
Practical Parallel 
Programming V

Performance Analysis

Jan Lemeire

November 2021

See Chapter 6 of Jan’s PhD

Kumar Chapter 5



Pag.2

Performance Analysis

Performance Metrics

Other metrics we could try to optimize: 

energy consumption, cost, …

We assume sequential version is run 

on the same processor/core as the 

parallel version.



Pag.3

Performance Analysis

Matrix Multiplication (MxM) 

3

1

.

)..1:,(.

nT

njiBAC

BAC

mms

n

k

kjikij

=

=

=


=

A11 A12 A13 ..  .. A1n

A21 A22 ..       ..  A2n

...

Ai1 Ai2 Ai3 ..    .. Ain

...

...

...

An1 An2 An3 ..  .. Ann

B11 B12 .. B1j ..  .. B1n

B21 B22 .. B2j     ..  B2n

...

...

...

...

...

Bn1 Bn2 .. Bnj  .. Bnn

Cij

 

A

B

C
for (i=0; i<n; i++){

for (j=0; j<n; j++){

C[i,j]=0;

for (k=0; k<n; k++){

C[i,j]+=A[i, k]*B[k,j];

}

}

}



Pag.4

Performance Analysis

MxM: one-step version

B is sent to all 
processors

Computation in 1 
step

Same amount

of communication 1

2

3

A

1, 2 & 3

B

1

2

3

C
computation step



Pag.5

Performance Analysis

MxM: Alternate shift-compute version

Algorithm alternates p 
computation and communication 
steps

Computation step: each processor 
multiplies its A submatrix with its 
B submatrix, resulting in a 
submatrix of C. The black circles 
indicate the step in which each 
submatrix is computed.

After multiplication: processor 
sends it B submatrix to next 
processor and receives one from 
the preceding processor. The 
communication forms a circular 
shift operation. 



Pag.6

Performance Analysis

Parallel Matrix Multiplication: 
Execution Profile

Speedup=2.55 Efficiency = 85%

On cluster of 3 computers - using MPIThe alternate shift-compute version



Pag.7

Performance Analysis

Speedup i.f.o. processors

1) Ideal, linear speedup

2) Increasing, sub-linear 
speedup

3) Speedup with an optimal 
number of processors

4) No speedup

5) Super-linear speedup



Pag.8

Performance Analysis

Super-linear speedup

The parallel execution works with data that fits in 
lower-level memory, while this is not the case for 
the sequential execution

The work in parallel is less than that of the 
sequential program, called parallel anomaly.

PPP p. 92



Pag.

Speedup i.f.o. problem size

9

Performance Analysis

1) Constant speedup

2) Increasing, asymptotically, 
towards value sublinear
speedup (< p)

3) Increasing towards p

4) Increasing towards super-
linear speedup

W is a problem-specific parameter which is 

related to the amount of computational 

work (most often linearly-related)



Pag.10

Performance Analysis

Performance Analysis

Goals:

Understanding of the computational process in 
terms of resource consumption

Identification of inefficient patterns

Performance prediction

Performance characterization of program and 
system



Pag.11

Performance Analysis

Overhead or Lost Cycles

= all cycles with Tpar that are 

not utilized for useful work

i: index of process j: index of overhead type

For all processes:



Pag.12

Performance Analysis

Impact of Overhead on Speedup?

We sum overheads of type 

j over all processes i

We consider Tanomaly an 

overhead



Pag.13

Performance Analysis

Speedup & Overhead Ratios

Total overhead (sum of 

per process overhead)!



Pag.14

Performance Analysis

Example 1: Execution Profile  of 
Parallel Matrix Multiplication

Speedup=2.55 Efficiency = 85%



Pag.15

Performance Analysis

Parallel Matrix Multiplication

Parallel anomaly = 2.6%

85,0
173,1

1

100/)6,22,95,5(1

1
==

+++
=Efficiency



Pag.

Analysis per process

16

Performance Analysis

If you assume that each process has          work,

We can calculate  the overhead ratio per process:

p

Tseq

p

T

T
Ovh

seq

ji

ovhi

j

,

=



Pag.17

Performance Analysis

Overhead Classification

Control of parallelism: extra functionality 
necessary for parallelization (like partitioning)

Extra computations required

Part of computational phases are not for useful work!

Example of costly control: graph partitioning is NP-complete 

Communication: overhead time not overlapping 
with computation

Idling: processor has to wait for further 
information

Parallel anomaly : useful work differs for 
sequential and parallel execution 

KUMAR p195



Pag.18

Performance Analysis

Causes of Idling

Limitations of parallelism
Cf Amdahl’s law

Load imbalances

Waiting for incoming messages, due to
Message latency

Limited bandwidth

Congestion in interconnection network



Pag.

