
Jan Lemeire
2024-2025

The GPU architecture

 Why is the potential computational power of the GPU so much higher
than that of a CPU?

 Why is it good to have more threads than cores?

 Why is a GPU called a thread engine? Why are fine-grained threads
efficient, while not on CPU?

 What are potential performance bottlenecks that prevent from
attaining full performance?

 What is the difference between vector processing (SIMD) and GPU
thread processing (SIMT)?

What to know from this chapter

versus

1. The Power of

GPUs

5

GPU vs CPU Peak Performance Trends

◼ GPU peak performance has grown aggressively.

◼ Hardware has kept up with Moore’s law

Source : NVIDIA

2010
350 Million triangles/second
3 Billion transistors GPU

1995
5.000 triangles/second
800.000 transistors GPU

2016
14.000 Million triangles/second
15 Billion transistors GPU

Graphical Processing Units (GPUs)

 94 fps (AMD Tahiti Pro)

 GPU: 1-3 TeraFlop/second

instead of 10-20 GigaFlop/second for CPU

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

 FASTRA at university of Antwerp

Supercomputing for free

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000

euro

Similar performance as University’s

supercomputer (512 regular desktop PCs)

that costed 3.5 million euro in 2005
http://fastra.ua.ac.be

“Supercomputing in a box”: a high-end GPU cost 500 to 2500

euro and has equivalent power as 40 quadcore CPUs

Why are GPUs faster?

512 cores
8 cores8 cores

Both, about 15

billion transistors

No branch

prediction, out-of-

order execution,

…

Devote transistors to… computation

GPU Architecture

streaming multiprocessor

PCIexpress bus

1 Streaming Multiprocessor

The Same Instruction is

executed on Multiple Thread

(SIMT)

width of pipeline:

8 – 32 – 192 - 128

Scalar processors

(called ‘cores’ by CUDA)

1 multiprocessor

#LD/STO units = 16 32 32 32

Scalar processors

(called ‘cores’ by CUDA)

Peak GPU Performance

 GPUs consist of MultiProcessors (MPs) grouping a
number of Scalar Processors (SPs)

 1 Multiply-Add instruction performs 2 operations at once

 Nvidia GTX 280:
◦ 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz

= 624 GFlops

 Nvidia Tesla C2050:
◦ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz

(clocks per second)

= 1030 GFlops

Other limit: memory bandwidth

 Nvidia GTX 280:
◦ 1.1 GHz memory clock

◦ 141 GB/s

 Nvidia Tesla C2050:
◦ 1.5 GHz memory clock

◦ 144 GB/s

Pixel rescaling
lens correction pattern detection

Images of

20MegaPixels

Example: real-time image processing

CPU gives only 4 fps

next generation machines need 50 fps

GPUs deliver 70 fps

Example: pixel transformation (FPN)

usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide,
sgn_8 offset)

{

sgn_32 x = (in * gain / gain_divide) + offset;

if (x < 0)

x = 0;

if (x > 255)

x = 255;

return x;

}

 Performance on Tesla C2050

 1 pixel is represented by 1 byte [0-255]
◦ Per pixel: read 4 bytes (pixel, gain, divide & offset) and write 1 byte

 Integer operations: performance is half of floating point
operations

 Pixel transformation: typically 6 operations (1 index calculation,
3 integer calculations and 2 comparisons)

Pixel transformation

Pmem (bytes/s) 115 GB/s Pops (ops/s) 500 Gops/s

bytes/pixel 5 Ops/pix 6 CI=1,2

PmemxCI (pix/s) 23 Gpix/s Pix/s 83 Gpix/s

CI = Computational IntensityMemory-bound

(take minimum)

Roofline model applied

P
e

a
k

p
e

rf
o

rm
a

n
c
e

Computational intensity

500 Gflops/s

memory

bandwidth

115GB/s

4,31,2

FPN4

1,8

FPN1

PCI

Express

8GB/s

62,5

Host (CPU) – Device (GPU)

