
Jan Lemeire
2024-2025

The GPU architecture



 Why is the potential computational power of the GPU so much higher 
than that of a CPU?

 Why is it good to have more threads than cores?

 Why is a GPU called a thread engine? Why are fine-grained threads 
efficient, while not on CPU?

 What are potential performance bottlenecks that prevent from 
attaining full performance?

 What is the difference between vector processing (SIMD) and GPU
thread processing (SIMT)?

What to know from this chapter
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1. The Power of 

GPUs
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GPU vs CPU Peak Performance Trends

◼ GPU peak performance has grown aggressively.

◼ Hardware has kept up with Moore’s law 

Source : NVIDIA

2010
350 Million triangles/second
3 Billion transistors GPU

1995
5.000 triangles/second
800.000 transistors GPU

2016
14.000 Million triangles/second
15 Billion transistors GPU







Graphical Processing Units (GPUs)

 94 fps (AMD Tahiti Pro)

 GPU: 1-3 TeraFlop/second 

instead of 10-20 GigaFlop/second for CPU

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens



 FASTRA at university of Antwerp

Supercomputing for free

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000 

euro

Similar performance as University’s 

supercomputer  (512 regular desktop PCs) 

that costed 3.5 million euro in 2005
http://fastra.ua.ac.be

“Supercomputing in a box”: a high-end GPU cost 500 to 2500 

euro and has equivalent power as 40 quadcore CPUs



Why are GPUs faster?

512 cores
8 cores8 cores

Both, about 15 

billion transistors

No branch 

prediction, out-of-

order execution, 

…

Devote transistors to… computation



GPU Architecture

streaming multiprocessor

PCIexpress bus



1 Streaming Multiprocessor

The Same Instruction is 

executed on Multiple Thread 

(SIMT)

width of pipeline:

8 – 32 – 192 - 128

Scalar processors 

(called ‘cores’ by CUDA)



1 multiprocessor

#LD/STO units        = 16    32     32     32

Scalar processors 

(called ‘cores’ by CUDA)



Peak GPU Performance

 GPUs consist of MultiProcessors (MPs) grouping a 
number of Scalar Processors (SPs)

 1 Multiply-Add instruction performs 2 operations at once

 Nvidia GTX 280:
◦ 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz

= 624 GFlops

 Nvidia Tesla C2050: 
◦ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz 

(clocks per second) 

= 1030 GFlops



Other limit: memory bandwidth

 Nvidia GTX 280: 
◦ 1.1 GHz memory clock  

◦ 141 GB/s

 Nvidia Tesla C2050: 
◦ 1.5 GHz memory clock  

◦ 144 GB/s



Pixel rescaling
lens correction pattern detection

Images of

20MegaPixels

Example: real-time image processing

CPU gives only 4 fps

next generation machines need 50 fps

GPUs deliver 70 fps



Example: pixel transformation (FPN)

usgn_8  transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide, 
sgn_8 offset)

{

sgn_32 x = (in * gain / gain_divide) + offset;

if (x < 0) 

x = 0;

if (x > 255) 

x = 255;

return x;

}



 Performance on Tesla C2050

 1 pixel is represented by 1 byte [0-255]
◦ Per pixel: read 4 bytes (pixel, gain, divide & offset) and write 1 byte

 Integer operations: performance is half of floating point 
operations

 Pixel transformation: typically 6 operations (1 index calculation, 
3 integer calculations and 2 comparisons)

Pixel transformation

Pmem (bytes/s) 115 GB/s Pops (ops/s) 500 Gops/s

bytes/pixel 5 Ops/pix 6 CI=1,2

PmemxCI (pix/s) 23 Gpix/s Pix/s 83 Gpix/s 

CI = Computational IntensityMemory-bound

(take minimum)



Roofline model applied
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Computational intensity

500 Gflops/s

memory 

bandwidth

115GB/s

4,31,2

FPN4

1,8

FPN1

PCI 

Express

8GB/s

62,5



Host (CPU) – Device (GPU)

Device/GPU

Global 

Memory

Processors

Host/CPU

R

A

M

Processor 

Hypertransport and 
Intel’s Quickpath

currently 25.6 GB/s

PCIe x16
4 GB/s

PCIe x16 Gen2
8 GB/s peak

Kernel launches

GPU bus
Nvidia Tesla C2050: 

1030.4 GB/s



Typical Sequence of Events

21



2. Massive thread 

engine



 Performing multiple threads of execution 
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short 

stalls (eg, data hazards)

