
Jan Lemeire
2024-2025

The GPU architecture

 Why is the potential computational power of the GPU so much higher
than that of a CPU?

 Why is it good to have more threads than cores?

 Why is a GPU called a thread engine? Why are fine-grained threads
efficient, while not on CPU?

 What are potential performance bottlenecks that prevent from
attaining full performance?

 What is the difference between vector processing (SIMD) and GPU
thread processing (SIMT)?

What to know from this chapter

versus

1. The Power of

GPUs

5

GPU vs CPU Peak Performance Trends

◼ GPU peak performance has grown aggressively.

◼ Hardware has kept up with Moore’s law

Source : NVIDIA

2010
350 Million triangles/second
3 Billion transistors GPU

1995
5.000 triangles/second
800.000 transistors GPU

2016
14.000 Million triangles/second
15 Billion transistors GPU

Graphical Processing Units (GPUs)

 94 fps (AMD Tahiti Pro)

 GPU: 1-3 TeraFlop/second

instead of 10-20 GigaFlop/second for CPU

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

 FASTRA at university of Antwerp

Supercomputing for free

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000

euro

Similar performance as University’s

supercomputer (512 regular desktop PCs)

that costed 3.5 million euro in 2005
http://fastra.ua.ac.be

“Supercomputing in a box”: a high-end GPU cost 500 to 2500

euro and has equivalent power as 40 quadcore CPUs

Why are GPUs faster?

512 cores
8 cores8 cores

Both, about 15

billion transistors

No branch

prediction, out-of-

order execution,

…

Devote transistors to… computation

GPU Architecture

streaming multiprocessor

PCIexpress bus

1 Streaming Multiprocessor

The Same Instruction is

executed on Multiple Thread

(SIMT)

width of pipeline:

8 – 32 – 192 - 128

Scalar processors

(called ‘cores’ by CUDA)

1 multiprocessor

#LD/STO units = 16 32 32 32

Scalar processors

(called ‘cores’ by CUDA)

Peak GPU Performance

 GPUs consist of MultiProcessors (MPs) grouping a
number of Scalar Processors (SPs)

 1 Multiply-Add instruction performs 2 operations at once

 Nvidia GTX 280:
◦ 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz

= 624 GFlops

 Nvidia Tesla C2050:
◦ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz

(clocks per second)

= 1030 GFlops

Other limit: memory bandwidth

 Nvidia GTX 280:
◦ 1.1 GHz memory clock

◦ 141 GB/s

 Nvidia Tesla C2050:
◦ 1.5 GHz memory clock

◦ 144 GB/s

Pixel rescaling
lens correction pattern detection

Images of

20MegaPixels

Example: real-time image processing

CPU gives only 4 fps

next generation machines need 50 fps

GPUs deliver 70 fps

Example: pixel transformation (FPN)

usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide,
sgn_8 offset)

{

sgn_32 x = (in * gain / gain_divide) + offset;

if (x < 0)

x = 0;

if (x > 255)

x = 255;

return x;

}

 Performance on Tesla C2050

 1 pixel is represented by 1 byte [0-255]
◦ Per pixel: read 4 bytes (pixel, gain, divide & offset) and write 1 byte

 Integer operations: performance is half of floating point
operations

 Pixel transformation: typically 6 operations (1 index calculation,
3 integer calculations and 2 comparisons)

Pixel transformation

Pmem (bytes/s) 115 GB/s Pops (ops/s) 500 Gops/s

bytes/pixel 5 Ops/pix 6 CI=1,2

PmemxCI (pix/s) 23 Gpix/s Pix/s 83 Gpix/s

CI = Computational IntensityMemory-bound

(take minimum)

Roofline model applied

P
e

a
k

p
e

rf
o

rm
a

n
c
e

Computational intensity

500 Gflops/s

memory

bandwidth

115GB/s

4,31,2

FPN4

1,8

FPN1

PCI

Express

8GB/s

62,5

Host (CPU) – Device (GPU)