Device/GPU

Global

Memory

Processors

Host/CPU

R

A

M

Processor

Hypertransport and
Intel’s Quickpath

currently 25.6 GB/s

PCIe x16
4 GB/s

PCIe x16 Gen2
8 GB/s peak

Kernel launches

GPU bus
Nvidia Tesla C2050:

1030.4 GB/s

Typical Sequence of Events

21

2. Massive thread

engine

 Performing multiple threads of execution
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short

stalls (eg, data hazards)

Multithreading

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

 1 process/thread simultaneously active per
core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all

instructions finish)

◦ Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

Multithreading on CPU
O

ve
rh

e
ad

 In several modern CPUs
◦ typically 2HW threads

 Devote extra hardware for process state

 Thread switching by hardware
◦ (almost) no overhead

◦ Within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading:
Hardware threads

 In multiple-issue dynamically scheduled processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute when

function units are available
◦ Within threads, dependencies handled by scheduling and

register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function units

and caches

Simultaneous Multithreading

 Independent instructions (no bubbles)

 More time between instructions: possibility
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading

Thread executes kernel

 Massively parallel programs are usually
written so that each thread computes one
part of a problem
◦ For vector addition, we will add corresponding

elements from two arrays, so each thread will
perform one addition

◦ If we think about the thread structure visually, the
threads will usually be arranged in the same shape
as the data

Thread Structure

 Consider a simple vector addition of 16
elements
◦ 2 input buffers (A, B) and 1 output buffer (C) are

required

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

Array Indices

Thread Structure

 Create thread structure to match the
problem
◦ 1-dimensional problem in this case

Thread structure:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

1

4

1

5

1

2

1

3

1

0

1

1
8 96 74 52 30 1

Thread IDs

Thread Structure

 Each thread is responsible for adding the
indices corresponding to its ID

Thread structure:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

1

4

1

5

1

2

1

3

1

0

1

1
8 96 74 52 30 1

The effect of parallelism

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000

Vector addition

Array size =

#threads

Runtime

(ns)

Increasing array size

Running more and more threads

Concurrency

 Keep all processing units busy!
◦ Enough threads

 All Multiprocessors (MPs)

 All Scalar Processors (SPs)

 Full pipeline of scalar processor
◦ Pipeline of up to 24 stages

3. GPU

architectuur

GPU Architecture

streaming multiprocessor

global memory partitioned

Every controller can serve 1 request

1 Streaming Multiprocessor

The Same Instruction is

executed on Multiple Thread

(SIMT)

width of pipeline:

8 – 32 – 192 - 128

Execution Model

 Kernel = smallest unit of execution, like a C function,
executed by each work item (≈ kernel thread)

 Data parallelism: kernel is run by a grid of work
groups

 Work group consist of instances of same kernel: work
items

 Different data elements are fed into the work items
of the work groups

We talk about stream computing

 Simple scheduler
◦ Assigns work groups to available streaming MultiProcessors (MPs)

◦ Basically, a waiting queue for work groups

 Work groups (WGs) execute independently
◦ Global Synchronization among work groups is not possible!

Kernel execution

Device

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Kernel grid

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Device

WG 0 WG 1 WG 2 WG 3

WG 4 WG 5 WG 6

time

GPU with 2 MPs
GPU with 4 MPs

Architecture – Memory Model

Multiprocessor 1 cycle

1 cycle

100 cycles

registers

GPU RAM

CPU RAM

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128

192

256

...

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128

192

256

MC

MC

MC
...

128

192

256

MC

600 4 8 12 16 20 24 28 32 36 40 44 48 52 56

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

Memory: linear addressing, 2D layout

divided into partitions

divided into banks

Memory

Controllers:

Can handle 1

request at a

time

How many memory transactions can be handled simultaneously?

