
Jan Lemeire

Shared Memory 
systems



I. Distributed-Memory 
Architectures 

 Each process got his 
own local memory

 Communication 
through messages

 Process is in control



II. Shared Address-space 
Architectures 

 Example: 
multiprocessors

 PRAM: Paralleled 
Random Access 
Memory

◦ Idealization: No 
communication costs

 But, unavoidability: the 
possibility of race 
conditions



Example: A file server on a 
LAN

◦ It needs to handle 
several file requests 
over a short period 

◦ Hence, it is more 
efficient to create (and 
destroy) a single thread 
for each request 

◦ Multiple threads can 
possibly be executed 
simultaneously on 
different processors 
(mapped by Operating 
System)

P P P

P P P

Scheduled by the 
OS on the available 
processors

Processes versus Threads



Running threads on same core

 Executed one by one

 Context switch
◦ Thread’s state in core: 

instruction fetch buffer, 
return address stack, 
register file, control 
logic/state, …

◦ Supported by hardware

 Takes time!

thread

creation

T1

saving

T1's state

Processor 

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating 

system’s 

scheduler

T2

Context switch 

(overhead)

Coarse-grain multithreading



1. Architecture



Multilevel On-Chip Caches
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Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor



2-Level TLB Organization
Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small 

pages, 7 per thread (2×) for 

large pages

L1 D-TLB: 64 entries for small 

pages, 32 for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU 

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware



3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte 

blocks, 4-way, approx LRU 

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte 

blocks, 8-way, approx LRU 

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, write-

back/allocate, hit time 9 cycles

L2 unified 

cache

(per core)

256KB, 64-byte blocks, 8-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified 

cache 

(shared)

8MB, 64-byte blocks, 16-way, 

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 

replace block shared by fewest 

cores, write-back/allocate, hit 

time 32 cycles

n/a: data not available



Multicores: The following should be 
provided by hardware and/or OS

A. Connect processors to shared memories (the 
interconnect)

B. Address concurrent read/writes

C. Memory consistency: cache coherence 
protocol

D. Mapping of threads to the cores

E. Thread synchronization



 SMP: shared memory multiprocessor
◦ Hardware provides single physical

address space for all processors

◦ Synchronize shared variables using locks

◦ Memory access time
 UMA (uniform) vs. NUMA (nonuniform)

A. Shared Memory
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Typical architectures



Bus-based Interconnects

With local 

memory/cache



Crossbar switches



Symmetric Multiprocessor 
Architectures (SMPs)

 Cf AMD architecture

 Bus is potential bottleneck

Number of SMPs is limited



B. PRAM Architectures

 Handling of simultaneous memory accesses:
◦ Read operation

 Exclusive-read, concurrent-read

◦ Write operation

 Exclusive-write, concurrent-write

 4 implementations: 
◦ EREW: access to a memory location is exclusive

◦ CREW: multiple write accesses are serialized

◦ ERCW

◦ CRCW: most powerful PRAM model



Concurrent Write Access Requires 
Arbitration

 Common: write is allowed if the new values are 

identical

 Arbitrary: an arbitrary processor is allowed to write, 

the rest fails.

 Priority: processor with the highest priority 

succeeds 

 Sum: the sum of the values is written. Any other 

operator can be used.



C. Caching & memory coherence

 Caching: copies are brought closer to processor
◦ By cache lines of 64/128 Bytes

 Cache coherence mechanism: to update copies



Cache Coherence Problem
 Suppose two CPU cores share a physical 

address space
◦ Write-through caches

Time 

step

Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1



Cache Coherence Mechanisms

Update protocol

 Excess in updates if variable is only read once in P1

 False sharing: processes update different parts of 
same cache line

Used nowadays: Invalidate protocols



Cache Coherence Mechanisms

 To keep copies of data in different memory elements 
consistent!
◦ Is not always performed. Best effort.

◦ Or explicit synchronization.

Invalidate protocol



Cache Coherence Protocols

= Operations performed by caches in multiprocessors 
to ensure coherence (Hardware!!)

 Snooping protocols
◦ If a cache line has been changed: a notification is put on the 

snoop bus

◦ All caches monitor the snoop bus.

 If a cache line they own is changed by another cache

 cache line is invalidated or update

• The first cache that can put notification on the snoop bus 
gets the ownership of the cache line

 Directory-based protocols
◦ Caches and memory record sharing status of blocks in a 

directory



Invalidating Snooping Protocols

 Cache gets exclusive access to a block when 
it is to be written
◦ Broadcasts an invalidate message on the bus
◦ Subsequent read in another cache misses

 Owning cache supplies updated value

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1



Memory Consistency

 When are writes seen by other processors?
◦ “Seen” means a read returns the written value
◦ Can’t be instantaneously

 Assumptions
◦ A write completes only when all processors have 

seen it
◦ A processor does not reorder writes with other 

accesses

 Consequence
◦ P writes X then writes Y
 all processors that see new Y also see new X

◦ Processors can reorder reads, but not writes



 Example

 Order is preserved: U can be 0, 1 or 3, but 
will never be 2.