Device/GPU

Global

Memory

Processors

Host/CPU

R

A

M

Processor

Hypertransport and
Intel’s Quickpath

currently 25.6 GB/s

PCIe x16
4 GB/s

PCIe x16 Gen2
8 GB/s peak

Kernel launches

GPU bus
Nvidia Tesla C2050:

1030.4 GB/s

Typical Sequence of Events

21

2. Massive thread

engine

 Performing multiple threads of execution
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short

stalls (eg, data hazards)

Multithreading

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

 1 process/thread simultaneously active per
core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all

instructions finish)

◦ Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

Multithreading on CPU
O

ve
rh

e
ad

 In several modern CPUs
◦ typically 2HW threads

 Devote extra hardware for process state

 Thread switching by hardware
◦ (almost) no overhead

◦ Within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading:
Hardware threads

 In multiple-issue dynamically scheduled processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute when

function units are available
◦ Within threads, dependencies handled by scheduling and

register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function units

and caches

Simultaneous Multithreading

 Independent instructions (no bubbles)

 More time between instructions: possibility
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading

Thread executes kernel

 Massively parallel programs are usually
written so that each thread computes one
part of a problem
◦ For vector addition, we will add corresponding

elements from two arrays, so each thread will
perform one addition

◦ If we think about the thread structure visually, the
threads will usually be arranged in the same shape
as the data

Thread Structure

 Consider a simple vector addition of 16
elements
◦ 2 input buffers (A, B) and 1 output buffer (C) are

required

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

Array Indices

Thread Structure

 Create thread structure to match the
problem
◦ 1-dimensional problem in this case

Thread structure:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

1

4

1

5

1

2

1

3

1

0

1

1
8 96 74 52 30 1

Thread IDs

Thread Structure

 Each thread is responsible for adding the
indices corresponding to its ID

Thread structure:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

1

4

1

5

1

2

1

3

1

0

1

1
8 96 74 52 30 1

The effect of parallelism

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000

Vector addition

Array size =

#threads

Runtime

(ns)

Increasing array size

Running more and more threads

Concurrency

 Keep all processing units busy!
◦ Enough threads

 All Multiprocessors (MPs)

 All Scalar Processors (SPs)

 Full pipeline of scalar processor
◦ Pipeline of up to 24 stages

3. GPU

architectuur

GPU Architecture

streaming multiprocessor

global memory partitioned

Every controller can serve 1 request

1 Streaming Multiprocessor

The Same Instruction is

executed on Multiple Thread

(SIMT)

width of pipeline:

8 – 32 – 192 - 128

Execution Model

 Kernel = smallest unit of execution, like a C function,
executed by each work item (≈ kernel thread)

 Data parallelism: kernel is run by a grid of work
groups

 Work group consist of instances of same kernel: work
items

 Different data elements are fed into the work items
of the work groups

We talk about stream computing

 Simple scheduler
◦ Assigns work groups to available streaming MultiProcessors (MPs)

◦ Basically, a waiting queue for work groups

 Work groups (WGs) execute independently
◦ Global Synchronization among work groups is not possible!

Kernel execution

Device

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Kernel grid

WG 0 WG 1

WG 2 WG 3

WG 4 WG 5

WG 6

Device

WG 0 WG 1 WG 2 WG 3

WG 4 WG 5 WG 6

time

GPU with 2 MPs
GPU with 4 MPs

Architecture – Memory Model

Multiprocessor 1 cycle

1 cycle

100 cycles

registers

GPU RAM

CPU RAM

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128

192

256

...

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128

192

256

MC

MC

MC
...

128

192

256

MC

600 4 8 12 16 20 24 28 32 36 40 44 48 52 56

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

Memory: linear addressing, 2D layout

divided into partitions

divided into banks

Memory

Controllers:

Can handle 1

request at a

time

How many memory transactions can be handled simultaneously?

