
Jan Lemeire

Shared Memory
systems

I. Distributed-Memory
Architectures

 Each process got his
own local memory

 Communication
through messages

 Process is in control

II. Shared Address-space
Architectures

 Example:
multiprocessors

 PRAM: Paralleled
Random Access
Memory

◦ Idealization: No
communication costs

 But, unavoidability: the
possibility of race
conditions

Example: A file server on a
LAN

◦ It needs to handle
several file requests
over a short period

◦ Hence, it is more
efficient to create (and
destroy) a single thread
for each request

◦ Multiple threads can
possibly be executed
simultaneously on
different processors
(mapped by Operating
System)

P P P

P P P

Scheduled by the
OS on the available
processors

Processes versus Threads

Running threads on same core

 Executed one by one

 Context switch
◦ Thread’s state in core:

instruction fetch buffer,
return address stack,
register file, control
logic/state, …

◦ Supported by hardware

 Takes time!

thread

creation

T1

saving

T1's state

Processor

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating

system’s

scheduler

T2

Context switch

(overhead)

Coarse-grain multithreading

1. Architecture

Multilevel On-Chip Caches

§
5
.1

0
 R

e
a
l S

tu
ff: T

h
e
 A

M
D

 O
p
te

ro
n
 X

4
 a

n
d
 In

te
l N

e
h
a
le

m

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

2-Level TLB Organization
Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small

pages, 7 per thread (2×) for

large pages

L1 D-TLB: 64 entries for small

pages, 32 for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware

3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte

blocks, 4-way, approx LRU

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte

blocks, 8-way, approx LRU

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte

blocks, 2-way, LRU

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte

blocks, 2-way, LRU

replacement, write-

back/allocate, hit time 9 cycles

L2 unified

cache

(per core)

256KB, 64-byte blocks, 8-way,

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified

cache

(shared)

8MB, 64-byte blocks, 16-way,

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,

replace block shared by fewest

cores, write-back/allocate, hit

time 32 cycles

n/a: data not available

Multicores: The following should be
provided by hardware and/or OS

A. Connect processors to shared memories (the
interconnect)

B. Address concurrent read/writes

C. Memory consistency: cache coherence
protocol

D. Mapping of threads to the cores

E. Thread synchronization

 SMP: shared memory multiprocessor
◦ Hardware provides single physical

address space for all processors

◦ Synchronize shared variables using locks

◦ Memory access time
 UMA (uniform) vs. NUMA (nonuniform)

A. Shared Memory

§
7
.3

 S
h
a
re

d
 M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Typical architectures

Bus-based Interconnects

With local

memory/cache

Crossbar switches

Symmetric Multiprocessor
Architectures (SMPs)

 Cf AMD architecture

 Bus is potential bottleneck

Number of SMPs is limited

B. PRAM Architectures

 Handling of simultaneous memory accesses:
◦ Read operation

 Exclusive-read, concurrent-read

◦ Write operation

 Exclusive-write, concurrent-write

 4 implementations:
◦ EREW: access to a memory location is exclusive

◦ CREW: multiple write accesses are serialized

◦ ERCW

◦ CRCW: most powerful PRAM model

Concurrent Write Access Requires
Arbitration

 Common: write is allowed if the new values are

identical

 Arbitrary: an arbitrary processor is allowed to write,

the rest fails.

 Priority: processor with the highest priority

succeeds

 Sum: the sum of the values is written. Any other

operator can be used.

C. Caching & memory coherence

 Caching: copies are brought closer to processor
◦ By cache lines of 64/128 Bytes

 Cache coherence mechanism: to update copies

Cache Coherence Problem
 Suppose two CPU cores share a physical

address space
◦ Write-through caches

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Cache Coherence Mechanisms

Update protocol

 Excess in updates if variable is only read once in P1

 False sharing: processes update different parts of
same cache line

Used nowadays: Invalidate protocols

Cache Coherence Mechanisms

 To keep copies of data in different memory elements
consistent!
◦ Is not always performed. Best effort.

◦ Or explicit synchronization.

Invalidate protocol

Cache Coherence Protocols

= Operations performed by caches in multiprocessors
to ensure coherence (Hardware!!)

 Snooping protocols
◦ If a cache line has been changed: a notification is put on the

snoop bus

◦ All caches monitor the snoop bus.

 If a cache line they own is changed by another cache

 cache line is invalidated or update

• The first cache that can put notification on the snoop bus
gets the ownership of the cache line

 Directory-based protocols
◦ Caches and memory record sharing status of blocks in a

directory

Invalidating Snooping Protocols

 Cache gets exclusive access to a block when
it is to be written
◦ Broadcasts an invalidate message on the bus
◦ Subsequent read in another cache misses

 Owning cache supplies updated value

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Memory Consistency

 When are writes seen by other processors?
◦ “Seen” means a read returns the written value
◦ Can’t be instantaneously

 Assumptions
◦ A write completes only when all processors have

seen it
◦ A processor does not reorder writes with other

accesses

 Consequence
◦ P writes X then writes Y
 all processors that see new Y also see new X

◦ Processors can reorder reads, but not writes

 Example

 Order is preserved: U can be 0, 1 or 3, but
will never be 2.