Memory Consistency



MESI-protocol

State Cacheline
Valid?

Valid in 
memory?

Copy in other 
cache?

Write access

Modified Yes No No Cache

Exclusive Yes Yes No Cache

Shared Yes Yes Possible Cache/Memo
ry

Invalid No Unknown Possible Memory

Complex, but effective protocol

Used by Intel

AMD adds an ‘owned’ state => MOESI-protocol

Possible states of a cache line:



False sharing

 2 processors do not share data but share a cache line 

◦ each processor has some data in the same cache line

◦ cache line is kept coherent, unnecessarily…

RAM

Level 2 

cache

core core core core

Level 1 

cache

Cache line = 6x8 bytes

Cache line = 3x8 bytes



 Static mapping: 
◦ A thread is dedicated to a specific core on which it is 

executed until it finishes.

◦ Disadvantage: the number of active threads is limited to the 
number of cores x number of hardware threads

 Dynamic mapping: 
◦ A scheduler dynamically assigns threads to the available 

cores. Each core gets 1 thread (more if hardware threads) at 
a time. The scheduler can interrupt the thread and replace 
it with another one. Processor switches between threads.

◦ The scheduler is part of the OS.

◦ Note that the same happens with the active processes on 
the system.

D. Mapping of threads on cores.



Software versus hardware threads

 Software threads
◦ Processor can only execute one program at the same 

time

◦ Overhead! Due to context switch (saving/restoring of 
processor state)

 Hardware threads
◦ Processor can execute several programs 

simultaneously: instructions of different threads go 
through pipeline

◦ No overhead!

◦ Intel CPUs: Hyperthreading



Hardware threads

 Software threads: scheduling and context switching is 
performed by Operating System

◦ Has a cost (overhead).

 Hardware thread: 

◦ Scheduling and context switching done by hardware.

◦ Separate registers & logic for each thread.

◦ Context switching is cheap.

◦ Each hardware thread appears as a logical processor 
core to the OS!

 In INTEL processors: Hyperthreading

 In GPUs: 1000s of hardware threads running 
simultaneously without overhead!



Multi-Threading (MT) possibilities

33

Context switch

Simultaneous MultiThreading

Fine-grained parallelism: see chapter on GPUs



 For efficiency, OS and hardware should 
organize this

 See next part

E. Thread Synchronization



2. Multicore usage

TOT HIER 5/10/2020



 Sum 1000000 numbers with 8 processors
◦ Each processor has ID: 0 ≤ Pi ≤ 8

◦ Array sum with 8 elements
◦ Partition 125000 numbers per processor
◦ Initial local summation on each processor:

sum[Pi] = 0;
for (i = 125000*Pi;i < 125000*(Pn+1); i++)

sum[Pi] += A[i];

 Now need to add these partial sums
◦ Reduction: divide and conquer
◦ Half the processors add pairs, then quarter, …
◦ Need to synchronize between reduction steps

Example: Sum Reduction



half = 8;

repeat {

barrier_synchronization(); 

half = half/2; /* dividing line on who sums */

if (Pi < half) 

sum[Pi] = sum[Pi] + sum[Pi+half];

} until (half == 1);

Example: Sum Reduction



 Fork & join

Multi-threading primitives



 A thread is basically a lightweight
process 

 A process : unit of resource 
ownership 

◦ a virtual address space to hold the 
process image 

◦ control of some resources (files, I/O 
devices...) 

 A thread is an execution path

◦ Has access to the memory address 
space and resources of its process. 
Shares it with other threads.

◦ Has its own function call stack.

Thread creation

main(){

thread.start();

...

...

...

...

...

}

run(){

...

...

...

}

Setup

Tear down

Process Thread

main 

thread



 One thread per C-element

 Concurrent read must be possible

No synchronization necessary

Too many threads

= a lot of overhead

Example: Matrix Multiplication

A11 A12 A13 ..  .. A1n 

A21 A22 ..       ..  A2n

...

Ai1 Ai2 Ai3 ..    .. Ain

...

...

...

An1 An2 An3 ..  .. Ann

B11 B12 .. B1j ..  .. B1n 

B21 B22 .. B2j     ..  B2n

...

...

...

...

...

