (Eq. 12) will be higher due to
the increase in uncertainty (a combination of ε1 and ε2). So
with sufficiently large random disturbances and in absence
of an information equivalence (X 2Y | Z and Z 2Y | X)
the algorithmic mutual information always increases along
a causal path.

3.4 Redefinition of Faithfulness

Information equivalences cannot be modeled faithfully by
the original definition (⊥ ⇔ ⊥⊥). To reestablish faithful-
ness, we restrict the conditional independencies that are
shown graphically with the requirement that the conditio-
ning set should provide a simpler relation.

Definition 4 (Conditional Independence and Simplicity).
Conditional independence and simplicity between two sets
of variables X, Y and a conditioning set Z, written as
X⊥⊥SY | Z, occurs when

• X⊥⊥Y | Z, and

• IA(X : Z) > IA(X : Y), and

• IA(Y : Z) > IA(X : Y).

The conditions about complexities of the definition only
apply when information equivalences appear. If X⊥⊥Y | Z
and there is no information equivalence (X 2Z | Y and
Z 2Y | X), then we may assume that both inequalities of
the definition follow, as argued in the previous section.

It trivially follows from the Causal Markov Condition
(⊥ ⇒ ⊥⊥) and the Complexity Increase Assumption that
d-separation entails conditional independence and simpli-
city: ⊥ ⇒ ⊥⊥S . We can therefore redefine the faithfulness
property as follows.

Definition 5 (FaithfulnessD). A DAG G is called faithfulD
to a probability distribution P containing information equi-
valences if for any disjoint subsets X, Y, Z of V

X⊥DY | Z in G ⇔ X⊥⊥Y | Z in P, and (14)
X⊥Y | Z in G ⇔ X⊥⊥SY | Z in P. (15)

The property holds for a system if all conditional indepen-
dencies of P only follow from the system’s causal structure
and the presence of deterministic relations.



4 PCD Algorithm

We first review the original PC algorithm, on which our
modified algorithm will be based. Then we explain our
form-free independence test which is also valid for non-
linear relations. Finally, we consider the assumptions under
which the algorithm returns a correct graph.

The PC algorithm [Spirtes et al., 1993] is described by Al-
gorithm 1, where Adj(G, X) denotes the set of nodes ad-
jacent to X in graph G.

Algorithm 1 PC algorithm

• Start with the complete undirected graph U on the
set of variables V.

Part I Adjacency search.

• n = 0;

• repeat

– For each pair of variables A and B that
are adjacent in (the current) U such that
Adj(U, A) \ {B} or Adj(U, B) \ {A} has
at least n elements, check through the sub-
sets of Adj(U, A) \ {B} and the subsets of
Adj(U, B)\{A} that have exactly n variables.
For all such subsets S:

AT Check independency A⊥⊥B | S. If inde-
pendent, remove the edge between A and
B in U , and record S as Sepset(A, B);

– n = n + 1;

• until for each ordered pair of adjacent variables A
and B, ADJ(U,A)\{B} has less than n elements.

Part II Orientation.

• Let G be the undirected graph resuling from step
S2. For each unshielded triple 〈A, B,C〉 in G,
orient it as A → B ← C iff B is not in
Sepset(A, B).

• Execute the orientation rules given in [Meek, 1995].

It is proven by Spirtes et al. [1993] that the algorithm re-
turns a set of DAGs which contains the true DAG, if we
can rely on the independence test and 4 assumptions: the
Causal Markov Condition, the existence of a faithful graph
for the system under study, the Minimality Condition and
the Causal Sufficiency Assumption. The Minimality Con-
dition stipulates that every proper subgraph of the real
causal graph does not satisfy the Causal Markov Condi-
tion. Causal Sufficiency demands that there are no latent

common causes: unknown variables which are the direct
causes of at least two of the known variables.