 Divided into partitions
◦ NVIDIA GPUs typically have 8 partitions

 Memory controller can serve 1 segment (≈ cache
line of 4x32 Bytes)

 Memory coalescing for warps
◦ Accessed elements of a warp should belong to same aligned

segment

◦ if not (uncoalesced access), memory requests are serialized =>
wille take more time

 Active warps of different cores/multiprocessors
simultaneously access global memory
◦ Partition camping when they access the same partition =>

serialization of memory requests

Global memory

Local/Shared memory

 Local/Shared memory is divided into banks

 Each bank can service one address per cycle

 Multiple simultaneous accesses to a bank
result in a bank conflict

◦ Conflicting accesses are serialized

◦ Cost = max # simultaneous accesses to a single bank

 No bank conflict:
◦ all threads of a half-warp access different banks,

◦ all threads of a half-warp access identical address,

(broadcast)

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Bank Addressing Examples

 No Bank Conflicts
◦ Linear addressing

stride of 1

 No Bank Conflicts
◦ Random 1:1

Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank Addressing Examples

 2-way Bank Conflicts
◦ Linear addressing

stride of 2

 8-way Bank Conflicts
◦ Linear addressing

stride of 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

 Threads of the same warp accessing the same
column of a matrix having a width of a
multiple of 16

Worst case

4. Hardware Threads

& SIMT

1 Compute Unit (core)

The Same Instruction is

executed by Multiple Threads

(SIMT)

width of pipeline depends

on Nvidia architecture:

8 – 32 – 192 - 128

Reading from

global memory

The execution on a GPU

 Work groups are scheduled on compute units (cores).

 Warps of active work groups are scheduled on the core

48

execution time

Compute Unit

execution time

timeOfRun

Work group Warp

Warp executes work items in lock step

 Hardware thread (called warp by Nvidia):
◦ Work items are executed together in groups, the

instructions of the kernel are executed at the same time
they will execute the same instruction

◦ Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)

 Consequences:
1. Running 1 work item or 32 work items takes the same

amount of time

 Create work groups which are multiples of 32 or 64
(AMD)

2. Branching: if work items of the same warp take different
branches, all branches will be executed after each other

 Performance loss
3. Concurrent memory access: if work items access memory,

all work items of the same warp do it simultaneously

 Not all memory access can be done with the same speed

 Contiguous data access (See lesson 2)

 Warp execution of instructions on the data is
similar to vector instructions operating on vector
registers.

When is SIMT = vector processing?

 Vectors
◦ Data should be stored in vector register

◦ Instructions are performed onto these registers

◦ Harder to program

 SIMT
◦ Each thread of a warp can choose on which data it

works

◦ Easier to program: programmer does not have to
worry about work item-data mapping

Vectors versus SIMT

AddAddAddAddAddAddAdd32

Add

Warp execution

1 2 3 4 5 6

AddAddAddAddAddAddAdd0

Add
…

Warp 1

Cycle

Work items are sent into pipeline grouped in a warp

ALUs all execute the same instruction in `lockstep’: Single
Instruction, Multiple Threads (SIMT)

Every cycle a new warp can issue an instruction

AddAddAddAddAddAddAdd64

Add

Warp 2 Warp 3

global ID
of work item

AddAddAddAddAddAddAdd96

Add

AddAddAddAddAddAddAdd128

Add

Warp 4 Warp 5

Warp execution

MulMulMulMulMulMulMul0

Mul

On an Nvidia Kepler architecture, a single precision floating point instruction

(add or multiplication) takes 9 cycles, which is the length of the pipeline.

8 other warps can be scheduled in the mean the mean time

After 9 cycles, the second instruction of the first warp (multiplication) can
be issued, next the second warp and so on

 With 9 warps the pipeline is completely filled, no stalling/idling,
the completion latency of 9 cycles is hidden.