Memory Consistency

MESI-protocol

State Cacheline
Valid?

Valid in
memory?

Copy in other
cache?

Write access

Modified Yes No No Cache

Exclusive Yes Yes No Cache

Shared Yes Yes Possible Cache/Memo
ry

Invalid No Unknown Possible Memory

Complex, but effective protocol

Used by Intel

AMD adds an ‘owned’ state => MOESI-protocol

Possible states of a cache line:

False sharing

 2 processors do not share data but share a cache line

◦ each processor has some data in the same cache line

◦ cache line is kept coherent, unnecessarily…

RAM

Level 2

cache

core core core core

Level 1

cache

Cache line = 6x8 bytes

Cache line = 3x8 bytes

 Static mapping:
◦ A thread is dedicated to a specific core on which it is

executed until it finishes.

◦ Disadvantage: the number of active threads is limited to the
number of cores x number of hardware threads

 Dynamic mapping:
◦ A scheduler dynamically assigns threads to the available

cores. Each core gets 1 thread (more if hardware threads) at
a time. The scheduler can interrupt the thread and replace
it with another one. Processor switches between threads.

◦ The scheduler is part of the OS.

◦ Note that the same happens with the active processes on
the system.

D. Mapping of threads on cores.

Software versus hardware threads

 Software threads
◦ Processor can only execute one program at the same

time

◦ Overhead! Due to context switch (saving/restoring of
processor state)

 Hardware threads
◦ Processor can execute several programs

simultaneously: instructions of different threads go
through pipeline

◦ No overhead!

◦ Intel CPUs: Hyperthreading

Hardware threads

 Software threads: scheduling and context switching is
performed by Operating System

◦ Has a cost (overhead).

 Hardware thread:

◦ Scheduling and context switching done by hardware.

◦ Separate registers & logic for each thread.

◦ Context switching is cheap.

◦ Each hardware thread appears as a logical processor
core to the OS!

 In INTEL processors: Hyperthreading

 In GPUs: 1000s of hardware threads running
simultaneously without overhead!

Multi-Threading (MT) possibilities

33

Context switch

Simultaneous MultiThreading

Fine-grained parallelism: see chapter on GPUs

 For efficiency, OS and hardware should
organize this

 See next part

E. Thread Synchronization

2. Multicore usage

TOT HIER 5/10/2020

 Sum 1000000 numbers with 8 processors
◦ Each processor has ID: 0 ≤ Pi ≤ 8

◦ Array sum with 8 elements
◦ Partition 125000 numbers per processor
◦ Initial local summation on each processor:

sum[Pi] = 0;
for (i = 125000*Pi;i < 125000*(Pn+1); i++)

sum[Pi] += A[i];

 Now need to add these partial sums
◦ Reduction: divide and conquer
◦ Half the processors add pairs, then quarter, …
◦ Need to synchronize between reduction steps

Example: Sum Reduction

half = 8;

repeat {

barrier_synchronization();

half = half/2; /* dividing line on who sums */

if (Pi < half)

sum[Pi] = sum[Pi] + sum[Pi+half];

} until (half == 1);

Example: Sum Reduction

 Fork & join

Multi-threading primitives

 A thread is basically a lightweight
process

 A process : unit of resource
ownership

◦ a virtual address space to hold the
process image

◦ control of some resources (files, I/O
devices...)

 A thread is an execution path

◦ Has access to the memory address
space and resources of its process.
Shares it with other threads.

◦ Has its own function call stack.

Thread creation

main(){

thread.start();

...

...

...

...

...

}

run(){

...

...

...

}

Setup

Tear down

Process Thread

main

thread

 One thread per C-element

 Concurrent read must be possible

No synchronization necessary

Too many threads

= a lot of overhead

Example: Matrix Multiplication

A11 A12 A13 A1n

A21 A22 A2n

...

Ai1 Ai2 Ai3 Ain

...

...

...

An1 An2 An3 Ann

B11 B12 .. B1j B1n

B21 B22 .. B2j .. B2n

...

...

...

...

...

Bn1 Bn2 .. Bnj .. Bnn

Cij

A

B

C

for (r = 0; r < n; r++)
for (c = 0;c < n; c++)

c[r][c] = create_thread(dot_product(
get_row(a, r),get_col(b, c)));

In this case, one may think of the thread as an instance of a

function that returns before the function has finished executing.

 Software Portability
◦ run on serial and parallel machines

 Latency Hiding
◦ While one thread has to wait, others can utilize CPU

◦ For example: file reading, message reading, reading data from
higher-level memory

 Scheduling and Load Balancing
◦ Large number of concurrent tasks

◦ System-level dynamic mapping to processors

 Ease of Programming
◦ Easier to write than message-passing programs (at first sight)

Why Threads?

Latency Hiding

Faster CPU
More
threads

4 cores: x4
Latency hiding: x3

10/30/2023 43

Multi-threading without speedup

 Webserver: a thread for each client

◦ Multi-threading for convenience
◦ = distributed computing, not parallel computing

 But: one can loose performance!