Bn1 Bn2 .. Bnj  .. Bnn

Cij

 

 

A

B

C

for (r = 0; r < n; r++) 
for (c = 0;c < n; c++) 

c[r][c] = create_thread(dot_product(
get_row(a, r),get_col(b, c))); 

In this case, one may think of the thread as an instance of a 

function that returns before the function has finished executing. 



 Software Portability
◦ run on serial and parallel machines

 Latency Hiding
◦ While one thread has to wait, others can utilize CPU

◦ For example: file reading, message reading, reading data from 
higher-level memory

 Scheduling and Load Balancing
◦ Large number of concurrent tasks

◦ System-level dynamic mapping to processors

 Ease of Programming
◦ Easier to write than message-passing programs (at first sight)

Why Threads?



Latency Hiding

Faster CPU
More 
threads

4 cores: x4
Latency hiding: x3
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Multi-threading without speedup

 Webserver: a thread for each client

◦ Multi-threading for convenience
◦ = distributed computing, not parallel computing

 But: one can loose performance!

◦ 4 requests, each request takes 10 seconds to finish. 
◦ A single thread: user #1 has to wait 10 seconds, user 

#2 will wait 20 seconds, user #3 will wait 30 seconds 
and user #4 will wait 40 seconds. 

Average waiting time = 25 seconds

◦ Four threads are activated: they must split the 
available processor time. Each thread will take four 
times as long. So, each request will complete at about 
40 seconds.

Waiting time = 40 seconds (+37.5%!) 

LINK 9



x is initially set to 1

One thread: x = 10; print(x);

Second thread: x = 5; print(x);

Both threads are started at the same time

What is the output?

Example why synchronization is 
necessary.



 When 2 threads run 
simultaneously, we cannot 
determine which one is 
first or which one is 
faster…

Race condition 
“a flaw in an electronic system or 
process whereby the output and/or 
result of the process is unexpectedly 
and critically dependent on the sequence 
or timing of other events.”

The term originates with the idea of two 
signals racing each other to influence 
the output first.

Indeterminism

Synchronization necessary



 When multiple threads attempt to manipulate the 
same data item, the results can often be incoherent 
if proper care is not taken to synchronize them. 

 Example: 
/* each thread tries to update variable best_cost */ 

if (my_cost < best_cost) 

best_cost = my_cost; 

◦ Assume that there are two threads, the initial value of best_cost is 
100, and the values of my_cost are 50 and 75 at threads t1 and 
t2. 

◦ Depending on the schedule of the threads, the value of best_cost
could be 50 or 75! 

◦ The value 75 does not correspond to any serialization of the 
threads. 

Synchronization of Critical Sections

critical section



Synchronization OK

47

my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost; 

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost < 
best_cost) 

best_cost = my_cost; 

OK

best_cost = 50

shared variable

best_cost = 75



Synchronization OK
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my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost; 

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost < 
best_cost) 

best_cost = my_cost; 

OK

best_cost = 50

shared variable

best_cost = 50



Synchronization problem!!
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my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost; 

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost < best_cost) 

best_cost = my_cost; 

Happens when the if-then of thread 2 happens 

in between the if and then of thread 1

best_cost = 75

shared variable

best_cost = 50

NOK



Solution: locking of critical sections

50

Thread 1 Thread 2best_cost = 100
pthread_mutex_t lock;

best_cost = 75

shared variables

best_cost = 50

OK

my_cost = 75;

pthread_mutex_lock(&lock)

if (my_cost < best_cost)

best_cost = my_cost;

pthread_mutex_unlock(&lock)

my_cost = 50;

pthread_mutex_lock(&lock)

if (my_cost < best_cost) 

best_cost = my_cost; 

pthread_mutex_unlock(&lock)

The mutex (mutual exclusion) lock overcomes that 2 threads can 

simultaneously execute the same critical section, thread 2 is 

blocked until thread 1 releases the lock.



Multithreaded Counting 3s (C++)
parameters: array arr of size n, NBR_THREADS

void count_function(int threadID, int n, int* arr, int* count) {
for (int i = 0; i < n; ++i)

if (arr[i] == 3)
(*count)++;

}
this program is still faulty

we will solve it in the exercises

vector<thread*> threads; // vector of pointers to threads
int ELEMENTS_PER_THREAD = n / NBR_THREADS, count = 0;

// *** STARTING THE THREADS
for (int t = 0; t < NBR_THREADS; t++)

// pass the function to be executed and all the necessary parameters
threads.push_back(new thread(count_function, t, 

ELEMENTS_PER_THREAD, arr + t * ELEMENTS_PER_THREAD, &count)); 

// *** waiting for all threads to finish
for (int t = 0; t < threads.size(); t++) {

threads[t]->join();
delete threads[t];

}



Counting 3s: experiments

Counting 3s in an array of 1000 elements and 4 threads:

* Seq : counted 100 3s in 234us

* Par 1: counted 100 3s in 3ms 615us

Counting 3s in an array of 40000000 elements and 4 threads:

* Seq : counted 4000894 3s in 147ms

* Par 1: counted 3371515 3s in 109ms

On a dual core processor

this program is faulty: 

parallel result is not the same



Updating the same variable by 
different threads

Without synchronization, the data is not immediately updated and you 

might miss some values. The counter increment is called a critical 

section.

