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Performance Metrics

Other metrics we could try to optimize: 

energy consumption, cost, …

We assume sequential version is run 

on the same processor/core as the 

parallel version.
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Matrix Multiplication (MxM) 
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for (i=0; i<n; i++){

for (j=0; j<n; j++){

C[i,j]=0;

for (k=0; k<n; k++){

C[i,j]+=A[i, k]*B[k,j];

}

}

}
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MxM: one-step version

B is sent to all 
processors

Computation in 1 
step

Same amount

of communication 1

2

3
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MxM: Alternate shift-compute version

Algorithm alternates p 
computation and communication 
steps

Computation step: each processor 
multiplies its A submatrix with its 
B submatrix, resulting in a 
submatrix of C. The black circles 
indicate the step in which each 
submatrix is computed.

After multiplication: processor 
sends it B submatrix to next 
processor and receives one from 
the preceding processor. The 
communication forms a circular 
shift operation. 
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Parallel Matrix Multiplication: 
Execution Profile

Speedup=2.55 Efficiency = 85%

On cluster of 3 computers - using MPIThe alternate shift-compute version
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Speedup i.f.o. processors

1) Ideal, linear speedup

2) Increasing, sub-linear 
speedup

3) Speedup with an optimal 
number of processors

4) No speedup

5) Super-linear speedup
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Super-linear speedup

The parallel execution works with data that fits in 
lower-level memory, while this is not the case for 
the sequential execution

The work in parallel is less than that of the 
sequential program, called parallel anomaly.

PPP p. 92
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Speedup i.f.o. problem size
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1) Constant speedup

2) Increasing, asymptotically, 
towards value sublinear
speedup (< p)

3) Increasing towards p

4) Increasing towards super-
linear speedup

W is a problem-specific parameter which is 

related to the amount of computational 

work (most often linearly-related)



Pag.10

Performance Analysis

Performance Analysis

Goals:

Understanding of the computational process in 
terms of resource consumption

Identification of inefficient patterns

Performance prediction

Performance characterization of program and 
system
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Overhead or Lost Cycles

= all cycles with Tpar that are 

not utilized for useful work

i: index of process j: index of overhead type

For all processes:
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Impact of Overhead on Speedup?

We sum overheads of type 

j over all processes i

We consider Tanomaly an 

overhead



Pag.13

Performance Analysis

Speedup & Overhead Ratios

Total overhead (sum of 

per process overhead)!
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Example 1: Execution Profile  of 
Parallel Matrix Multiplication

Speedup=2.55 Efficiency = 85%
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Parallel Matrix Multiplication

Parallel anomaly = 2.6%
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Analysis per process
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If you assume that each process has          work,

We can calculate  the overhead ratio per process:
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Overhead Classification

Control of parallelism: extra functionality 
necessary for parallelization (like partitioning)

Extra computations required

Part of computational phases are not for useful work!

Example of costly control: graph partitioning is NP-complete 

Communication: overhead time not overlapping 
with computation

Idling: processor has to wait for further 
information

Parallel anomaly : useful work differs for 
sequential and parallel execution 

KUMAR p195
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Causes of Idling

Limitations of parallelism
Cf Amdahl’s law

Load imbalances

Waiting for incoming messages, due to
Message latency

Limited bandwidth

Congestion in interconnection network
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Example 2: Parallel Quicksort
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Execution Profile of Parallel Quicksort
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Quicksort’s performance

Speedup growth is limited!

Reason?
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Amdahl’s Law

Limitations of inherent parallelism: a part s
of the algorithm is not parallelizable

PPP p. 80
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Amdahl’s Law
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Amdahl example: video decoding
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Thanks to Wladimir van der Laan, University of Groningen
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Example 3: Job Farming

Set of jobs & cluster of computers

= Independent task parallelism

{job1, job2, job3, job4}
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Performance of Job Farming?

Overheads? Bottlenecks?

1. Communication overhead

Impact on speedup ~ Tseq/Tcomm ~ granularity

Granularity = computation/communication

overlap communication with computation

2. Bottleneck at master => idling of slaves

use several masters (‘tree’-structure)



Pag.

Scalability

Can we keep efficiency constant while
simultaneously increasing W and p?
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Scalability

Runtime remains constant if efficiency remains constant 
and increasing p and W at the same rate:

Problem doubles? Double processing power! Same time!

Program is scalable: the ability to maintain efficiency at a 
fixed value by simultaneously increasing the number of 
processors and the size of the problem.

It reflects a parallel system’s ability to utilize increasing 
processing resources effectively.

PPP p. 95

KUMAR p. 211

Gustafson’s law
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Iso-efficiency
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Function tells us how W must increase with an increasing p for 
maintaining efficiency

• If perfectly scalable (Tovh linear or sub-linear in p):
• Increase W linearly with increasing p
• Parallel run time stays the same 
• Workload per processor remains constant (see next slide)

• If fairly/poorly scalable (Tovh super-linear in p):
• Problem size should be increased more than p to keep the 

efficiency
• Bigger work load per processor (see next slide)

• More memory needed!!

iso-efficiency curve:
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scalability of quicksort
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Iso-efficiency curves
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W

p
80%

x2

x2

scalable highly scalable poorly scalable

Thanks to Noah Van Es (2016)
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Gustafson’s law

▪ Amdahl’s law: pessimistic view

▪ parallelization is limited

▪ Amdahl only changes p, keeps W and serial fraction s
constant

▪ Gustafson: more optimistic

▪ the problems we run in parallel will be bigger and have 
more parallelism: for higher p, higher W

➢ Iso-efficiency curve

▪ Bigger problems: smaller serial fraction, less overhead
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See Link
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I. Generate/draw execution profile

II. Identify lost cycles

III. Determine causes of overhead

IV. Plot performance in function of p and W

V. Study impact of overheads on speedup

VI. Study scalability

VII.Determine optimization possibilities
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Approach to follow