◦ 4 requests, each request takes 10 seconds to finish.
◦ A single thread: user #1 has to wait 10 seconds, user

#2 will wait 20 seconds, user #3 will wait 30 seconds
and user #4 will wait 40 seconds.

Average waiting time = 25 seconds

◦ Four threads are activated: they must split the
available processor time. Each thread will take four
times as long. So, each request will complete at about
40 seconds.

Waiting time = 40 seconds (+37.5%!)

LINK 9

x is initially set to 1

One thread: x = 10; print(x);

Second thread: x = 5; print(x);

Both threads are started at the same time

What is the output?

Example why synchronization is
necessary.

 When 2 threads run
simultaneously, we cannot
determine which one is
first or which one is
faster…

Race condition
“a flaw in an electronic system or
process whereby the output and/or
result of the process is unexpectedly
and critically dependent on the sequence
or timing of other events.”

The term originates with the idea of two
signals racing each other to influence
the output first.

Indeterminism

Synchronization necessary

 When multiple threads attempt to manipulate the
same data item, the results can often be incoherent
if proper care is not taken to synchronize them.

 Example:
/* each thread tries to update variable best_cost */

if (my_cost < best_cost)

best_cost = my_cost;

◦ Assume that there are two threads, the initial value of best_cost is
100, and the values of my_cost are 50 and 75 at threads t1 and
t2.

◦ Depending on the schedule of the threads, the value of best_cost
could be 50 or 75!

◦ The value 75 does not correspond to any serialization of the
threads.

Synchronization of Critical Sections

critical section

Synchronization OK

47

my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost;

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost <
best_cost)

best_cost = my_cost;

OK

best_cost = 50

shared variable

best_cost = 75

Synchronization OK

48

my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost;

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost <
best_cost)

best_cost = my_cost;

OK

best_cost = 50

shared variable

best_cost = 50

Synchronization problem!!

49

my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost;

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost < best_cost)

best_cost = my_cost;

Happens when the if-then of thread 2 happens

in between the if and then of thread 1

best_cost = 75

shared variable

best_cost = 50

NOK

Solution: locking of critical sections

50

Thread 1 Thread 2best_cost = 100
pthread_mutex_t lock;

best_cost = 75

shared variables

best_cost = 50

OK

my_cost = 75;

pthread_mutex_lock(&lock)

if (my_cost < best_cost)

best_cost = my_cost;

pthread_mutex_unlock(&lock)

my_cost = 50;

pthread_mutex_lock(&lock)

if (my_cost < best_cost)

best_cost = my_cost;

pthread_mutex_unlock(&lock)

The mutex (mutual exclusion) lock overcomes that 2 threads can

simultaneously execute the same critical section, thread 2 is

blocked until thread 1 releases the lock.

Multithreaded Counting 3s (C++)
parameters: array arr of size n, NBR_THREADS

void count_function(int threadID, int n, int* arr, int* count) {
for (int i = 0; i < n; ++i)

if (arr[i] == 3)
(*count)++;

}
this program is still faulty

we will solve it in the exercises

vector<thread*> threads; // vector of pointers to threads
int ELEMENTS_PER_THREAD = n / NBR_THREADS, count = 0;

// *** STARTING THE THREADS
for (int t = 0; t < NBR_THREADS; t++)

// pass the function to be executed and all the necessary parameters
threads.push_back(new thread(count_function, t,

ELEMENTS_PER_THREAD, arr + t * ELEMENTS_PER_THREAD, &count));

// *** waiting for all threads to finish
for (int t = 0; t < threads.size(); t++) {

threads[t]->join();
delete threads[t];

}

Counting 3s: experiments

Counting 3s in an array of 1000 elements and 4 threads:

* Seq : counted 100 3s in 234us

* Par 1: counted 100 3s in 3ms 615us

Counting 3s in an array of 40000000 elements and 4 threads:

* Seq : counted 4000894 3s in 147ms

* Par 1: counted 3371515 3s in 109ms

On a dual core processor

this program is faulty:

parallel result is not the same

Updating the same variable by
different threads

Without synchronization, the data is not immediately updated and you

might miss some values. The counter increment is called a critical

section.

Java Solution (synchronized method):

synchronized void addOne(){

count++;

}

Example: threads are counting something and increment a common

counter

 Problems:
What if access_x is
accessed at the same
time?

Thread consumes CPU
time while waiting

Hardware & Operating
System support needed!

A naïve critical section solution

boolean access_x=true;

while (!access_x)

;

access_x=false;

if (my_cost < best_cost)

best_cost = my_cost;

access_x=true;

Ps. There is a 100% software solution for this: Peterson Algorithm
(but not efficient)

= optimized naïve version

Mutex Lock Implementation

boolean access_x=true;

while (!access_x)

;

access_x=false;

if (my_cost < best_cost)

best_cost = my_cost;

access_x=true;

Shared variable & initialization

Locking the lock:
- as an atomic operation
- only 1 thread can acquire it
- context switch if loop takes

a long time

Unlocking and activating
threads waiting at the lock

Critical sections trigger cache
coherence

 System will not perform cache coherence all the time
◦ Too costly

 Critical sections indicate shared data
◦ Cache coherence is ensured when threads access critical section

10/30/2023 56

Producers-Consumers Scenario

Producer

Threads

...