Java Solution (synchronized method): 

synchronized void addOne(){ 

count++; 

}

Example: threads are counting something and increment a common 

counter



 Problems:
What if access_x is 
accessed at the same 
time?

Thread consumes CPU 
time while waiting

Hardware & Operating 
System support needed!

A naïve critical section solution

boolean access_x=true;

while (!access_x)

; 

access_x=false;

if (my_cost < best_cost) 

best_cost = my_cost; 

access_x=true;

Ps. There is a 100% software solution for this: Peterson Algorithm 
(but not efficient)



= optimized naïve version

Mutex  Lock Implementation

boolean access_x=true;

while (!access_x)

; 

access_x=false;

if (my_cost < best_cost) 

best_cost = my_cost; 

access_x=true;

Shared variable & initialization

Locking the lock:
- as an atomic operation
- only 1 thread can acquire it
- context switch if loop takes 

a long time

Unlocking and activating 
threads waiting at the lock



Critical sections trigger cache 
coherence

 System will not perform cache coherence all the time
◦ Too costly

 Critical sections indicate shared data
◦ Cache coherence is ensured when threads access critical section
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Producers-Consumers Scenario

Producer

Threads

...

Produce thing

Put in buffer

...

Consumer

Threads

...

Get from buffer

Consume thing

...

...

Produce thing

If buffer=full

   wait

Put in buffer

Signal non-

emptiness

...

…

If buffer=empty

  wait

Get from buffer

Consume thing

Signal non-

fullness

...

1. Thread synchronization



Multi-threading primitives

Should minimally allow the following:

1. Thread creation

2. Locking of critical sections

3. Thread synchronization

With primitives we mean the minimal set of mechanisms (e.g.
functions or language constructs) you need to write any multi-
threaded program.



Pthreads (C, C++, …) & Java

PThreads Java

How? library Built-in language
Encapsulation:
object manages 
thread-safety

Thread creation pthread_create
function

Thread class
Runnable interface

Critical sections Locks Synchronized 
methods

Thread 
synchronization

Condition variables Wait & notify
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Intermezzo: the 
Operating System



 OS is also a software process

 Context switch necessary to activate it
◦ It is not a ‘big brother’ overseeing what’s 

happening in the processor

◦ Takes time! Has to be minimized 



3. POSIX Threads
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The POSIX Thread API 

 Commonly referred to as Pthreads, POSIX has emerged 
as the standard threads API (1995), supported by most 
vendors. 

 The concepts discussed here are largely independent of 
the API and can be used for programming with other 
thread APIs (NT threads, Solaris threads, Java threads, 
etc.) as well. 

KUMAR Chapter 7

PPP Chapter 6
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pthreads: Creation and Termination 

#include <pthread.h> 

int pthread_create (pthread_t *thread_handle, const 
pthread_attr_t *attribute, void * (*thread_function)(void *), 
void *arg);

int pthread_join ( pthread_t thread, void **ptr);

 The function pthread_create invokes function 
thread_function as a thread.

 The function pthread_join waits for the thread to be 
finished and the value passed to pthread_exit (by the 
terminating thread) is returned in the location pointer 
**ptr.
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Counting 3s Example
#include <pthread.h> 

#define NBR_THREADS 16 

void count_function(int threadID, int n, int* arr, int* count);

int counting3s(int* totalArray, int arraySize) { 

int count = 0; 

int ELEMENTS_PER_THREAD = arraySize / NBR_THREADS, 

pthread_t p_threads[NBR_THREADS]; 

for (i=0; i< NBR_THREADS; i++) { 

pthread_create(&p_threads[i], NULL, count_function, i, 
ELEMENTS_PER_THREAD, totalArray + i * ELEMENTS_PER_THREAD, &count); 

} 

for (i=0; i< NBR_THREADS; i++) { 

pthread_join(p_threads[i], NULL); 

}

return count;

} 

KUMAR
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Mutual Exclusion 

 The code in the previous example corresponds to a 
critical segment or critical section; i.e., a segment that 
must be executed by only one thread at any time. 