4.1 Independence Test for Non-linear Relations

We will not make any assumption about the relationships
among the variables. Most current implementations of
causal inference algorithms, however, assume linear rela-
tions. Their independence test is based on Pearson’s cor-
relation coefficient. It gives a measure of how close a re-
lation approximates linearity. Conditional independencies
are measured by partial correlations, which can be calcu-
lated directly from the correlation coefficients, but only if
linearity holds. Correlations can measure non-linear rela-
tions, as long as they are quasi-monotonically increasing
or decreasing. Partial correlations, however, fail if the rela-
tions diverge too much from linearity. This was confirmed
by our experiments.

We will use a form-free definition of dependency. The mu-
tual information measures, independently from the form of
the relation, the degree of association between two varia-
bles X and Y [Cover and Thomas, 1991]:

I(X; Y ) = H(X)−H(X | Y ). (16)

It measures the reduction in uncertainty of X due to the
knowledge of Y . The amount of uncertainty of a random
variable is measured by its entropy:

H(X) = −
∑

x∈Xdom

p(x) log2 p(x), (17)

measured in bits. For measuring the entropy of continuous
variables, their distributions are discretized. This result in
an analogue formula for discrete and continuous variables
[Lemeire et al., 2007]. In this way, data containing a mix-
ture of both types can be handled.

For applying the definition of mutual information, it is ne-
cessary to obtain an estimation of the underlying proba-
bility distributions. The distribution of discrete variables
can be estimated by simply counting the number of oc-
currences of each state and dividing them by the number
of data points n. For continuous variables, kernel den-
sity estimation makes it possible to estimate the distribu-
tion from limited sample sizes. Consult [Lemeire, 2007]
and [Lemeire et al., 2007] for practical details about our
implementation. It is shown for correct independency tests
on data such as the one used in the experiments of Section
5 the dataset should contain at least 100 data points.

4.2 Determinism Test

Our algorithm will try to find the deterministic relation-
ships in data. Apart from the test for information equiva-
lences, the measurement of entropies can be used to deter-
mine functional relations. If Y is a function of X, the state



of Y is known exactly when the states of all variables of set
X are known. Therefore, the conditional entropy is zero:

Y = f(X) ⇔ H(Y | X) = 0 (18)

Practically, we will use kernel density estimation discussed
in the previous section to estimate the underlying proba-
bility distribution. From this, the conditional entropy can
be calculated and if it falls below a certain threshold, Y is
considered determined by X. With our implementation of
kernel density estimation, calibration based on experimen-
tal data returned a threshold of 0.3 bits.

4.3 PCD Algorithm

Information equivalences pose a problem for the PC algo-
rithm. Take X and Y equivalent for Z, by Y⊥⊥Z | X the
adjacency search removes the edge between Y and Z and
X⊥⊥Z | Y deletes the edge between X and Z. Informa-
tion equivalences should therefore be detected during the
construction of the undirected graph. For each conditional
independency that is found, it should be tested whether an
equivalence can be found by swapping variables of the con-
ditioning set with one of both arguments. The algorithm
assumes that if one of two information equivalent sets has
fewer elements, the relation with the reference variable is
simpler.

For the PCD algorithm, replace the adjacency test step AT
of the original algorithm with Algorithm 2.

4.4 Correctness

It is proven by Ramsey et al. [2006] that a weaker form
of faithfulness is sufficient to guarantee the correctness of
the PC algorithm: Adjacency Faithfulness and Orientation
Faithfulness. Our modified PC algorithm will rely on an
extended form of Adjacency Faithfulness, which takes de-
terministic relations into account.

Assumption 2 (Adjacency FaithfulnessD). Given a set of
variables V whose causal structure can be represented by
a DAG G, if two variables X, Y are adjacent in G, then they
are dependent conditional on any subset of V \ {X, Y },
except if X or Y are member of a subset of V which is infor-
mation equivalent with another subset of V for respectively
Y or X.

The original definition of Orientation Faithfulness on the
other hand is still correct as proven by the following theo-
rem. Call a triple of variables 〈X, Y, Z〉 in a DAG an un-
shielded triple if X and Z are both adjacent to Y but are
not adjacent to each other.