Produce thing

Put in buffer

...

Consumer

Threads

...

Get from buffer

Consume thing

...

...

Produce thing

If buffer=full

 wait

Put in buffer

Signal non-

emptiness

...

…

If buffer=empty

 wait

Get from buffer

Consume thing

Signal non-

fullness

...

1. Thread synchronization

Multi-threading primitives

Should minimally allow the following:

1. Thread creation

2. Locking of critical sections

3. Thread synchronization

With primitives we mean the minimal set of mechanisms (e.g.
functions or language constructs) you need to write any multi-
threaded program.

Pthreads (C, C++, …) & Java

PThreads Java

How? library Built-in language
Encapsulation:
object manages
thread-safety

Thread creation pthread_create
function

Thread class
Runnable interface

Critical sections Locks Synchronized
methods

Thread
synchronization

Condition variables Wait & notify

10/30/2023 60

Intermezzo: the
Operating System

 OS is also a software process

 Context switch necessary to activate it
◦ It is not a ‘big brother’ overseeing what’s

happening in the processor

◦ Takes time! Has to be minimized

3. POSIX Threads

64

The POSIX Thread API

 Commonly referred to as Pthreads, POSIX has emerged
as the standard threads API (1995), supported by most
vendors.

 The concepts discussed here are largely independent of
the API and can be used for programming with other
thread APIs (NT threads, Solaris threads, Java threads,
etc.) as well.

KUMAR Chapter 7

PPP Chapter 6

65

pthreads: Creation and Termination

#include <pthread.h>

int pthread_create (pthread_t *thread_handle, const
pthread_attr_t *attribute, void * (*thread_function)(void *),
void *arg);

int pthread_join (pthread_t thread, void **ptr);

 The function pthread_create invokes function
thread_function as a thread.

 The function pthread_join waits for the thread to be
finished and the value passed to pthread_exit (by the
terminating thread) is returned in the location pointer
**ptr.

66

Counting 3s Example
#include <pthread.h>

#define NBR_THREADS 16

void count_function(int threadID, int n, int* arr, int* count);

int counting3s(int* totalArray, int arraySize) {

int count = 0;

int ELEMENTS_PER_THREAD = arraySize / NBR_THREADS,

pthread_t p_threads[NBR_THREADS];

for (i=0; i< NBR_THREADS; i++) {

pthread_create(&p_threads[i], NULL, count_function, i,
ELEMENTS_PER_THREAD, totalArray + i * ELEMENTS_PER_THREAD, &count);

}

for (i=0; i< NBR_THREADS; i++) {

pthread_join(p_threads[i], NULL);

}

return count;

}

KUMAR

67

Mutual Exclusion

 The code in the previous example corresponds to a
critical segment or critical section; i.e., a segment that
must be executed by only one thread at any time.

 Critical segments in Pthreads are implemented using
mutex locks.

 Mutex-locks have two states: locked and unlocked. At any
point of time, only one thread can lock a mutex lock. A
lock is an atomic operation.

 A thread entering a critical segment first tries to get a
lock. It goes ahead when the lock is granted. Otherwise it
is blocked until the lock relinquished.

68

Mutual Exclusion

 The pthreads API provides the following
functions for handling mutex-locks:
◦ int pthread_mutex_init (pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

◦ int pthread_mutex_lock (pthread_mutex_t *mutex_lock);

◦ int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);

69

Lock critical sections

 We can now write our previously incorrect code segment as:
pthread_mutex_t costLock;

...

main() {

....

pthread_mutex_init(&costLock, NULL);

....

}

void *find_min() {

....

pthread_mutex_lock(&costLock);

if (my_cost < best_cost)

best_cost = my_cost;

pthread_mutex_unlock(&costLock); /* and unlock the mutex */

}

70

Disadvantages lock
 Deadlock possible, see later

 Performance degradation
◦ Due to locking overhead

◦ Due to idling of locked threads (if no other thread is there to
consume available processing time)

Alleviate locking overheads

 Minimize size of critical sections
◦ Encapsulating large segments of the program within locks can

lead to significant performance degradation.

◦ create_task() and process_task() are left outside
critical section!

71

Alleviate locking overheads

 Test a lock:

◦ int pthread_mutex_trylock (pthread_mutex_t
*mutex_lock);

◦ Returns 0 if locking was successful, EBUSY when
already locked by another thread.

 pthread_mutex_trylock is typically much faster than
pthread_mutex_lock since it does not have to deal with
queues associated with locks for multiple threads waiting
on the lock.

 Example: write result to global data if lock can be
acquired, otherwise temporarily store locally

KUMAR: ‘Finding matches in a list’

72

Condition Variables for Synchronization

 A condition variable allows a thread to block itself until specified data
reaches a predefined state.

 A condition variable is associated with this predicate. When the
predicate becomes true, the condition variable is used to signal one
or more threads waiting on the condition.

 A single condition variable may be associated with more than one
predicate.