 Critical segments in Pthreads are implemented using 
mutex locks. 

 Mutex-locks have two states: locked and unlocked. At any 
point of time, only one thread can lock a mutex lock. A 
lock is an atomic operation. 

 A thread entering a critical segment first tries to get a 
lock. It goes ahead when the lock is granted. Otherwise it 
is blocked until the lock relinquished.
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Mutual Exclusion 

 The pthreads API provides the following 
functions for handling mutex-locks: 
◦ int pthread_mutex_init ( pthread_mutex_t *mutex_lock,  
const pthread_mutexattr_t *lock_attr);

◦ int pthread_mutex_lock ( pthread_mutex_t *mutex_lock); 

◦ int pthread_mutex_unlock (pthread_mutex_t *mutex_lock); 
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Lock critical sections

 We can now write our previously incorrect code segment as: 
pthread_mutex_t costLock; 

... 

main() { 

.... 

pthread_mutex_init(&costLock, NULL); 

.... 

} 

void *find_min() { 

.... 

pthread_mutex_lock(&costLock); 

if (my_cost < best_cost) 

best_cost = my_cost; 

pthread_mutex_unlock(&costLock); /* and unlock the mutex */ 

}
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Disadvantages lock
 Deadlock possible, see later

 Performance degradation
◦ Due to locking overhead

◦ Due to idling of locked threads (if no other thread is there to 
consume available processing time)

Alleviate locking overheads

 Minimize size of critical sections
◦ Encapsulating large segments of the program within locks can 

lead to significant performance degradation. 

◦ create_task() and process_task() are left outside 
critical section!
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Alleviate locking overheads

 Test a lock:

◦ int pthread_mutex_trylock (pthread_mutex_t
*mutex_lock);

◦ Returns 0 if locking was successful, EBUSY when 
already locked by another thread.

 pthread_mutex_trylock is typically much faster than 
pthread_mutex_lock since it does not have to deal with 
queues associated with locks for multiple threads waiting 
on the lock. 

 Example: write result to global data if lock can be 
acquired, otherwise temporarily store locally

KUMAR: ‘Finding matches in a list’
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Condition Variables for Synchronization

 A condition variable allows a thread to block itself until specified data 
reaches a predefined state. 

 A condition variable is associated with this predicate. When the 
predicate becomes true, the condition variable is used to signal one 
or more threads waiting on the condition. 

 A single condition variable may be associated with more than one 
predicate. 

 A condition variable always has a mutex associated with it. A thread 
locks this mutex and tests the predicate defined on the shared 
variable. 

 If the predicate is not true, the thread waits on the condition variable 
associated with the predicate using the function 
pthread_cond_wait.
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Synchronization in Pthreads

 Pthreads provides the following functions for 

condition variables:
int pthread_cond_init(pthread_cond_t *cond, 

const pthread_condattr_t *attr); 

int pthread_cond_wait(pthread_cond_t *cond, 

pthread_mutex_t *mutex); 

int pthread_cond_signal(pthread_cond_t *cond); 

int pthread_cond_broadcast(pthread_cond_t *cond); 

int pthread_cond_destroy(pthread_cond_t *cond);
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Producer-consumer work queues

 The producer threads create tasks and inserts 
them into a work queue.

 The consumer threads pick up tasks from the 
queue and executes them.

 Synchronization!



75

Producer-Consumer Using Locks 

 The producer-consumer scenario imposes the following 
constraints: 

 The producer thread must not overwrite the shared buffer 
when the previous task has not been picked up by a 
consumer thread. 

 The consumer threads must not pick up tasks until there 
is something present in the shared data structure. 

 Individual consumer threads should pick up tasks one at a 
time.



PPP 170

(get-put)==1

Small mistake in PPP on page 170

Thanks to Xuyang Feng, 2014



1. The condition and cond_wait form a critical section (lines 
10-14 & lines 26-29)

while (bufferIsFull()){

pthread_cond_wait(&nonfull, &lock);

}

 The update of the buffer and change of pointer are also a 
critical section (lines 16-17 & lines 30-31)

 When the thread goes into a wait, the lock that it has at that 
moment will be released by the cond_wait

 When the waiting thread is activated again, it acquires the 
lock again (after the notifying thread has released it).

Why always a lock with condition variables?

if consumer refills buffer here, 

producer is waiting in vain
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Controlling Thread and Synchronization 
Attributes 

 The Pthreads API allows a programmer to change the 
default properties of entities (thread, mutex, condition 
variable) using attributes objects. 

 An attributes object is a data-structure that describes 
entity properties. 

 Once these properties are set, the attributes object can 
be passed to the method initializing the entity. 

