Practical Parallel Programming V

Performance Analysis

See Chapter 6 of Jan's PhD

Kumar Chapter 5

Jan Lemeire November 2021

Vrije Universiteit Brussel

Performance Metrics

$$Speedup = \frac{T_{seq}}{T_{par}}$$

We assume sequential version is run on the same processor/core as the parallel version.

$$Efficiency = \frac{Speedup}{p} = \frac{T_{seq}}{p.T_{par}}$$

Other metrics we could try to optimize: energy consumption, cost, ...

Matrix Multiplication (MxM)

$$C = A \times B$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj} \quad (i, j:1..n)$$

$$T_{s} = \delta_{mm} \cdot n^{3}$$
for (i=0; iA
$$A$$

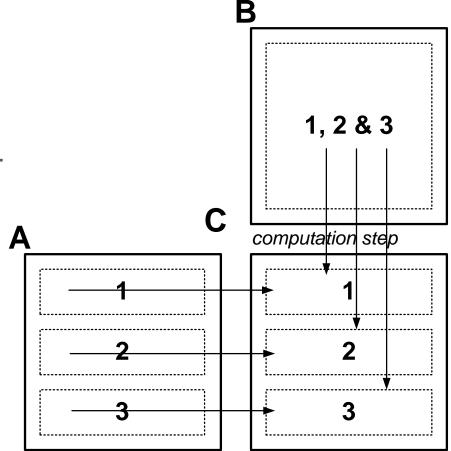
$$C_{ij}$$

$$C_{ij}$$

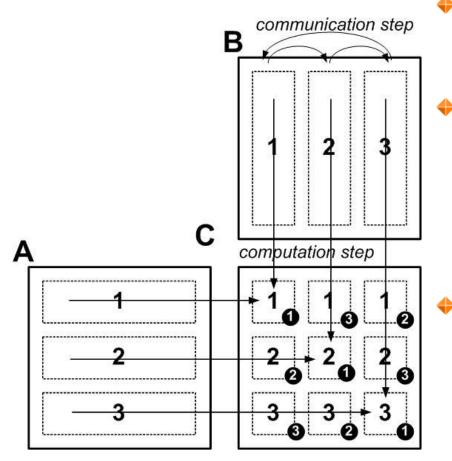
$$C_{ij}$$

MxM: one-step version

- B is sent to all processors
- Computation in 1 step
- Same amount
 of communication



MxM: Alternate shift-compute version

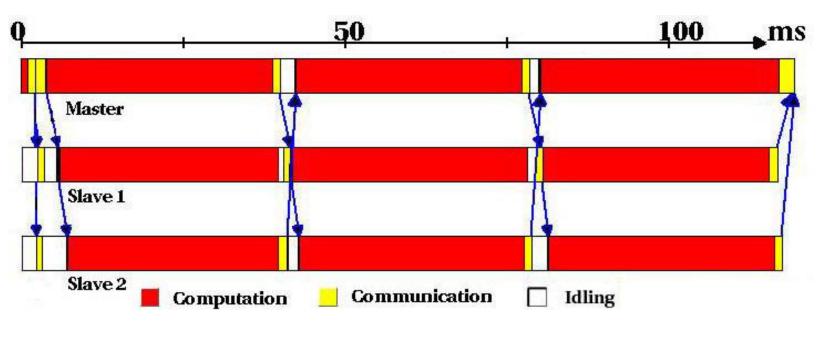


- Algorithm alternates p computation and communication steps
- Computation step: each processor multiplies its A submatrix with its B submatrix, resulting in a submatrix of C. The black circles indicate the step in which each submatrix is computed.
- After multiplication: processor sends it B submatrix to next processor and receives one from the preceding processor. The communication forms a **circular shift operation**.