 A condition variable always has a mutex associated with it. A thread
locks this mutex and tests the predicate defined on the shared
variable.

 If the predicate is not true, the thread waits on the condition variable
associated with the predicate using the function
pthread_cond_wait.

73

Synchronization in Pthreads

 Pthreads provides the following functions for

condition variables:
int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_destroy(pthread_cond_t *cond);

74

Producer-consumer work queues

 The producer threads create tasks and inserts
them into a work queue.

 The consumer threads pick up tasks from the
queue and executes them.

 Synchronization!

75

Producer-Consumer Using Locks

 The producer-consumer scenario imposes the following
constraints:

 The producer thread must not overwrite the shared buffer
when the previous task has not been picked up by a
consumer thread.

 The consumer threads must not pick up tasks until there
is something present in the shared data structure.

 Individual consumer threads should pick up tasks one at a
time.

PPP 170

(get-put)==1

Small mistake in PPP on page 170

Thanks to Xuyang Feng, 2014

1. The condition and cond_wait form a critical section (lines
10-14 & lines 26-29)

while (bufferIsFull()){

pthread_cond_wait(&nonfull, &lock);

}

 The update of the buffer and change of pointer are also a
critical section (lines 16-17 & lines 30-31)

 When the thread goes into a wait, the lock that it has at that
moment will be released by the cond_wait

 When the waiting thread is activated again, it acquires the
lock again (after the notifying thread has released it).

Why always a lock with condition variables?

if consumer refills buffer here,

producer is waiting in vain

78

Controlling Thread and Synchronization
Attributes

 The Pthreads API allows a programmer to change the
default properties of entities (thread, mutex, condition
variable) using attributes objects.

 An attributes object is a data-structure that describes
entity properties.

 Once these properties are set, the attributes object can
be passed to the method initializing the entity.

 Enhances modularity, readability, and ease of
modification.

79

Attributes Objects for Threads

 Use pthread_attr_init to create an attributes object.

 Individual properties associated with the attributes
object can be changed using the following functions:

pthread_attr_setdetachstate,

pthread_attr_setguardsize_np,

pthread_attr_setstacksize,

pthread_attr_setinheritsched,

pthread_attr_setschedpolicy,

pthread_attr_setschedparam

80

Threads locks multiple times

pthread_mutex_lock(&lock1);

...

pthread_mutex_lock(&lock1);

...

pthread_mutex_unlock(&lock1);

...

pthread_mutex_unlock(&lock1);

E.g. happens when in
one critical section
we call code with also
a critical section
protected by the
same lock

What will happen?
➢ depends on type of lock

81

Types of Mutexes
 Pthreads supports three types of mutexes - normal, recursive, and

error-check.

◦ A normal mutex deadlocks if a thread that already has a lock
tries a second lock on it. This is the default.

◦ A recursive mutex allows a single thread to lock a mutex as
many times as it wants. It simply increments a count on the
number of locks. A lock is relinquished by a thread when the
count becomes zero.

◦ An error check mutex reports an error when a thread with a
lock tries to lock it again (as opposed to deadlocking in the
first case, or granting the lock, as in the second case).

 The type of the mutex can be set in the attributes object before it is
passed at time of initialization.

82

Attributes Objects for Mutexes
 Initialize the attrributes object using function:

pthread_mutexattr_init.
 The function pthread_mutexattr_settype_np can be

used for setting the type of mutex specified by the
mutex attributes object.
pthread_mutexattr_settype_np (
pthread_mutexattr_t *attr,
int type);

 Here, type specifies the type of the mutex and can take
one of:
◦ PTHREAD_MUTEX_NORMAL_NP
◦ PTHREAD_MUTEX_RECURSIVE_NP
◦ PTHREAD_MUTEX_ERRORCHECK_NP

83

Thread Cancellation

int pthread_cancel(pthread_t *thread);

 Terminates another thread

 Can be dangerous
◦ In java: deprecated suspend() method. Use of it is discouraged.

◦ But sometimes useful, e.g. as long as the user is staying at a certain
view in your application, you calculate extra information, as soon as he
leaves the view, you stop the calculation.

 A thread can protect itself against cancellation

 pthread_exit: exit thread (yourself) without exiting the
process

Pthread_cond_timedwait

4. C++ 11
Multithreading

 See links on website: practica -> documentation
◦ The 3 primitives

◦ Three Different ways to Create Threads

◦ How to pass arguments to threads

◦ How to return a value from the thread function:

 Pass a result variable by reference

 or make it a attribute of your function object

 More advanced solutions

 Advanced concepts: see book PPCP

C++11 = pThreads made easier

PPCP chapter 4 & 5

https://thispointer.com/c-11-multithreading-part-1-three-different-ways-to-create-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://stackoverflow.com/questions/7686939/c-simple-return-value-from-stdthread

while (!stop_waiting()) {

cv.wait(lock);

}

 Can be written as:

cv.wait(lock, []{ return stop_waiting(); });

 Second argument is a predicate function, written as a lambda
function

 Still another thread has to wake up the waiting thread (is not
automatically as soon as the predicate has become true).