 Divided into partitions
◦ NVIDIA GPUs typically have 8 partitions

 Memory controller can serve 1 segment (≈ cache
line of 4x32 Bytes)

 Memory coalescing for warps
◦ Accessed elements of a warp should belong to same aligned

segment

◦ if not (uncoalesced access), memory requests are serialized =>
wille take more time

 Active warps of different cores/multiprocessors
simultaneously access global memory
◦ Partition camping when they access the same partition =>

serialization of memory requests

Global memory

Local/Shared memory

 Local/Shared memory is divided into banks

 Each bank can service one address per cycle

 Multiple simultaneous accesses to a bank
result in a bank conflict

◦ Conflicting accesses are serialized

◦ Cost = max # simultaneous accesses to a single bank

 No bank conflict:
◦ all threads of a half-warp access different banks,

◦ all threads of a half-warp access identical address,

(broadcast)

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Bank Addressing Examples

 No Bank Conflicts
◦ Linear addressing

stride of 1

 No Bank Conflicts
◦ Random 1:1

Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank Addressing Examples

 2-way Bank Conflicts
◦ Linear addressing

stride of 2

 8-way Bank Conflicts
◦ Linear addressing

stride of 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

 Threads of the same warp accessing the same
column of a matrix having a width of a
multiple of 16

Worst case

4. Hardware Threads

& SIMT

1 Compute Unit (core)

The Same Instruction is

executed by Multiple Threads

(SIMT)

width of pipeline depends

on Nvidia architecture:

8 – 32 – 192 - 128

Reading from

global memory

The execution on a GPU

 Work groups are scheduled on compute units (cores).

 Warps of active work groups are scheduled on the core

48

execution time

Compute Unit

execution time

timeOfRun

Work group Warp

Warp executes work items in lock step

 Hardware thread (called warp by Nvidia):
◦ Work items are executed together in groups, the

instructions of the kernel are executed at the same time
they will execute the same instruction

◦ Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)

 Consequences:
1. Running 1 work item or 32 work items takes the same

amount of time

 Create work groups which are multiples of 32 or 64
(AMD)

2. Branching: if work items of the same warp take different
branches, all branches will be executed after each other

 Performance loss
3. Concurrent memory access: if work items access memory,

all work items of the same warp do it simultaneously

 Not all memory access can be done with the same speed

 Contiguous data access (See lesson 2)

 Warp execution of instructions on the data is
similar to vector instructions operating on vector
registers.

When is SIMT = vector processing?

 Vectors
◦ Data should be stored in vector register

◦ Instructions are performed onto these registers

◦ Harder to program

 SIMT
◦ Each thread of a warp can choose on which data it

works

◦ Easier to program: programmer does not have to
worry about work item-data mapping

Vectors versus SIMT

AddAddAddAddAddAddAdd32

Add

Warp execution

1 2 3 4 5 6

AddAddAddAddAddAddAdd0

Add
…

Warp 1

Cycle

Work items are sent into pipeline grouped in a warp

ALUs all execute the same instruction in `lockstep’: Single
Instruction, Multiple Threads (SIMT)

Every cycle a new warp can issue an instruction

AddAddAddAddAddAddAdd64

Add

Warp 2 Warp 3

global ID
of work item

AddAddAddAddAddAddAdd96

Add

AddAddAddAddAddAddAdd128

Add

Warp 4 Warp 5

Warp execution

MulMulMulMulMulMulMul0

Mul

On an Nvidia Kepler architecture, a single precision floating point instruction

(add or multiplication) takes 9 cycles, which is the length of the pipeline.

8 other warps can be scheduled in the mean the mean time

After 9 cycles, the second instruction of the first warp (multiplication) can
be issued, next the second warp and so on

 With 9 warps the pipeline is completely filled, no stalling/idling,
the completion latency of 9 cycles is hidden.