Parallel Matrix Multiplication: Execution Profile

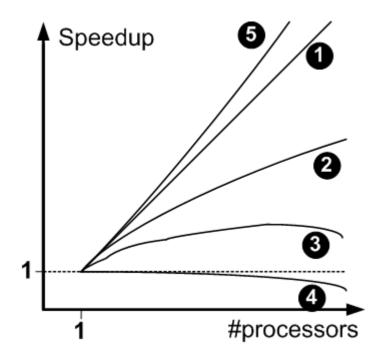
The alternate shift-compute version

On cluster of 3 computers - using MPI



Speedup=2.55 Efficiency = 85%

Speedup i.f.o. processors

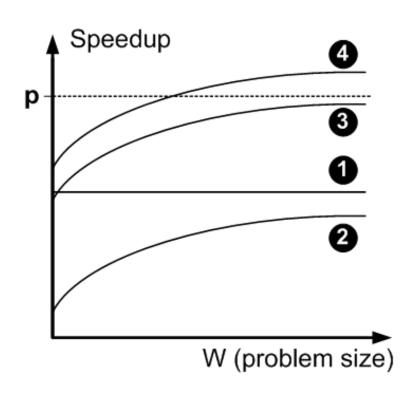


- 1) Ideal, linear speedup
- 2) Increasing, sub-linear speedup
- 3) Speedup with an optimal number of processors
- 4) No speedup
- 5) Super-linear speedup

Super-linear speedup

- The parallel execution works with data that fits in lower-level memory, while this is not the case for the sequential execution
- The work in parallel is less than that of the sequential program, called *parallel anomaly*.

Speedup i.f.o. problem size



- 1) Constant speedup
- 2) Increasing, asymptotically, towards value sublinear speedup (< p)</p>
- 3) Increasing towards p
- 4) Increasing towards superlinear speedup

W is a problem-specific parameter which is related to the amount of computational work (most often linearly-related)

Performance Analysis

Goals:

- Understanding of the computational process in terms of resource consumption
- Identification of inefficient patterns
- Performance prediction
- Performance characterization of program and system

Overhead or Lost Cycles

Ideally
$$T_{par} = T_{seq}/p \implies Speedup = p$$

In practice $T_{par} > T_{seq}/p$

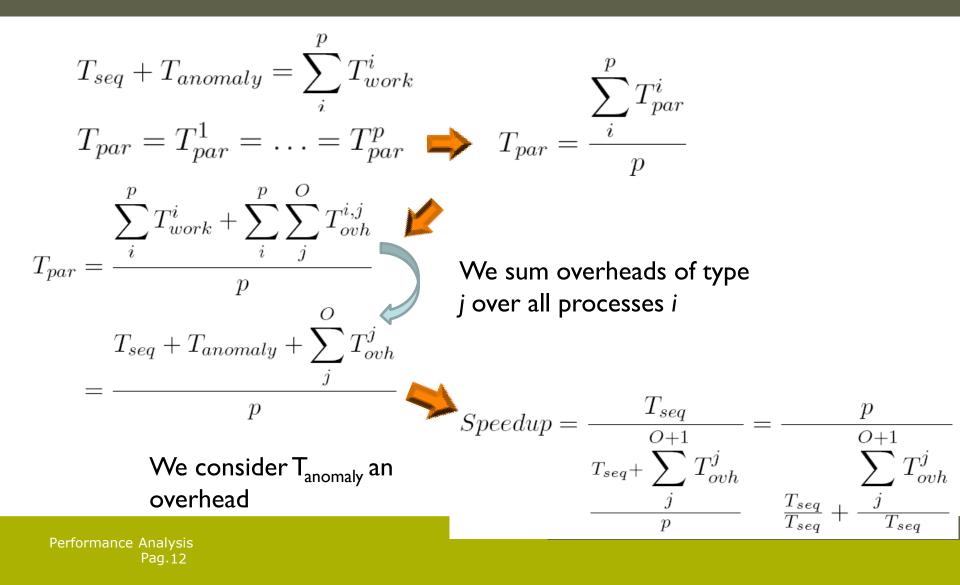
$$overhead = p.T_{par} - T_{seq}$$

For all processes:O $T_{par}^{i} = T_{work}^{i} + \sum_{j}^{O} T_{ovh}^{i,j}$ *i*: index of process*j*: index of overhead type