Assumption 3 (Orientation Faithfulness). Given a set of
variables V whose causal structure can be represented by
a DAG G, let 〈X, Y, Z〉 be any unshielded triple in G.

Algorithm 2 Adjacency Test in the Presence of Determi-
nistic Relations

• If A⊥⊥B | S, check for equivalence A∗ and S for B
(test S⊥⊥B | A∗), and check for equivalence B∗ and
S for A (test A⊥⊥S | B∗), with A∗ and B∗ sets con-
taining A and B respectively and some nodes adja-
cent to B and A respectively such that they have the
same number of elements as S. For every indepen-
dence test, check whether the outcome can be pre-
dicted from the known deterministic relations. For
example, if A = f(S), then A⊥⊥B | S is true for
any B.

• If no information equivalence is found, remove the
edge between A and B in U , and record S as
Sepset(A, B).

• If an information equivalence is found, say X and Y
for Z, do the following:

– Test for deterministic relations X = f(Y) or
Y = f(X). Add any deterministic relation to
the augmented Bayesian network.

– Determine IA(X : Z) and IA(Y : Z) as ex-
plained in section 3.1.

– Compare both complexities. If IA(X : Z) >
IA(Y : Z), remove for all Y ∈ Y the
edge between Y and Z, and record X as
Sepset(Y, Z). Otherwise, remove edges be-
tween X and Z, and record Y as Sepset(Y,Z).

– If X and Z are also information equivalent for
Y, a multi-node equivalence is found. Then,
also determine IA(X : Y) and select the sim-
plest edges such that all nodes are connected.

• if X → Y ← Z, then X and Z are dependent given
any subset of V \ {X, Z} that contains Y.

• otherwise, X and Z are dependent conditional on any
subset of V \ {X, Y } that does not contain Y.

Theorem 1 (Validity of Orientation Faithfulness). The
conditional independencies that follow from deterministic
relations do not invalidate Orientation Faithfulness when
considering ⊥⊥S as the independence test and under the
Minimality Condition and Complexity Increase Assump-
tion.

Proof. Take 〈X, Y, Z〉 an unshielded triple in causal struc-
ture G. We will check whether independencies from de-
terministic relations could occur that invalidate Orientation
Faithfulness.



If the unshielded triple does not form a v-structure, X and
Z could become independent by conditioning on a varia-
ble X ′ that is information equivalent with respect to Z. By
minimality, X ′ is related to Z via X , since X is already
related to Z via Y . Then, by the Complexity Increase As-
sumption IA(X ′ : Z) < IA(X : Z), so X 2SZ | X ′

follows and orientation faithfulness is not invalidated.

If the unshielded triple forms v-structure X → Y ← Z, X
and Z become independent conditional on Y when X =
f(Y ) or Y = f(X). The process of determining Y is
influenced by X and Z. Both are direct causes of Y . But Z
has no additional information on Y once X is known, since
Z⊥⊥Y | X by the deterministic relation. This violates the
Minimality Condition, so this cannot happen.

These assumptions allow us to prove the correctness of our
algorithm.

Theorem 2 (Correctness of PCD). Under the Causal
Markov Condition, Adjacency FaithfulnessD, Orientation
Faithfulness and the Complexity Increase Assumption the
PCD algorithm is correct in the sense that given a perfect
conditional independence oracle, the algorithm returns a
set of DAGs that contains the true causal DAG.

Proof. Suppose the true causal graph is G, and all con-
ditional independencies judgments are correct. By Adja-
cency FaithfulnessD, the undirected graph resulting from
step 2 has the same adjacencies as G does. If an infor-
mation equivalence appears, the least complex relation is
chosen. By the Complexity Increase Assumption, the re-
maining edge corresponds to the correct causal relation.
The correct undirected graph is constructed, which has the
same adjacencies as the true graph. For the second part
of the algorithm, Orientation-Faithfulness guarantees that
v-structures can be recognized by the independencies, as
shown by Ramsey et al. [2006].

