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What to know from this chapter

» Why is the potential computational power of the GPU so much higher
than that of a CPU?

» Why is it good to have more threads than cores?

» Why is a GPU called a thread engine? Why are fine-grained threads
efficient, while not on CPU?

» What are potential performance bottlenecks that prevent from
attaining full performance?

» What is the difference between vector processing (SIMD) and GPU
thread processing (SIMT)?







1. The Power of
GPUs
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Supercomputing for free

» FASTRA at university of Antwerp

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000
euro

Similar performance as University’s
supercomputer (512 regular desktop PCs)
that costed 3.5 million euro in 2005

http://fastra.ua.ac.be

“Supercomputing in a box”: a high-end GPU cost 500 to 2500
euro and has equivalent power as 40 quadcore CPUs




Why are GPUs faster?
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GPU specialized for math-intensive highly parallel

computation

So, more transistors can be devoted to data
processing rather than data caching and flow control

H
Control

[

No branch
prediction, out-of-
order execution,

Both, about 15
billion transistors

Devote transistors to... computation
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GPU Architecture
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Ty Streaming Multiprocessor
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Shader Core v

[ Thread Warp | The Same Instruction is

executed on Multiple Thread
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= 1 multiprocessor

& & —_
= o = ¥ =
N(IT) 14 4 3 10 28
fetoer (MHz) 1147 | 1032 | 1058 | 1506 | 1010
issue limit 1 4 4 4 1
| 32 32 32 32 64
Resources
Group slots 8 16 32 32 16
“Full name Abbreviated name | Warp slots 48 64 64 64 40
NIVDIA Tesla C2050 Fermi Local memory (KB) 48 48 64 96 64
NIVDIA GeForce GTX 650 Ti Kepler Registers (KB) 128 | 256 | 256 | 256
NIVDIA Quadro K620 Maxwell
NIVDIA GeForce GTX 1060 6GB | Pascal . % _
AMD Radeon R9 380 Tonga I %_ g ; E‘;L-
. o - = u =
S 2| 2| E| €
mazx(|y|) 1024 | 1024 | 1024 | 1024 | 256
max(local memory) (KB) 48 48 48 48 32
Scalar processors * ALU count 32| 192 128 | 128 64
(called ‘cores’ by CUDA) SFU count 8 32 32 32 -
RAM Bandwidth (GB/s) 144 | 86.4 20 | 192 | 176
L2 Cache size (KB) T68 | 256 | 2048 | 1536 | 512
L2 Cache line size (B) 128 | 128 | 128 | 128 64
L1 Cache size (KB) 16 16 64 48 16
max(global memory) (MB) | 1024 | 672 | 512 | 1536 | 2880
RAM Size (MB) 2688 | 2048 | 2048 | 6144 | 4096

#LD/STO units =16 32 32 32




Peak GPU Performance

v

GPUs consist of MultiProcessors (MPs) grouping a
number of Scalar Processors (SPs)

v

1 Multiply-Add instruction performs 2 operations at once

Nvidia GTX 280:

> 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz
= 624 GFlops

» Nvidia Tesla C2050:

v

> 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz
(clocks per second)

= 1030 GFlops




Other limit: memory bandwidth

» Nvidia GTX 280:
- 1.1 GHz memory clock
- 141 GB/s

» Nvidia Tesla C2050:

> 1.5 GHz memory clock
- 144 GB/s
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Example: real-time image processing
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Pixel rescaling :
lens correction pattern detection

CPU gives only 4 fps

next generation machines need 50 fps
GPUs deliver 70 fps
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Example: pixel transformation (FPN)

usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide,
sgn_8 offset)

{

sgn_32 x = (in * gain / gain_divide) + offset;

if (x < 0)
X = 0;
if (x > 255)
X = 255;
return x;

}




L Ppixel transformation

» Performance on Tesla C2050
» 1 pixel is represented by 1 byte [0-255]
- Per pixel: read 4 bytes (pixel, gain, divide & offset) and write 1 byte
» Integer operations: performance is half of floating point
operations

» Pixel transformation: typically 6 operations (1 index calculation,
3 integer calculations and 2 comparisons)

Poem (Oytes/s) 115 GB/s Pops (0PS/S) 500 Gops/s
bytes/pixel 5 Ops/pix 6 Cl=1,2
P .emXCl (pix/s) 23 Gpix/s Pix/s 83 Gpix/s
Memory-bound I Cl = Computational Intensity

(take minimum)



Roofline model applied

memory
bandwidth PCl
115GB/ XPress
8GB/s

Peak
performance

............. 7 500 Gflops/s

...........