Condition Variables

= objects that provide the thread-safety and thread-
synchronization internally.

 You don’t have to worry about locking etc

 Example:
◦ atomic<int> ctr=0;

◦ Ctr is an integer on which all operations happen atomically.

◦ E.g. ctr++; will ensure the read-increment-write critical
section happens within a locked section.

 For basic types it is faster than using mutexes!

 For big types, mutexes are used.

C++11 Atomic Objects

5. Thread Safety

Adaptable range-object

89

int lower, upper; // shared variables

public void setLower(int value) {
if (value > upper)

throw new IllegalArgumentException(...);
lower = value;

}
public void setUpper(int value) {

if (value < lower)
throw new IllegalArgumentException(...);

upper = value;
}

 Object specifies a range with a lower and upper
attribute.

◦ Invariant (should always be true): lower <= upper

◦ If multiple threads can modify lower or upper, make
thread-safe! Check the invariant.

Still a critical section present!

We solve this in the exercises

Thread-safe?

pthread_mutex_lock(&lock);
while (apples==0)

pthread_cond_wait(&more_apples, &lock);
while (oranges==0)

pthread_cond_wait(&more_oranges,
&lock);
// eat apple & orange
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples, &lock);
pthread_cond_wait(&more_oranges,

&lock);
}
// eat apple & orange
pthread_mutex_unlock(&lock);

NOK!!

Still NOK!

PPP 173-174

Mistake in PPP on page 173!!

Thread-safe!

pthread_mutex_lock(&lock);
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples_or_more
oranges, &lock);
}
// eat apple & orange
pthread_mutex_unlock(&lock);

OK

PPP 173-174

OK

pthread_mutex_lock(&lock);
boolean allConditionsPassed;
do {

allConditionsPassed = true;
if (apples == 0){

pthread_cond_wait(&more_apples, &lock);
allConditionsPassed = false; }

if (oranges == 0){
pthread_cond_wait(&more_oranges, &lock);
allConditionsPassed = false; }

} while (!allConditionsPassed);
// eat apple & orange
pthread_mutex_unlock(&lock);

Mistake in PPP on page 173!!

By the boolean, you can easily add

more conditions. Also OK, no boolean:

} while(apples == 0 || oranges == 0)

Only 1 cond variable

92

The Dining Philosophers
LINK 8

Thinking

Hungry Eating

The philosophers are not
allowed to speak and there
is no arbiter organizing the
resources

strategy (protocol)?
might deadlock or

livelock…

LES 3 TOT HIER

Deadlocks
 Four conditions

1. Mutual exclusion

2. Hold and wait: threads hold some resources and
request other

3. No preemption: resource can only be released by the
thread that holds it

4. Circular wait: cycle in waiting of a thread for a
resource of another

PPP 177

Livelocks

 Similar to a deadlock, except that the states of the
processes involved in the livelock constantly change with
regard to one another, none progressing.

 Real-world example: two people meet in a narrow
corridor, each moves aside to let the other pass, but they
end up swaying from side to side

 A risk with algorithms that detect and recover from
deadlock.

94

6. OpenMP and related

96

OpenMP Philosophy

 The OpenMP Application Program Interface (API)
supports multi-platform shared-memory parallel
programming in C/C++ and Fortran.

 Portable, scalable model with a simple and flexible
interface for developing parallel applications

 Augment sequential programs in minor ways to identify
code that can be executed in parallel.
◦ Simpler to use

◦ More restrictive in terms of parallel interactions than Java/POSIX

 Standardized (Sun, Intel, Fujitsu, IBM, …)

 http://www.openmp.org

PPCP 167

PPP 207

97

How?

 Add pragmas to program

◦ #pragma omp <specifications>
◦ The #pragma directives offer a way for each

compiler to offer machine- and operating system-
specific features. If the compiler finds a pragma it
does not recognize, it issues a warning, but
compilation continues.

 An OpenMP-compliant compiler will generate
appropriate multithreaded code
◦ Other compilers simply ignore the pragmas and

generate sequential code.

PPP 208PPCP 167

 Default number of threads: number of logical
cores

 Overwrite with

#pragma omp parallel num_threads(8)

OpenMP Hello World
PPCP 168

#pragma omp parallel
{

int i = omp_get_thread_num();
int n = omp_get_num_threads();
cout << "Hello world from thread " << i << " of "

<< n << " threads " << endl;
}

 Embarrasingly parallel: all iterations should be independent

◦ you have to guarantee that there are no race conditions!