Example 2: Parallel Quicksort

19

Performance Analysis



Pag.

Execution Profile of Parallel Quicksort

20

Performance Analysis



Pag.

Quicksort’s performance

Speedup growth is limited!

Reason?

21

Performance Analysis

0

2

4

6

8

0 10 20 30 40
p

Performance i.f.o. p (n = 1000)

Tp

S

E

Without considering 
load imbalances



Pag.22

Performance Analysis

Amdahl’s Law

Limitations of inherent parallelism: a part s
of the algorithm is not parallelizable

PPP p. 80

seqseqseq TsTsT .).1( +−=
seq

seq

par Ts
p

Ts
T .

).1(
+

−
=

sp

p

Ts
p

Ts

T

T

T
Speedup

seq

seq

seq

par

seq

).1(1
.

).1(max
−+

=

+
−

==
Assume 

no other 

overhead 

not parallelizableparallelizable



Pag.23

Performance Analysis

Amdahl’s Law

sp

p
Speedup

).1(1 −+


sp
Efficiency

).1(1

1

−+


If p is big enough:

s
Speedup

1


s Speedupmax

10% 10

25% 4

50% 2

75% 1.33



Pag.

Amdahl example: video decoding

24

Performance Analysis

Thanks to Wladimir van der Laan, University of Groningen



Pag.25

Performance Analysis

Example 3: Job Farming

Set of jobs & cluster of computers

= Independent task parallelism

{job1, job2, job3, job4}



Pag.26

Performance Analysis

A

B

C

master

slave1

slave2

A

B

CA

B

C

A

B

C A

B

C A

A

Request job

Send job

Return result

jo
b

1

jo
b

2

jo
b

3

jo
b

4

ti
m

e

Tpar

jo
b

1
jo

b
2

jo
b

3
jo

b
4

Tseq

Speedup = ±1.2



Pag.27

Performance Analysis

Performance of Job Farming?

Overheads? Bottlenecks?

1. Communication overhead

Impact on speedup ~ Tseq/Tcomm ~ granularity

Granularity = computation/communication

overlap communication with computation

2. Bottleneck at master => idling of slaves

use several masters (‘tree’-structure)



Pag.

Scalability

Can we keep efficiency constant while
simultaneously increasing W and p?

28

Performance Analysis



Pag.29

Performance Analysis

Scalability

Runtime remains constant if efficiency remains constant 
and increasing p and W at the same rate:

Problem doubles? Double processing power! Same time!

Program is scalable: the ability to maintain efficiency at a 
fixed value by simultaneously increasing the number of 
processors and the size of the problem.

It reflects a parallel system’s ability to utilize increasing 
processing resources effectively.

PPP p. 95

KUMAR p. 211

Gustafson’s law

constant.
),(

).,(

.

==

==

p

W

pWefficiency

ppWefficiency

W

speedup

T
T

seq

par







Pag.

Iso-efficiency

30

Performance Analysis

Function tells us how W must increase with an increasing p for 
maintaining efficiency

• If perfectly scalable (Tovh linear or sub-linear in p):
• Increase W linearly with increasing p
• Parallel run time stays the same 
• Workload per processor remains constant (see next slide)

• If fairly/poorly scalable (Tovh super-linear in p):
• Problem size should be increased more than p to keep the 

efficiency
• Bigger work load per processor (see next slide)

• More memory needed!!

iso-efficiency curve:

When is efficiency constant
W

pWT

T

pWT ovh

seq

ovh

.

),(
constant

),(


==

If sequential runtime~W



Pag.

scalability of quicksort

31

Performance Analysis



Pag.

Iso-efficiency curves

32

Performance Analysis

W

p
80%

x2

x2

scalable highly scalable poorly scalable

Thanks to Noah Van Es (2016)



Pag.

Gustafson’s law

▪ Amdahl’s law: pessimistic view

▪ parallelization is limited

▪ Amdahl only changes p, keeps W and serial fraction s
constant

▪ Gustafson: more optimistic

▪ the problems we run in parallel will be bigger and have 
more parallelism: for higher p, higher W

➢ Iso-efficiency curve

▪ Bigger problems: smaller serial fraction, less overhead

33

Performance Analysis

See Link



Pag.

I. Generate/draw execution profile

II. Identify lost cycles

III. Determine causes of overhead

IV. Plot performance in function of p and W

V. Study impact of overheads on speedup

VI. Study scalability

VII.Determine optimization possibilities

34

Performance Analysis

Approach to follow