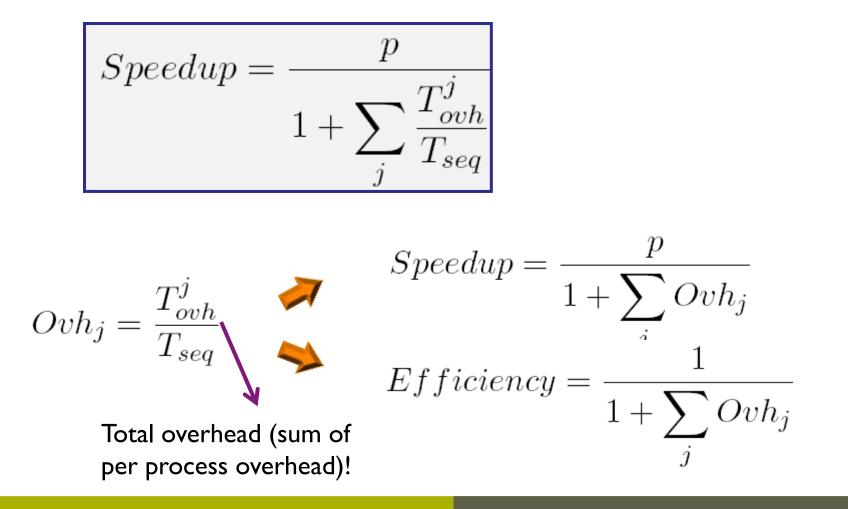
lost processor cycles

= all cycles with T_{par} that are not utilized for **useful work**

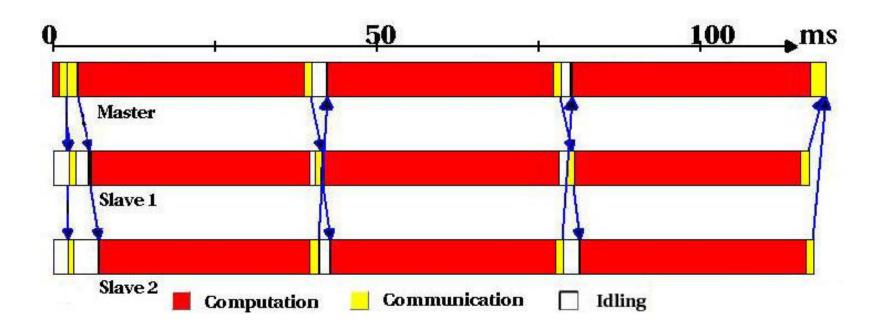
Impact of Overhead on Speedup?



Speedup & Overhead Ratios

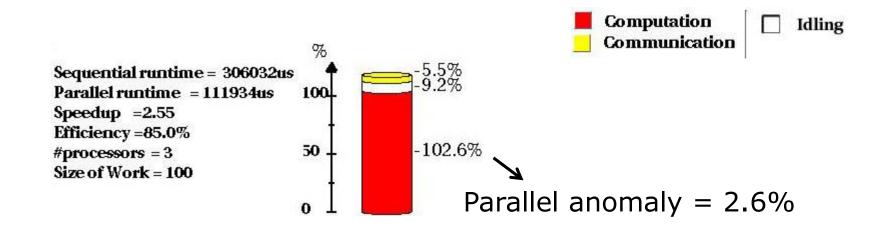


Example 1: Execution Profile of Parallel Matrix Multiplication



Speedup=2.55 Efficiency = 85%

Parallel Matrix Multiplication

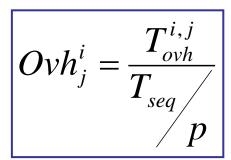


$$Efficiency = \frac{1}{1 + (5,5 + 9,2 + 2,6)/100} = \frac{1}{1,173} = 0,85$$

Analysis per process

If you assume that each process has $\left| \frac{T_{seq}}{T_{seq}} \right|$

We can calculate the overhead ratio per process:



work,



Overhead Classification

- Control of parallelism: extra functionality necessary for parallelization (like partitioning)
 - Extra computations required
 - Part of computational phases are not for useful work!
 Example of costly control: graph partitioning is NP-complete
- Communication: overhead time not overlapping with computation
- *Idling*: processor has to wait for further information
- Parallel anomaly : useful work differs for sequential an