◦ Number of loops remains constant

◦ Other constraints: see PCPP p. 170

 OpenMP executes this multi-threaded

 Note:

#pragma omp parallel for

◦ Stands for

#pragma omp parallel

{

#pragma omp for

for(…){ … }

}

OpenMP parallel for
PPCP 169-171

#pragma omp parallel for
for (int i = 0; i < n; i++)

z[i] = x[i] + y[i];

You can add more for-loops here

See PCPP 172-173

100

OpenMP reduction

 Reduction pragma for computations that
combine variables globally

◦ Reduction operators: +,-,*, max,min, bitwise and
logical operations

◦ Counting 3s:

#pragma omp parallel for reduction(+,count)
for(i=0; i<length; i++)
count += array[i]==3 ? 1 : 0;

PPCP 185

PPP 210

accum =0;
#pragma omp parallel for reduction(+,accum)
for(i=0; i<length; i++)
accum += array[i];

PPP 210

101

Shared vs private variables

 OpenMP should decide whether variables
have to be shared between threads
(possibility of race conditions!) or can be
considered local to the thread

 Shared = default
◦ You can emphasize this with shared(…)

 Indicate local variables with private(…)

◦ See example of counting 3s on next slide

PPCP 173-176

102

Count 3s example with parallel for
PPP 209

103

Handling data dependencies

#pragma omp critical

{

count += count_p;

}

#pragma omp atomic

score += 3

Memory update is
noninterruptible

Critical section that
will be protected by
locks

104

Sections to express task parallelism

#pragma omp sections
{

#pragma omp section
{

Task_A();
}
#pragma omp section
{

Task_B();
}
#pragma omp section
{

Task_C();
}

}

PPCP 209

Parallel hint

 Give hints to the auto-parallelizer

 https://docs.microsoft.com/en-us/cpp/parallel/auto-
parallelization-and-auto-
vectorization?redirectedfrom=MSDN&view=vs-2019

106

Matlab: parallel for

 Parallel computing toolbox provides simple constructs
to allow parallel execution

◦ Parallel for (when iterations are independent)

◦ …

 Automatic parallel execution

 Create pool of computers that will work together

 Many functions of libraries run in parallel and even
(automatically) on GPU!

107

• Java Part 1
https://blogs.oracle.com/javamagazine/post/java-thread-
synchronization-raceconditions-locks-conditions

• Java Part 2:
https://blogs.oracle.com/javamagazine/post/java-thread-
synchronization-synchronized-blocks-adhoc-locks

• https://onlinedisassembler.com/odaweb/

• https://defuse.ca/online-x86-assembler.htm#disassembly2

• Synchronization in Java, Part 3: Atomic operations and
deadlocks:
https://blogs.oracle.com/javamagazine/post/java-thread-
synchronization-volatile-final-atomic-deadlocks

References

https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-raceconditions-locks-conditions
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-raceconditions-locks-conditions
https://onlinedisassembler.com/odaweb/
https://defuse.ca/online-x86-assembler.htm#disassembly2
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-volatile-final-atomic-deadlocks
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-volatile-final-atomic-deadlocks

7. Mutex implementation

A bit of history: Semaphores

 One of the first concepts for critical sections & thread
synchronization.

 Invented by Dutch computer scientist Edsger Dijkstra.

 found widespread use in a variety of operating systems as basic
primitive for avoiding race conditions.

 Based on a protected variable for controlling access by multiple
processes to a common resource

 By atomic operations you can decrement or increment semaphores

 binary (flag) or integer (counting)

◦ When binary: similar to mutexes

◦ When integer: The value of the semaphore S is the number of units of the
resource that have not been claimed.

1930 – 2002

http://en.wikipedia.org/wiki/Binary_numeral_system

Two threads want to change the same data at exactly
the same time.

 Cache line is changed

 Thread that is first in putting the ‘invalidate’ on the
snoop bus
◦ The bus arbitration module decides on control over the bus

 Other thread tries but notices it is too late, so the
change fails

Thus: we try and test whether success

Who can change the shared data?

How a mutex lock should work

boolean access_x=true;

while (!access_x)

;

access_x=false;

// Critical section

...

access_x=true;

Should happen as an atomic
operation

Synchronization in MIPS

 Load linked: ll rt, offset(rs)
◦ rs: address

 Store conditional: sc rt, offset(rs)
◦ Tries to write value rt to address rs
◦ Succeeds if location not changed since the ll

 Returns 1 in rt (side-effect: rt = flag to indicate success)

◦ Fails if location is changed
 Returns 0 in rt

 Implemented in hardware with a bit called LLbit,
which is set to zero if value at location has changed
◦ After a store conditional, the LLbit will be set to 0 at the

other locations (cache copies) using the same rs
 => their sc will fail

 This is managed by the cache coherence system

See https://www.cs.auckland.ac.nz/courses/

compsci313s2c/resources/MIPSLLSC.pdf

TestAndSet
argumenten: $a0 (lock variabele) en $a1 (waarde)
teruggeefwaarde: register $v0

try: add $t0,$zero,$a1 ;copy set-value
ll $t1,0($a0) ;load linked
sc $t0,0($a0) ;store conditional
beq $t0,$zero,try ;branch store fails
add $v0,$zero,$t1 ;put loaded value in $v0

Test-and-set with LL and SC

Computerarchitectuur

Computerarchitectuur

Test-and-set with LL and SC

 Hardware:
◦ test-and-set

◦ memory fence

 Waiting for lock:
◦ Spinning for short locks

◦ Switching for long locks

 Eg: when inactive thread has to release the lock!