…

…

MulMulMulMulMulMulMul32

Mul

AddAddAddAddAddAddAdd128

Add

Warp 9

9 10 11 12 13 14 15

Cycle

Warp 1 Warp 2

AddAddAddAddAddAddAdd0

then

AddAddAddAddAddAddAdd0

If

AddAddAddAddAddAddAdd0

else

SIMT Conditional Processing
If work items of a warp follow different branches, the

instructions of both branches have to be executed, but are
desactivated for some threads.

=> Performance loss!

Example: assume 8 threads, one instruction in if-clause, one in
then-clause

3 cyles in which 24 instructions are executed, 8 lost cycles
(66% usage)

Desactivated
instructions (red)

Desac-

tivated

 The condition is tested against the current
processor flags and if not met the instruction
is treated as a no-op.

 removes the need to branch, avoiding
pipeline stalls and increasing speed. It also
increases code density.

 By using suffix EQ, NE, GT, ...

ARM’s conditional instructions

CMP r0, #5 ; if (a == 5)

MOVEQ r0, #10 ; only executed if equality

BLEQ fn ; fn(10)

5. Conclusions

‘Sequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution

Branch prediction

Register renaming

…

Algorithm

Implementation

Compiler

Automatic

optimization

Low latency of

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual

GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, upto 96 threads per processing element

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend

transistors on optimization

◦ Simple straight-forward sequential programming should be
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC ISA instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann

architecture

 6-24 stages

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system:
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline

Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing

Obstacle 1
Hard(er) to implement

62

Obstacle 2
Hard(er) to get efficiency

GPU processing power is not for free

Discussed in detail in my course GPU Computing (2nd semester)

	Slide 1: Computerarchitectuur
	Slide 2: What to know from this chapter
	Slide 3
	Slide 4
	Slide 5: GPU vs CPU Peak Performance Trends
	Slide 6
	Slide 7
	Slide 8: Graphical Processing Units (GPUs)
	Slide 9: Supercomputing for free
	Slide 10: Why are GPUs faster?
	Slide 11: GPU Architecture
	Slide 12: 1 Streaming Multiprocessor
	Slide 13: 1 multiprocessor
	Slide 14: Peak GPU Performance
	Slide 15: Other limit: memory bandwidth
	Slide 16
	Slide 17: Example: pixel transformation (FPN)
	Slide 18: Pixel transformation
	Slide 19: Roofline model applied
	Slide 20: Host (CPU) – Device (GPU)
	Slide 21: Typical Sequence of Events
	Slide 22
	Slide 23: Multithreading
	Slide 24: Multithreading on CPU
	Slide 25: Fine multi-threading: Hardware threads
	Slide 26: Simultaneous Multithreading
	Slide 27: Benefits of fine-grained multithreading
	Slide 28: Thread executes kernel
	Slide 29: Thread Structure
	Slide 30: Thread Structure
	Slide 31: Thread Structure
	Slide 32: The effect of parallelism
	Slide 33: Concurrency
	Slide 34
	Slide 35: GPU Architecture
	Slide 36: 1 Streaming Multiprocessor
	Slide 37: Execution Model
	Slide 38: Kernel execution
	Slide 39: Architecture – Memory Model
	Slide 40
	Slide 41: Global memory
	Slide 42: Local/Shared memory
	Slide 43: Bank Addressing Examples
	Slide 44: Bank Addressing Examples
	Slide 45: Worst case
	Slide 46
	Slide 47: 1 Compute Unit (core)
	Slide 48: The execution on a GPU
	Slide 49: Warp executes work items in lock step
	Slide 50: When is SIMT = vector processing?
	Slide 51: Vectors versus SIMT
	Slide 52: Warp execution
	Slide 53: Warp execution
	Slide 54: SIMT Conditional Processing
	Slide 55: ARM’s conditional instructions
	Slide 56
	Slide 57: ‘Sequential’ processor: super-scalar out-of-order pipeline
	Slide 58
	Slide 59: GPU architecture strategy
	Slide 60: GPU processor pipeline
	Slide 61
	Slide 62