 Enhances modularity, readability, and ease of 
modification. 
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Attributes Objects for Threads 

 Use pthread_attr_init to create an attributes object. 

 Individual properties associated with the attributes 
object can be changed using the following functions: 

pthread_attr_setdetachstate, 

pthread_attr_setguardsize_np, 

pthread_attr_setstacksize, 

pthread_attr_setinheritsched,

pthread_attr_setschedpolicy,

pthread_attr_setschedparam
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Threads locks multiple times

pthread_mutex_lock(&lock1); 

...

pthread_mutex_lock(&lock1); 

...

pthread_mutex_unlock(&lock1); 

...

pthread_mutex_unlock(&lock1);

E.g. happens when in 
one critical section 
we call code with also 
a critical section 
protected by the 
same lock

What will happen?  
➢ depends on type of lock
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Types of Mutexes 
 Pthreads supports three types of mutexes - normal, recursive, and 

error-check. 

◦ A normal mutex deadlocks if a thread that already has a lock 
tries a second lock on it. This is the default. 

◦ A recursive mutex allows a single thread to lock a mutex as 
many times as it wants. It simply increments a count on the 
number of locks. A lock is relinquished by a thread when the 
count becomes zero. 

◦ An error check mutex reports an error when a thread with a 
lock tries to lock it again (as opposed to deadlocking in the 
first case, or granting the lock, as in the second case).

 The type of the mutex can be set in the attributes object before it is 
passed at time of initialization.
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Attributes Objects for Mutexes 
 Initialize the attrributes object using function: 

pthread_mutexattr_init. 
 The function pthread_mutexattr_settype_np can be 

used for setting the type of mutex specified by the 
mutex attributes object. 
pthread_mutexattr_settype_np ( 
pthread_mutexattr_t *attr, 
int type);

 Here, type specifies the type of the mutex and can take 
one of: 
◦ PTHREAD_MUTEX_NORMAL_NP 
◦ PTHREAD_MUTEX_RECURSIVE_NP 
◦ PTHREAD_MUTEX_ERRORCHECK_NP
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Thread Cancellation

int pthread_cancel(pthread_t *thread); 

 Terminates another thread

 Can be dangerous
◦ In java: deprecated suspend() method. Use of it is discouraged.

◦ But sometimes useful, e.g. as long as the user is staying at a certain 
view in your application, you calculate extra information, as soon as he 
leaves the view, you stop the calculation.

 A thread can protect itself against cancellation

 pthread_exit: exit thread (yourself) without exiting the 
process

Pthread_cond_timedwait



4. C++ 11 
Multithreading



 See links on website: practica -> documentation
◦ The 3 primitives

◦ Three Different ways to Create Threads

◦ How to pass arguments to threads

◦ How to return a value from the thread function:

 Pass a result variable by reference 

 or make it a attribute of your function object

 More advanced solutions

 Advanced concepts: see book PPCP

C++11 = pThreads made easier

PPCP chapter 4 & 5

https://thispointer.com/c-11-multithreading-part-1-three-different-ways-to-create-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://stackoverflow.com/questions/7686939/c-simple-return-value-from-stdthread


while (!stop_waiting()) {

cv.wait(lock);

}

 Can be written as:

cv.wait(lock, []{ return stop_waiting(); });

 Second argument is a predicate function, written as a lambda 
function

 Still another thread has to wake up the waiting thread (is not 
automatically as soon as the predicate has become true).

Condition Variables



= objects that provide the thread-safety and thread-
synchronization internally.

 You don’t have to worry about locking etc

 Example: 
◦ atomic<int> ctr=0;

◦ Ctr is an integer on which all operations happen atomically.

◦ E.g. ctr++; will ensure the read-increment-write critical
section happens within a locked section.

 For basic types it is faster than using mutexes!

 For big types, mutexes are used.

C++11 Atomic Objects



5. Thread Safety



Adaptable range-object
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int lower, upper; // shared variables

public void setLower(int value) { 
if (value > upper) 

throw new IllegalArgumentException(...);
lower = value;

}
public void setUpper(int value) { 

if (value < lower) 
throw new IllegalArgumentException(...);

upper = value;
}

 Object specifies a range with a lower and upper 
attribute. 

◦ Invariant (should always be true): lower <= upper

◦ If multiple threads can modify lower or upper, make 
thread-safe! Check the invariant.

Still a critical section present!

We solve this in the exercises



Thread-safe?

pthread_mutex_lock(&lock); 
while (apples==0) 

pthread_cond_wait(&more_apples, &lock);
while (oranges==0) 

pthread_cond_wait(&more_oranges, 
&lock);
// eat apple & orange
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock); 
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples, &lock);
pthread_cond_wait(&more_oranges, 

&lock);
}
// eat apple & orange
pthread_mutex_unlock(&lock);

NOK!!