CompthationaI Intensity

1,2 1,8 4,3 62,5
FPN4 FPN1
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Host (CPU) - Device (GPU)

Hypertransport &
Intel’s Quickpat
currently 25.6 G

Host/CPU

\nd
th
B/s

Processor

Kernel launches

'

PCle x16
4 GB/s

Device/GPU
—>» Processors
V'S
Nvidi
1

PCle x16 Gen2
8 GB/s peak

GPU bus
a Tesla C2050:
030.4 GB/s



Typical Sequence of Events

HOST DEVICE

Initialization

Transfer data to GPU

Launch code on GPU

massively

parallel

execution

Transfer data from GPU




2. Massive thread
engine



Multithreading

» Performing multiple threads of execution
in parallel
- Replicate registers, PC, etc.
> Fast switching between threads
» Fine—grain multithreading
- Switch threads after each cycle
> Interleave instruction execution
- If one thread stalls, others are executed

» Coarse-grain multithreading

> Only switch on long stall (e.g., L2-cache miss)

> Simplifies hardware, but doesn’t hide short
stalls (eg, data hazards)
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Multithreading on CPU

» 1 process/thread simultaneously active per
core

» When activating another thread: context switch

> Stop program execution: flush pipeline (let all
instructions finish)

- Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

- Restore state of activated thread

- Restart program execution and refill the pipeline

Overhead
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Fine multi-threading:
Hardware threads

» In several modern CPUs
> typically 2HW threads

» Devote extra hardware for process state
» Thread switching by hardware

> (almost) no overhead

> Within T cycle!

o Instructions in flight from different threads




Simultaneous Multithreading

» In multiple-issue dynamically scheduled processor
- Schedule instructions from multiple threads

> Instructions from independent threads execute when
function units are available

- Within threads, dependencies handled by scheduling and
register renaming

» Example: Intel Pentium-4 HyperThreading

- Two threads: duplicated registers, shared function units
and caches
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Benefits of fine—-grained multithreading

» Independent instructions (no bubbles)

» More time between instructions: possibility
for latency hiding
- Hide memory accesses

» If pipeline full

- Forwarding not necessary
- Branch prediction not necessary




Thread executes kernel

» Massively parallel programs are usually
written so that each thread computes one

part of a problem

> For vector addition, we will add corresponding
elements from two arrays, so each thread will
perform one addition

- |If we think about the thread structure visually, the
threads will usually be arranged in the same shape
as the data




Z5 Thread Structure

» Consider a simple vector addition of 16

elements

- 2 input buffers (A, B) and 1 output buffer (C) are
required

Array Indices

™

01 23 456 7 89 11 1 1 1
Vector Addition: 1 2 3 4 5

1
0




e Thread Structure

» Create thread structure to match the
problem
- 1-dimensional problem in this case Thread IDs

Vector Addition: 01 23 456 7 89 :

1 T 1T 1 1
0 1 2 3 4 5

p—



Thread Structure

» Each thread is responsible for adding the
indices corresponding to its ID

L 111 | ‘ ‘ | ‘ |
Vector Addition: |' ‘ | | B ' ‘ 11141

A
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The effect of parallelism

100000 -

Runtime
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Increasing array size
Running more and more threads

Array size =
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20000 30000 40000 50000 60000 70000 #threads
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Concurrency

» Keep all processing units busy!
- Enough threads

» All Multiprocessors (MPs)
» All Scalar Processors (SPs)