…

…

MulMulMulMulMulMulMul32

Mul

AddAddAddAddAddAddAdd128

Add

Warp 9

9 10 11 12 13 14 15

Cycle

Warp 1 Warp 2

AddAddAddAddAddAddAdd0

then

AddAddAddAddAddAddAdd0

If

AddAddAddAddAddAddAdd0

else

SIMT Conditional Processing
If work items of a warp follow different branches, the

instructions of both branches have to be executed, but are
desactivated for some threads.

=> Performance loss!

Example: assume 8 threads, one instruction in if-clause, one in
then-clause

3 cyles in which 24 instructions are executed, 8 lost cycles
(66% usage)

Desactivated
instructions (red)

Desac-

tivated

 The condition is tested against the current
processor flags and if not met the instruction
is treated as a no-op.

 removes the need to branch, avoiding
pipeline stalls and increasing speed. It also
increases code density.

 By using suffix EQ, NE, GT, ...

ARM’s conditional instructions

CMP r0, #5 ; if (a == 5)

MOVEQ r0, #10 ; only executed if equality

BLEQ fn ; fn(10)

5. Conclusions

‘Sequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution

Branch prediction

Register renaming

…

Algorithm

Implementation

Compiler

Automatic

optimization

Low latency of

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual

GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, upto 96 threads per processing element

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend

transistors on optimization

◦ Simple straight-forward sequential programming should be
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC ISA instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann

architecture

 6-24 stages

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system:
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline

Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing

Obstacle 1
Hard(er) to implement

62

Obstacle 2
Hard(er) to get efficiency

GPU processing power is not for free

Discussed in detail in my course GPU Computing (2nd semester)

	Slide 1: Computerarchitectuur
	Slide 2: What to know from this chapter
	Slide 3
	Slide 4
	Slide 5: GPU vs CPU Peak Performance Trends
	Slide 6
	Slide 7
	Slide 8: Graphical Processing Units (GPUs)
	Slide 9: Supercomputing for free
	Slide 10: Why are GPUs faster?
	Slide 11: GPU Architecture
	Slide 12: 1 Streaming Multiprocessor
	Slide 13: 1 multiprocessor
	Slide 14: Peak GPU Performance
	Slide 15: Other limit: memory bandwidth
	Slide 16
	Slide 17: Example: pixel transformation (FPN)
	Slide 18: Pixel transformation
	Slide 19: Roofline model applied
	Slide 20: Host (CPU) – Device (GPU)
	Slide 21: Typical Sequence of Events
	Slide 22
	Slide 23: Multithreading
	Slide 24: Multithreading on CPU
	Slide 25: Fine multi-threading: Hardware threads
	Slide 26: Simultaneous Multithreading
	Slide 27: Benefits of fine-grained multithreading
	Slide 28: Thread executes kernel
	Slide 29: Thread Structure
	Slide 30: Thread Structure
	Slide 31: Thread Structure
	Slide 32: The effect of parallelism
	Slide 33: Concurrency
	Slide 34
	Slide 35: GPU Architecture
	Slide 36: 1 Streaming Multiprocessor
	Slide 37: Execution Model
	Slide 38: Kernel execution
	Slide 39: Architecture – Memory Model
	Slide 40
	Slide 41: Global memory
	Slide 42: Local/Shared memory
	Slide 43: Bank Addressing Examples
	Slide 44: Bank Addressing Examples
	Slide 45: Worst case
	Slide 46
	Slide 47: 1 Compute Unit (core)
	Slide 48: The execution on a GPU
	Slide 49: Warp executes work items in lock step
	Slide 50: When is SIMT = vector processing?
	Slide 51: Vectors versus SIMT
	Slide 52: Warp execution
	Slide 53: Warp execution
	Slide 54: SIMT Conditional Processing
	Slide 55: ARM’s conditional instructions
	Slide 56
	Slide 57: ‘Sequential’ processor: super-scalar out-of-order pipeline
	Slide 58
	Slide 59: GPU architecture strategy
	Slide 60: GPU processor pipeline
	Slide 61
	Slide 62