Multithreading
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 1 process/thread simultaneously active per 
core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all 

instructions finish)

◦ Save state of process/thread into Process Control 
Block : registers, program counter and operating 
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

Multithreading on CPU
O

ve
rh
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ad



 In several modern CPUs 
◦ typically 2HW threads

 Devote extra hardware for process state

 Thread switching by hardware
◦ (almost) no overhead

◦ Within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading: 
Hardware threads



 In multiple-issue dynamically scheduled processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute when 

function units are available
◦ Within threads, dependencies handled by scheduling and 

register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function units 

and caches

Simultaneous Multithreading



 Independent instructions (no bubbles)

 More time between instructions: possibility 
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading



Thread executes kernel

 Massively parallel programs are usually 
written so that each thread computes one 
part of a problem
◦ For vector addition, we will add corresponding 

elements from two arrays, so each thread will 
perform one addition

◦ If we think about the thread structure visually, the 
threads will usually be arranged in the same shape 
as the data



Thread Structure

 Consider a simple vector addition of 16 
elements
◦ 2 input buffers (A, B) and 1 output buffer (C) are 

required
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+

Vector Addition:

Array Indices



Thread Structure

 Create thread structure to match the 
problem 
◦ 1-dimensional problem in this case

Thread structure:
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Thread IDs



Thread Structure

 Each thread is responsible for adding the 
indices corresponding to its ID

Thread structure:
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The effect of parallelism
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Increasing array size

Running more and more threads



Concurrency

 Keep all processing units busy!
◦ Enough threads

 All Multiprocessors (MPs)

 All Scalar Processors (SPs)

 Full pipeline of scalar processor
◦ Pipeline of up to 24 stages



3. GPU 

architectuur



GPU Architecture

streaming multiprocessor

global memory partitioned

Every controller can serve 1 request



1 Streaming Multiprocessor

The Same Instruction is 

executed on Multiple Thread 

(SIMT)

width of pipeline:

8 – 32 – 192 - 128



Execution Model

 Kernel = smallest unit of execution, like a C function, 
executed by each work item (≈ kernel thread)

 Data parallelism: kernel is run by a grid of work 
groups

 Work group consist of instances of same kernel: work 
items

 Different data elements are fed into the work items 
of the work groups

We talk about stream computing



 Simple scheduler
◦ Assigns work groups to available streaming MultiProcessors (MPs)

◦ Basically, a waiting queue for work groups 

 Work groups (WGs) execute independently
◦ Global Synchronization among work groups is not possible!

Kernel execution

Device

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Kernel grid

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Device

WG 0 WG 1 WG 2 WG 3

WG 4 WG 5 WG 6

time

GPU with 2 MPs
GPU with 4 MPs



Architecture – Memory Model

Multiprocessor 1 cycle

1 cycle

100 cycles

registers

GPU RAM

CPU RAM
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Memory: linear addressing, 2D layout

divided into partitions

divided into banks

Memory 

Controllers:

Can handle 1 

request at a 

time

How many memory transactions can be handled simultaneously?



 Divided into partitions
◦ NVIDIA GPUs typically have 8 partitions

 Memory controller can serve 1 segment (≈ cache 
line of 4x32 Bytes)

 Memory coalescing for warps
◦ Accessed elements of a warp should belong to same aligned 

segment 

◦ if not (uncoalesced access), memory requests are serialized => 
wille take more time

 Active warps of different cores/multiprocessors 
simultaneously access global memory
◦ Partition camping when they access the same partition => 

serialization of memory requests

Global memory



Local/Shared memory

 Local/Shared memory is divided into banks

 Each bank can service one address per cycle

 Multiple simultaneous accesses to a bank
result in a bank conflict 

◦ Conflicting accesses are serialized

◦ Cost = max # simultaneous accesses to a single bank

 No bank conflict:
◦ all threads of a half-warp access different banks, 

◦ all threads of a half-warp access identical address, 

(broadcast)

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0



Bank Addressing Examples

 No Bank Conflicts
◦ Linear addressing 

stride of 1

 No Bank Conflicts
◦ Random 1:1 

Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0



Bank Addressing Examples

 2-way Bank Conflicts
◦ Linear addressing 

stride of 2

 8-way Bank Conflicts
◦ Linear addressing 

stride of 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8



 Threads of the same warp accessing the same 
column of a matrix having a width of a 
multiple of 16

Worst case



4. Hardware Threads 

& SIMT



1 Compute Unit (core)

The Same Instruction is 

executed by Multiple Threads 

(SIMT)

width of pipeline depends 

on Nvidia architecture:

8 – 32 – 192 - 128

Reading from 

global memory



The execution on a GPU

 Work groups are scheduled on compute units (cores).