$$T_{seq} + T_{anomaly} = \sum T^i_{work}$$

i

Causes of Idling

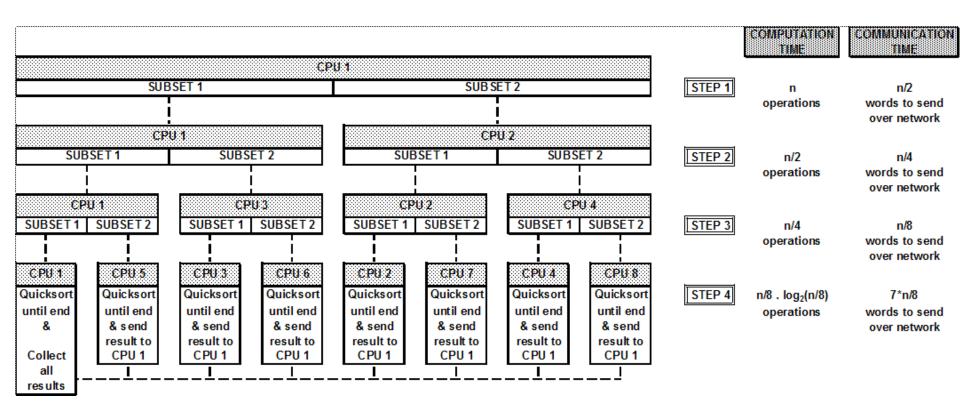
Limitations of parallelism

- Cf Amdahl's law
- Load imbalances

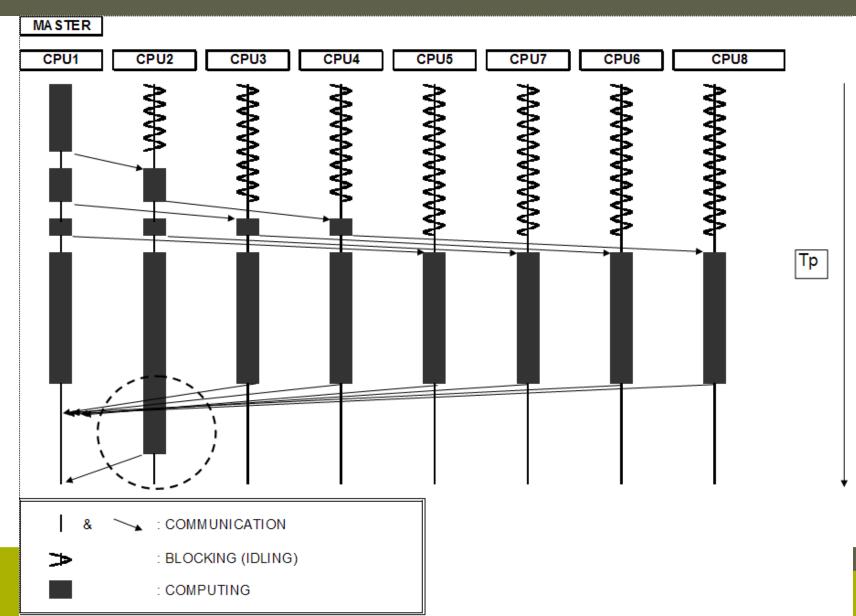
Waiting for incoming messages, due to

- Message latency
- Limited bandwidth
- Congestion in interconnection network

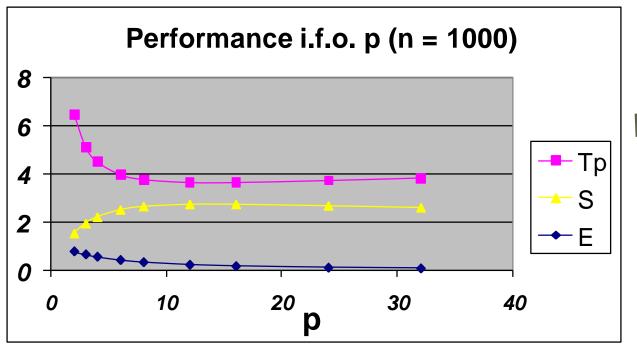
Example 2: Parallel Quicksort



Execution Profile of Parallel Quicksort



Quicksort's performance



Without considering load imbalances

Speedup growth is limited! Reason?