◦ In practice: spinning with timer interrupt to
suspend thread

◦ Operating system ensures switching

 Smart thread scheduling

Mutex implementation

 Mutex: hardware + OS

 Inactivation and reactivation of threads: OS

Condition variable implementation

	Slide 1: Practical Parallel Programming II
	Slide 2: I. Distributed-Memory Architectures
	Slide 3: II. Shared Address-space Architectures
	Slide 4: Processes versus Threads
	Slide 5: Running threads on same core
	Slide 6: 1. Architecture
	Slide 7: Multilevel On-Chip Caches
	Slide 8: 2-Level TLB Organization
	Slide 9: 3-Level Cache Organization
	Slide 10: Multicores: The following should be provided by hardware and/or OS
	Slide 11: A. Shared Memory
	Slide 12: Typical architectures
	Slide 13: Bus-based Interconnects
	Slide 14: Crossbar switches
	Slide 15: Symmetric Multiprocessor Architectures (SMPs)
	Slide 16: B. PRAM Architectures
	Slide 17: Concurrent Write Access Requires Arbitration
	Slide 20: C. Caching & memory coherence
	Slide 21: Cache Coherence Problem
	Slide 22: Cache Coherence Mechanisms
	Slide 23: Cache Coherence Mechanisms
	Slide 24: Cache Coherence Protocols
	Slide 25: Invalidating Snooping Protocols
	Slide 26: Memory Consistency
	Slide 27: Memory Consistency
	Slide 28: MESI-protocol
	Slide 29: False sharing
	Slide 30: D. Mapping of threads on cores.
	Slide 31: Software versus hardware threads
	Slide 32: Hardware threads
	Slide 33: Multi-Threading (MT) possibilities
	Slide 34: E. Thread Synchronization
	Slide 35: 2. Multicore usage
	Slide 36: Example: Sum Reduction
	Slide 37: Example: Sum Reduction
	Slide 38: Multi-threading primitives
	Slide 39: Thread creation
	Slide 40: Example: Matrix Multiplication
	Slide 41: Why Threads?
	Slide 42: Latency Hiding
	Slide 43: Multi-threading without speedup
	Slide 44: Example why synchronization is necessary.
	Slide 45: Indeterminism
	Slide 46: Synchronization of Critical Sections
	Slide 47: Synchronization OK
	Slide 48: Synchronization OK
	Slide 49: Synchronization problem!!
	Slide 50: Solution: locking of critical sections
	Slide 51: Multithreaded Counting 3s (C++) parameters: array arr of size n, NBR_THREADS
	Slide 52: Counting 3s: experiments
	Slide 53: Updating the same variable by different threads
	Slide 54: A naïve critical section solution
	Slide 55: Mutex Lock Implementation
	Slide 56: Critical sections trigger cache coherence
	Slide 57
	Slide 58: Producers-Consumers Scenario
	Slide 59: Multi-threading primitives
	Slide 60: Pthreads (C, C++, …) & Java
	Slide 61: Intermezzo: the Operating System
	Slide 62
	Slide 63: 3. POSIX Threads
	Slide 64: The POSIX Thread API
	Slide 65: pthreads: Creation and Termination
	Slide 66: Counting 3s Example
	Slide 67: Mutual Exclusion
	Slide 68: Mutual Exclusion
	Slide 69: Lock critical sections
	Slide 70: Disadvantages lock
	Slide 71: Alleviate locking overheads
	Slide 72: Condition Variables for Synchronization
	Slide 73: Synchronization in Pthreads
	Slide 74: Producer-consumer work queues
	Slide 75: Producer-Consumer Using Locks
	Slide 76
	Slide 77: Why always a lock with condition variables?
	Slide 78: Controlling Thread and Synchronization Attributes
	Slide 79: Attributes Objects for Threads
	Slide 80: Threads locks multiple times
	Slide 81: Types of Mutexes
	Slide 82: Attributes Objects for Mutexes
	Slide 83: Thread Cancellation
	Slide 84: 4. C++ 11 Multithreading
	Slide 85: C++11 = pThreads made easier
	Slide 86: Condition Variables
	Slide 87: C++11 Atomic Objects
	Slide 88: 5. Thread Safety
	Slide 89: Adaptable range-object
	Slide 90: Thread-safe?
	Slide 91: Thread-safe!
	Slide 92: The Dining Philosophers
	Slide 93: Deadlocks
	Slide 94: Livelocks
	Slide 95: 6. OpenMP and related
	Slide 96: OpenMP Philosophy
	Slide 97: How?
	Slide 98: OpenMP Hello World
	Slide 99: OpenMP parallel for
	Slide 100: OpenMP reduction
	Slide 101: Shared vs private variables
	Slide 102: Count 3s example with parallel for
	Slide 103: Handling data dependencies
	Slide 104: Sections to express task parallelism
	Slide 106: Parallel hint
	Slide 107: Matlab: parallel for
	Slide 110: References
	Slide 111: 7. Mutex implementation
	Slide 112: A bit of history: Semaphores
	Slide 113: Who can change the shared data?
	Slide 114: How a mutex lock should work
	Slide 115: Synchronization in MIPS
	Slide 116: Test-and-set with LL and SC
	Slide 117: Test-and-set with LL and SC
	Slide 118: Mutex implementation
	Slide 119: Condition variable implementation