5 Simulation Results

In this section we report on experiments with the PCD

learning algorithm based on data generated from structural
equations. A model over variables Xi ∈ V is defined by
equations of the form:

P (Xi | parents(Xi)) = fi(parents(Xi))+εi + ci (19)

with parents(Xi) the direct causes of Xi, εi the stochastic
variations which cannot be explained by the model and ci

a constant term. We assume that εi is normally distributed.

First we made a set of 8 models to test our algorithm, con-
taining a wide variety of situations. Secondly, we tested our
algorithm with 25 randomly generated structural equations
models containing 10 variables. 4 variables are chosen as
random input variables. The other variables have 1, 2 or

3 direct causes. One third of the variables is chosen to be
deterministic (εi = 0). The functions are chosen randomly
between the inverse, linear, quadratic or cubic function, the
independent variables in the function are combined by a
sum or a product. The coefficients, the constant and error
term have to be chosen within a certain range to assure a
measurable correlation of the dependent variable with each
independent variable in the function. Otherwise Adjacency
Faithfulness is violated. We put as a restriction that the im-
pact of one term could not be more than 10 times lower than
that of another term. The impact is defined by the range
that the values of the variable take; the difference between
its maximal and minimal outcome. This limitation comes
from our independence test, which is capable of detecting
dependencies for any form of assocation, but which has a
lower resolution than Pearson’s correlation coefficient.

Our implementation is an extension of the TETRAD
tool (http://www.phil.cmu.edu/projects/
tetrad/). The Java library written by Dr Michael
Thomas Flanagan (http://www.ee.ucl.ac.uk/
˜mflanaga) was used for implementing the regression
analysis. Applied to a dataset of 200 data points, it turned
out that all learned graphs correctly represent the structural
equations.

Among the test models, the following one was the most
complex:

G = A + B M = 1 + 0.04K2

H = 4C2 N = 10 + L + F
I = 0.4C3 O = 10 + 1.3L− F
J = G + 0.4H P = L.F + ε
K = D + 0.4I + ε Q = 10N/O + ε
L = 1.5 + 0.35K + 0.35E + ε R = M + 0.4Q + ε

The values of variables A, B, C, D, E and F are randomly
chosen between 0 and 10. ε is an error term, reflecting a
random disturbance with maximal value 1/8 of the varia-
ble’s range (the difference between its maximal and mini-
mal value). There are 7 deterministic variables (G, H , I , J ,
M , N and O). The model incorporates the different cases
discussed in this paper: a bijective relation between K and
M ; G is determined by A and B; multi-node equivalence
C, H and I; and equivalence of (L, F ) and (N , O) for P
and Q. The model depicted in Fig. 2 was learned from 200
data points generated by the above equations (the position
of the nodes in the graph was set manually).

6 Conclusions

Deterministic relationships lead to what we have called in-
formation equivalences: two sets of variables containing
information about a certain reference variable, but each of
both sets getting independent from the reference variable
when conditioned on the other set. This leads to violations
of Adjacency Faithfulness and a failure of the constraint-



Figure 2: Model learned from random data generated by a
set of structural equations.

based causal learning algorithms. It therefore makes sense
to add a test for information equivalence to the algorithms,
even if one does not intend to keep deterministically related
variables in the data. We propose to keep deterministic va-
riables, since they contain valuable information about the
system under study, unless they are determined by a linear
bijective function.

We defined an augmented Bayesian network which in-
cludes the information about deterministic relations. The
PC algorithm was extended by testing for information equi-
valences and using the notion of complexity of relation-
ships as a criterion to determine adjacency. The complexity
of relationships is quantified by the algorithmic mutual in-
formation. The complexity criterion relies on the Com-
plexity Increase Assumption, according to which the com-
plexity of the relations does not decrease for more dis-
tant variables in the causal graph. This assumption, to-
gether with Orientation Faithfulness and an extended ver-
sion of Adjacency Faithfulness, assure that correct models
are learned. This was confirmed by our experiments with
data retrieved from structural equations.
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