Amdahl's Law

Limitations of inherent parallelism: a part s of the algorithm is not parallelizable

$$T_{seq} = (1-s).T_{seq} + s.T_{seq}$$

$$T_{par} = \frac{(1-s).T_{seq}}{p} + s.T_{seq}$$

parallelizable not parallelizable

$$Speedup_{\max} = \frac{T_{seq}}{T_{par}} = \frac{T_{seq}}{\frac{(1-s).T_{seq}}{p} + s.T_{seq}} = \frac{p}{1 + (p-1).s}$$

Assume no other overhead

Amdahl's Law

Speedup
$$< \frac{p}{1+(p-1).s}$$

$$Efficiency < \frac{1}{1 + (p-1).s}$$

If *p* is big enough:

Speedup
$$< \frac{1}{s}$$

S	Speedup _{max}
10%	10
25%	4
50%	2
75%	1.33

Amdahl example: video decoding

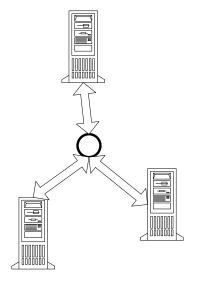
Thanks to Wladimir van der Laan, University of Groningen

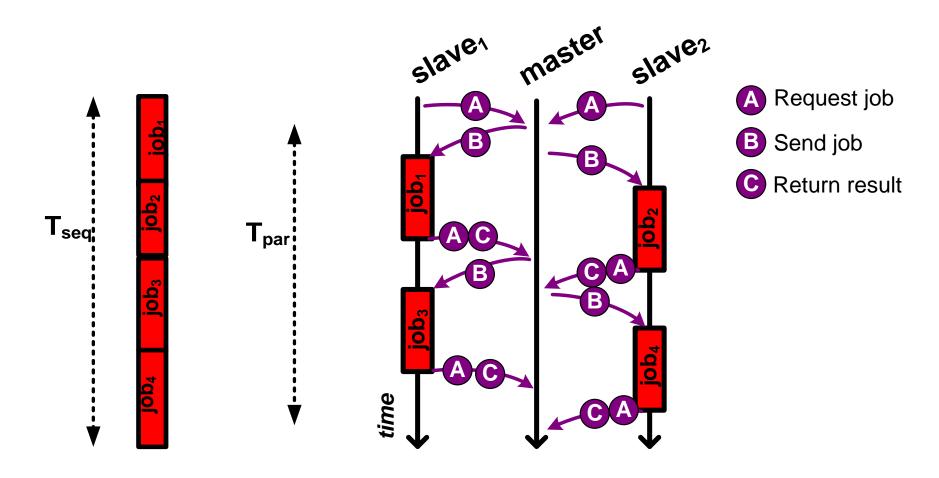
Decoding 1080p video sequence							
Stage	CPU (s)	CUDA (s)					
1 MOTION_DECODE	0.64	0.64	_ /				
2 MOTION_RENDER	16.16	1.33	<−12 ×				
3 RESIDUAL_DECODE	12.00	12.94					
4 WAVELET_TRANSFORM	22.52	1.63	← 14 ×				
5 COMBINE	11.27	0.39	← 29 ×				
6 UPSAMPLE	14.53	0.85	← 17 ×				
Total	77.13	17.76	← 4.3 ×				
		N					
CPU		Time (s) 77.13					
CUDA 17.76		11.10					

Example 3: Job Farming

Set of jobs & cluster of computers = Independent task parallelism

{job1, job2, job3, job4}





Speedup = ± 1.2

Performance of Job Farming?

Overheads? Bottlenecks?

- 1. Communication overhead
 - Impact on speedup ~ T_{seq}/T_{comm} ~ granularity
 - Granularity = computation/communication
 - overlap communication with computation
- 2. Bottleneck at master => idling of slaves
 - use several masters ('tree'-structure)

Scalability

Can we keep efficiency constant while simultaneously increasing W and p?

Table 5.1	Effic	ciency as a	essing elements.					
		п	p = 1	p = 4	p = 8	<i>p</i> = 16	<i>p</i> = 32	
		64	1.0	0.80	0.57	0.33	0.17	
		192	1.0	0.92	0.80	0.60	0.38	
		320	1.0	0.95	0.87	0.71	0.50	
		512	1.0	0.97	0.91	0.80	0.62	

Scalability

Runtime remains constant if efficiency remains constant and increasing p and W at the same rate:

$$T_{par} = \frac{T_{seq}}{speedup} = \frac{\alpha.W}{efficiency(W, p).p}$$
$$= \frac{\alpha}{efficiency(W, p)} \cdot \frac{W}{p} = \text{constant}$$

- Problem doubles? Double processing power! Same time!
- Program is scalable: the ability to maintain efficiency at a fixed value by simultaneously increasing the number of processors and the size of the problem.
- It reflects a parallel system's ability to utilize increasing processing resources effectively.