Still NOK!

PPP 173-174

Mistake in PPP on page 173!!



Thread-safe!

pthread_mutex_lock(&lock); 
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples_or_more
oranges, &lock);
}
// eat apple & orange
pthread_mutex_unlock(&lock);

OK

PPP 173-174

OK

pthread_mutex_lock(&lock); 
boolean allConditionsPassed;
do {

allConditionsPassed = true;
if (apples == 0){

pthread_cond_wait(&more_apples, &lock);
allConditionsPassed = false; }

if (oranges == 0){
pthread_cond_wait(&more_oranges, &lock);
allConditionsPassed = false; }

} while (!allConditionsPassed);
// eat apple & orange
pthread_mutex_unlock(&lock);

Mistake in PPP on page 173!!

By the boolean, you can easily add

more conditions. Also OK, no boolean: 

} while(apples == 0 || oranges == 0) 

Only 1 cond variable
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The Dining Philosophers
LINK 8

Thinking

Hungry Eating

The philosophers are not 
allowed to speak and there 
is no arbiter organizing the 
resources

strategy (protocol)?
might deadlock or 

livelock…

LES 3 TOT HIER



Deadlocks
 Four conditions

1. Mutual exclusion

2. Hold and wait: threads hold some resources and 
request other

3. No preemption: resource can only be released by the 
thread that holds it

4. Circular wait: cycle in waiting of a thread for a 
resource of another

PPP 177



Livelocks

 Similar to a deadlock, except that the states of the 
processes involved in the livelock constantly change with 
regard to one another, none progressing.

 Real-world example: two people meet in a narrow 
corridor, each moves aside to let the other pass, but they 
end up swaying from side to side

 A risk with algorithms that detect and recover from 
deadlock.
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6. OpenMP and related
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OpenMP Philosophy

 The OpenMP Application Program Interface (API) 
supports multi-platform shared-memory parallel 
programming in C/C++ and Fortran. 

 Portable, scalable model with a simple and flexible 
interface for developing parallel applications 

 Augment sequential programs in minor ways to identify 
code that can be executed in parallel.
◦ Simpler to use

◦ More restrictive in terms of parallel interactions than Java/POSIX

 Standardized (Sun, Intel, Fujitsu, IBM, …)

 http://www.openmp.org

PPCP 167

PPP 207
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How?

 Add pragmas to program

◦ #pragma omp <specifications>
◦ The #pragma directives offer a way for each 

compiler to offer machine- and operating system-
specific features. If the compiler finds a pragma it 
does not recognize, it issues a warning, but 
compilation continues.

 An OpenMP-compliant compiler will generate 
appropriate multithreaded code
◦ Other compilers simply ignore the pragmas and 

generate sequential code.

PPP 208PPCP 167



 Default number of threads: number of logical
cores

 Overwrite with

#pragma omp parallel num_threads(8)

OpenMP Hello World
PPCP 168

#pragma omp parallel 
{

int i = omp_get_thread_num();
int n = omp_get_num_threads();
cout << "Hello world from thread " << i << " of " 

<< n << " threads " << endl;
}



 Embarrasingly parallel: all iterations should be independent

◦ you have to guarantee that there are no race conditions!

◦ Number of loops remains constant

◦ Other constraints: see PCPP p. 170

 OpenMP executes this multi-threaded

 Note:

#pragma omp parallel for

◦ Stands for

#pragma omp parallel

{

#pragma omp for

for(…){ … }

}

OpenMP parallel for
PPCP 169-171

#pragma omp parallel for
for (int i = 0; i < n; i++)

z[i] = x[i] + y[i];

You can add more for-loops here

See PCPP 172-173
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OpenMP reduction

 Reduction pragma for computations that 
combine variables globally

◦ Reduction operators: +,-,*, max,min, bitwise and 
logical operations

◦ Counting 3s:

#pragma omp parallel for reduction(+,count)
for(i=0; i<length; i++)
count += array[i]==3 ? 1 : 0;

PPCP 185

PPP 210

accum =0;
#pragma omp parallel for reduction(+,accum)
for(i=0; i<length; i++)
accum += array[i];

PPP 210
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Shared vs private variables

 OpenMP should decide whether variables 
have to be shared between threads 
(possibility of race conditions!) or can be
considered local to the thread

 Shared = default
◦ You can emphasize this with shared(…)

 Indicate local variables with private(…)

◦ See example of counting 3s on next slide

PPCP 173-176
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Count 3s example with parallel for
PPP 209
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Handling data dependencies