» Full pipeline of scalar processor
> Pipeline of up to 24 stages




3. GPU
architectuur
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GPU Architecture

. Custom kernel _ .
Application ||libcuda PTX code streaming multiprocessor
CPU Shader Cores l

Core| |Core| |Core| |Core| |Core

Interconnection Network

Memory L 1 0] | I

Memory Memory .. | Memory
Controller || Controller Controller
\ > | pram | DRaM | | DRAM |
cudaMemcpy \

global memory partitioned
Every controller can serve 1 request
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@1 Streaming Multiprocessor
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[ Thread Warp | The Same Instruction is

executed on Multiple Thread
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Execution Model

» Kernel = smallest unit of execution, like a C function,
executed by each work item (= kernel thread)

» Data parallelism: kernel is run by a grid of work
groups

» Work group consist of instances of same kernel: work
items

» Different data elements are fed into the work items
of the work groups

=>We talk about stream computing




VUBEERS Kernel execution

» Simple scheduler
> Assigns work groups to available streaming MultiProcessors (MPs)
- Basically, a waiting queue for work groups

» Work groups (WGs) execute independently
> Global Synchronization among work groups is not possible!

GPU with 2 MPs GPU with 4 MPs

'l B

& fime | [Weo| [we1 ] [wez
(we4 | [wes [wes




Architecture - Memory Model

reg I Ste 'S OpenCL Device
Private Private Private Private
Memory Memory Memory Memory

Multiprocessor 5 r | €= cycle

[ Work Item Work ltem Work Item Work Item

e 1 cycle

‘ Local Memory J [ Local Memory J

Workgroup Workgroup

GPU RAM &— 100 cycles

[ Global/Constant Memory }

CPU RAM

Host Memory J

Host
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Global memory

» Divided into partitions
> NVIDIA GPUs typically have 8 partitions

» Memory controller can serve 1 segment (= cache
line of 4x32 Bytes)

» Memory coalescing for warps

- Accessed elements of a warp should belong to same aligned
segment

- if not (uncoalesced access), memory requests are serialized =>
wille take more time

» Active warps of different cores/multiprocessors
simultaneously access global memory

> Partition camping when they access the same partition =>
serialization of memory requests
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Local/Shared memory

» Local/Shared memory is divided into banks
» Each bank can service one address per cycle

» Multiple simultaneous accesses to a bank

result in a bank conflict

> Conflicting accesses are serialized

o Cost = max # simultaneous accesses to a single ban

No bank conflict:

- all threads of a half-warp access different banks,

- all threads of a half-warp access identical address,
(broadcast) .

v
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Bank Addressing Examples

» No Bank Conflicts » No Bank Conflicts
> Linear addressing - Random 1:1
stride of 1 Permutation

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15

Thread O

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Bank 15

Thread 15 Bank 15




L““Bank Addressing Examples

» 2-way Bank Conflicts |» 8-way Bank Conflicts

> Linear addressing > Linear addressing
stride of 2 stride of 8

Thread O
Thread 1
Thread 2
Thread 3

Thread O

Thread 1 ‘
Thread 2 ~

Thread 3 ~"
Thread 4 "r

Thread 8 /

Thread 9

Thread 10
Thread 11 Bank 15

Thread 4 {
Thread 5 ¥

Thread 6 »

Thread 7

\A .

Thread 15




Worst case

» Threads of the same warp accessing the same
column of a matrix having a width of a
multiple of 16




4. Hardware Threads
& SIMT
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L 1 Compute Unit (core)
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The Same Instruction is
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AR
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The execution on a GPU

NW""-. W
W W
W W
Nm Nm

\ |
I e e it
i i i \ Work group Warp

e et et et e, \ Compute Unit

Q
g
\f

-
- execution time '

» Work groups are scheduled on compute units (cores).
» Warps of active work groups are scheduled on the core




Warp executes work items in lock step

» Hardware thread (called warp by Nvidia):

- Work items are executed together in groups, the
instructions of the kernel are executed at the same time
they will execute the same instruction

- Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)
» Consequences:

1. Running 1T work item or 32 work items takes the same
amount of time

- Create work groups which are multiples of 32 or 64
(AMD)

2. Branching: if work items of the same warp take different
branches, all branches will be executed after each other
- Performance loss

3. Concurrent memory access: if work items access memory,
all work items of the same warp do it simultaneously

-\Not all memory access can be done with the same speed
R
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When is SIMT = vector processing?