Iso-efficiency

$$Efficiency = \frac{1}{1 + \frac{T_{ovh}}{T_{seq}}}$$

iso-efficiency curve: When is efficiency constant

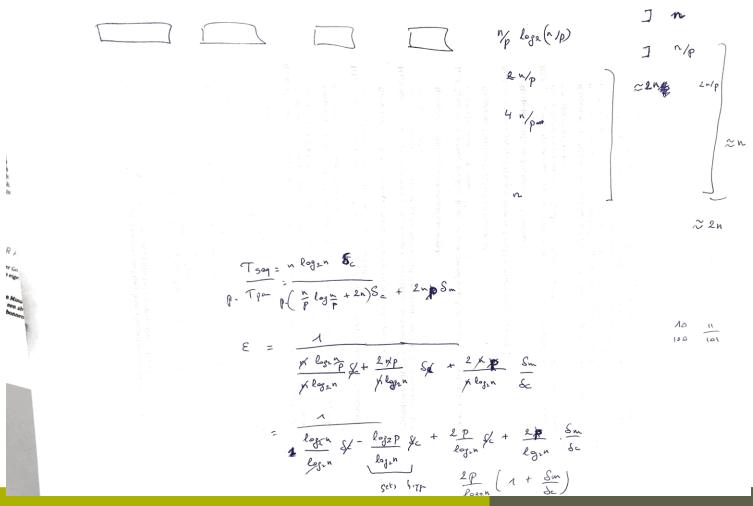
$$\Rightarrow \frac{T_{ovh}(W, p)}{T_{seq}} = \text{constant} = \frac{T_{ovh}(W, p)}{\alpha . W}$$

If sequential runtime~W

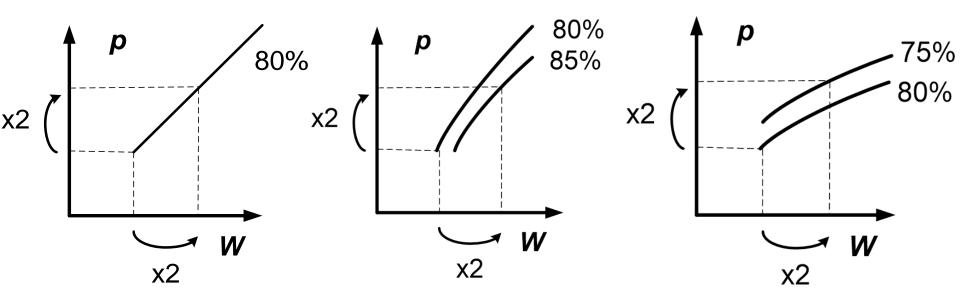
Function tells us how W must increase with an increasing p for maintaining efficiency

- If perfectly scalable (T_{ovh} linear or sub-linear in p):
 - Increase W linearly with increasing p
 - Parallel run time stays the same
 - Workload per processor remains constant (see next slide)
- If fairly/poorly scalable $(T_{ovh} \text{ super-linear in } p)$:
 - Problem size should be increased more than p to keep the efficiency
 - Bigger work load per processor (see next slide)
 - More memory needed!!

scalability of quicksort



Iso-efficiency curves



scalable

highly scalable

poorly scalable

Thanks to Noah Van Es (2016)

See Link

Gustafson's law

• Amdahl's law: pessimistic view

- parallelization is limited
- Amdahl only changes p, keeps W and serial fraction s constant

• **Gustafson**: more optimistic

- the problems we run in parallel will be bigger and have more parallelism: for higher p, higher W
 - > Iso-efficiency curve
- Bigger problems: smaller serial fraction, less overhead

Approach to follow

- I. Generate/draw execution profile
- II. Identify lost cycles
- III. Determine causes of overhead
- IV. Plot performance in function of p and W
- V. Study impact of overheads on speedup
- VI. Study scalability

VII.Determine optimization possibilities