#pragma omp critical

{

count += count_p;

}

#pragma omp atomic

score += 3

Memory update is 
noninterruptible

Critical section that 
will be protected by 
locks
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Sections to express task parallelism

#pragma omp sections
{

#pragma omp section
{

Task_A();
}
#pragma omp section
{

Task_B();
}
#pragma omp section
{

Task_C();
}

}

PPCP 209



Parallel hint

 Give hints to the auto-parallelizer

 https://docs.microsoft.com/en-us/cpp/parallel/auto-
parallelization-and-auto-
vectorization?redirectedfrom=MSDN&view=vs-2019
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Matlab: parallel for

 Parallel computing toolbox provides simple constructs 
to allow parallel execution

◦ Parallel for (when iterations are independent)

◦ …

 Automatic parallel execution

 Create pool of computers that will work together

 Many functions of libraries run in parallel and even 
(automatically) on GPU!
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• Java Part 1 
https://blogs.oracle.com/javamagazine/post/java-thread-
synchronization-raceconditions-locks-conditions

• Java Part 2: 
https://blogs.oracle.com/javamagazine/post/java-thread-
synchronization-synchronized-blocks-adhoc-locks

• https://onlinedisassembler.com/odaweb/

• https://defuse.ca/online-x86-assembler.htm#disassembly2

• Synchronization in Java, Part 3: Atomic operations and 
deadlocks: 
https://blogs.oracle.com/javamagazine/post/java-thread-
synchronization-volatile-final-atomic-deadlocks

References

https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-raceconditions-locks-conditions
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-raceconditions-locks-conditions
https://onlinedisassembler.com/odaweb/
https://defuse.ca/online-x86-assembler.htm#disassembly2
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-volatile-final-atomic-deadlocks
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-volatile-final-atomic-deadlocks


7. Mutex implementation



A bit of history: Semaphores

 One of the first concepts for critical sections & thread 
synchronization.

 Invented by Dutch computer scientist Edsger Dijkstra.

 found widespread use in a variety of operating systems as basic 
primitive for avoiding race conditions.

 Based on a protected variable for controlling access by multiple 
processes to a common resource

 By atomic operations you can decrement or increment semaphores

 binary (flag) or integer (counting)

◦ When binary: similar to mutexes

◦ When integer: The value of the semaphore S is the number of units of the 
resource that have not been claimed.

1930 – 2002

http://en.wikipedia.org/wiki/Binary_numeral_system


Two threads want to change the same data at exactly 
the same time. 

 Cache line is changed

 Thread that is first in putting the ‘invalidate’ on the 
snoop bus
◦ The bus arbitration module decides on control over the bus

 Other thread tries but notices it is too late, so the 
change fails

Thus: we try and test whether success

Who can change the shared data?



How a mutex  lock should work

boolean access_x=true;

while (!access_x)

; 

access_x=false;

// Critical section

...

access_x=true;

Should happen as an atomic 
operation



Synchronization in MIPS 

 Load linked: ll rt, offset(rs)
◦ rs: address

 Store conditional: sc rt, offset(rs)
◦ Tries to write value rt to address rs
◦ Succeeds if location not changed since the ll

 Returns 1 in rt (side-effect: rt = flag to indicate success)

◦ Fails if location is changed
 Returns 0 in rt

 Implemented in hardware with a bit called LLbit, 
which is set to zero if value at location has changed
◦ After a store conditional, the LLbit will be set to 0 at the 

other locations (cache copies) using the same rs
 => their sc will fail

 This is managed by the cache coherence system

See https://www.cs.auckland.ac.nz/courses/

compsci313s2c/resources/MIPSLLSC.pdf



TestAndSet
argumenten: $a0 (lock variabele) en $a1 (waarde) 
teruggeefwaarde: register $v0

try: add $t0,$zero,$a1 ;copy set-value
ll $t1,0($a0)    ;load linked
sc $t0,0($a0)    ;store conditional
beq $t0,$zero,try ;branch store fails
add $v0,$zero,$t1 ;put loaded value in $v0

Test-and-set with LL and SC

Computerarchitectuur



Computerarchitectuur

Test-and-set with LL and SC



 Hardware: 
◦ test-and-set

◦ memory fence

 Waiting for lock: 
◦ Spinning for short locks

◦ Switching for long locks

 Eg: when inactive thread has to release the lock!

◦ In practice: spinning with timer interrupt to
suspend thread

◦ Operating system ensures switching

 Smart thread scheduling

Mutex implementation



 Mutex: hardware + OS

 Inactivation and reactivation of threads: OS

Condition variable implementation
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