» Contiguous data access (See lesson 2)

dst | © 1 2 3 4
» Warp execution of instructions on the data is

similar to vector instructions operating on vector
registers.

Sre




Vectors versus SIMT

» Vectors
- Data should be stored in vector register
> Instructions are performed onto these registers

- Harder to program

» SIMT
- Each thread of a warp can choose on which data it
works
- Easier to program: programmer does not have to
worry about work item-data mapping




L Warp execution

© Work items are sent into pipeline grouped in a warp

4+ ALUs all execute the same instruction in lockstep’: Single
Instruction, Multiple Threads (SIMT)

4+ Every cycle a new warp can issue an instruction

Warp 1 Warp 2| |Warp 3 Warp 4 Warp 5

0 96 |||, 128 ||
Add Add Add
global ID
of work item
1 2 3 4 5




L Warp execution

¢ On an Nvidia Kepler architecture, a single precision floating point instruction
(add or multiplication) takes 9 cycles, which is the length of the pipeline.

4+ 8 other warps can be scheduled in the mean the mean time

.

After 9 cycles, the second instruction of the first warp (multiplication) can
be issued, next the second warp and so on

= With 9 warps the pipeline is completely filled, no stalling/idling,
the completion latency of 9 cycles is hidden.

Warp 9 Warp 1 Warp 2

128 SEEN
Add [

12 13 14 15




SIMT Conditional Processing

© If work items of a warp follow different branches, the
instructions of both branches have to be executed, but are
desactivated for some threads.

=> Performance loss!

© Example: assume 8 threads, one instruction in if-clause, one in
then-clause

4+ 3 cyles in which 24 instructions are executed, 8 lost cycles
(66% usage)

Desactivated
instructions (red)




ARM'’s conditional instructions

» The condition is tested against the current
processor flags and if not met the instruction
IS treated as a no-op.

» removes the need to branch, avoiding
pipeline stalls and increasing speed. It also
increases code density.

» By using suffix EQ, NE, GT, ...

CMP r0, #5 ; if (@ ==05)
MOVEQ r0, #10 ; only executed if equality
BLEQ fn ; fn(10)




5. Conclusions



®Wequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth
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(v | [ Out-of-order execution
I__L Branch prediction
r Register renaming

Y (out of order] .

|
ﬂ {in order)
I | I

! |

Pipeline width



CPU computing

manual

automatic

Algorithm

J

Implementation

J

Compiler

Write once
Run everywhere
efficiently!

Automatic
optimization

¥

Low latency of
each instruction!




L5 GPU architecture strategy

» Light-weight threads, supported by the hardware

> Thread processors, upto 96 threads per processing element
- Switching between threads can happen in 1 cycle!

» No caching mechanism, branch prediction, ...

- GPU does not try to be efficient for every program, does not spend
transistors on optimization

- Simple straight-forward sequential programming should be
abandoned...

» Less higher-level memory:

> GPU: 16KB shared memory per SIMD multiprocessor
> CPU: L2 cache contains several MB’s

» Massively floating-point computation power
» RISC ISA instead of CISC

» Transparent system organization
¢ Modern (sequential) CPUs based on simple Von Neumann




L5 GpU processor pipeline
6-24 stages

» in-order execution!!

» no branch prediction!!

» no forwarding!!

» ho register renaming!!

» Memory system:
> relatively small
- Until recently no caching
> On the other hand: much more registers (see later)

» No program call stack
- All functions inlined
> No recursion possible

v




Challenges of GPU computing

programmability

Algorithms

J

Implementation

J

Optimization

Compiler

performance
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GPU processing power is not for free

Obstacle 1

Hard(er) to implement

Obstacle 2

Hard(er) to get efficiency

d in detail in my course GPU Computing (2" semester)

62
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