 Warps of active work groups are scheduled on the core

48

execution time

Compute Unit

execution time

timeOfRun

Work group Warp



Warp executes work items in lock step

 Hardware thread (called warp by Nvidia):
◦ Work items are executed together in groups, the 

instructions of the kernel are executed at the same time 
they will execute the same instruction

◦ Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)

 Consequences:
1. Running 1 work item or 32 work items takes the same 

amount of time

 Create work groups which are multiples of 32 or 64 
(AMD)

2. Branching: if work items of the same warp take different 
branches, all branches will be executed after each other

 Performance loss
3. Concurrent memory access: if work items access memory, 

all work items of the same warp do it simultaneously

 Not all memory access can be done with the same speed



 Contiguous data access (See lesson 2)

 Warp execution of instructions on the data is 
similar to vector instructions operating on vector 
registers.

When is SIMT = vector processing?



 Vectors
◦ Data should be stored in vector register

◦ Instructions are performed onto these registers

◦ Harder to program

 SIMT
◦ Each thread of a warp can choose on which data it 

works

◦ Easier to program: programmer does not have to 
worry about work item-data mapping

Vectors versus SIMT



AddAddAddAddAddAddAdd32

Add

Warp execution

1 2 3 4 5 6

AddAddAddAddAddAddAdd0

Add
…

Warp 1

Cycle

Work items are sent into pipeline grouped in a warp

ALUs all execute the same instruction in `lockstep’: Single 
Instruction, Multiple Threads (SIMT) 

Every cycle a new warp can issue an instruction

AddAddAddAddAddAddAdd64

Add

Warp 2 Warp 3

global ID
of work item

AddAddAddAddAddAddAdd96

Add

AddAddAddAddAddAddAdd128

Add

Warp 4 Warp 5



Warp execution

MulMulMulMulMulMulMul0

Mul

On an Nvidia Kepler architecture, a single precision floating point instruction 

(add or multiplication) takes 9 cycles, which is the length of the pipeline. 

8 other warps can be scheduled in the mean the mean time

After 9 cycles, the second instruction of the first warp (multiplication) can 
be issued, next the second warp and so on

 With 9 warps the pipeline is completely filled, no stalling/idling, 
the completion latency of 9 cycles is hidden.

…

…

MulMulMulMulMulMulMul32

Mul

AddAddAddAddAddAddAdd128

Add

Warp 9

9 10 11 12 13 14 15

Cycle

Warp 1 Warp 2



AddAddAddAddAddAddAdd0

then

AddAddAddAddAddAddAdd0

If

AddAddAddAddAddAddAdd0

else

SIMT Conditional Processing
If work items of a warp follow different branches, the 

instructions of both branches have to be executed, but are 
desactivated for some threads. 

=> Performance loss!

Example: assume 8 threads, one instruction in if-clause, one in 
then-clause

3 cyles in which 24 instructions are executed, 8 lost cycles 
(66% usage)

Desactivated
instructions (red)

Desac-

tivated



 The condition is tested against the current 
processor flags and if not met the instruction 
is treated as a no-op. 

 removes the need to branch, avoiding 
pipeline stalls and increasing speed. It also 
increases code density.

 By using suffix EQ, NE, GT, ... 

ARM’s conditional instructions

CMP r0, #5 ; if (a == 5) 

MOVEQ r0, #10 ; only executed if equality

BLEQ fn  ; fn(10) 



5. Conclusions



‘Sequential’ processor: super-scalar 
out-of-order pipeline 

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution

Branch prediction

Register renaming

…



Algorithm

Implementation

Compiler

Automatic

optimization

Low latency of 

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual



GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, upto 96 threads per processing element

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend 

transistors on optimization

◦ Simple straight-forward sequential programming should be 
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC ISA instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann 

architecture



 6-24 stages 

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system: 
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline



Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing



Obstacle 1
Hard(er) to implement

62

Obstacle 2
Hard(er) to get efficiency

GPU processing power is not for free

Discussed in detail in my course GPU Computing (2nd semester)
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