
Jan Lemeire
2022-2023

Speeding up the
sequential program

Compiler

optimilizations

3

Architecture of a typical optimizing compiler

FE O(1) O(2) O(N-1) O(N) BE

FRONT END BACK ENDMIDDLE END

High Level

Language

Intermediate

Representation (IR)
Optimized IR Machine

Language

I(1)…..I(N-1)

CHECK

SYNTAX AND

SEMANTICS

PERFORM LOCAL and GLOBAL OPTIMISATIONS EMIT TARGET

ARCHITECTURE

MACHINE CODE

Function inlining

 In C/C++

 example:

#define ABS(my_val) ((my_val) < 0) ?

-(my_val) : (my_val)

 Use of macro: function is replaced by the
precompiler

 But: parameters and types are not checked

 Alternative: inline functions

Function macros

 Instead of a function call, the functions is replace
by the code

 Function call:
◦ need of stack storage to pass parameters and store

variables

◦ A jump to start the function and one to return to the calling
code

 Inlining of the function:
◦ duplicate code

◦ May lead to more instruction cache misses

 Use the keyword inline to inform the compiler
that inlining is a good idea

Function inlining

Loop unrolling

Reducing branch frequency
 One way to make branches faster is to... not

branch as much.

 Loop unrolling is a technique to reduce the
number of branches. It does this by duplicating
the loop body, reducing the number of iterations
needed.

10

for(i = 0; i < 100; i++)
a[i] = b[i] + c[i];

Original loop
for(i = 0; i < 100; i += 2){
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];

}

Unrolled loop (2X)

11

STATIC LOOP UNROLLING – a trivial translation to MIPS

for (i = 1000 ; i > 0 ; I --) {

x[i] = x[i] + constant;

}

L.D

ADD.D

S.D

DADDUI

BNE

Loop : F0,0(R1)

F4,F0,F2

F4,0(R1)

R1,R1,#-8

R1,R2,Loop

; F0 = array elem.

; add scalar in F2

; store result

; decrement ptr

; branch if R1 !=R2

Our example translates into the MIPS

assembly code below (without any

scheduling).

Note the loop independent

dependence in the loop ,i.e. x[i] on

x[i]

12

LOCAL

STATIC LOOP UNROLLING – issuing our instructions

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

DADDUI

BNE

Loop : F0,0(R1)

F4,F0,F2

F4,0(R1)

The unrolled loop from the running example with an unroll factor of n = 4 would then be:

F6,-8(R1)

F8,F6,F2

F8,-8(R1)

F10,-16(R1)

F12,F10,F2

F12,-16(R1)

F14,-24(R1)

F16,F14,F2

F16,-24(R1)

R1,R1,#-32

R1,R2,Loop

n loop

Bodies for

n = 4

Adjusted loop

overhead

instructions

Note the adjustments

for store and load

offsets (only store

highlighted red)!

Note the renamed

registers. This eliminates

dependencies between

each of n loop bodies of

different iterations.

How far to unroll?

 The previous example doubled the code in
the loop. Of course we can unroll 3X, 4X,
8X... what are the tradeoffs?

 Space vs. time is the big one.
◦ But memory today is big, network connections are

fast... is this so much of a problem?

◦ Well......

 Caching is the big bottleneck these days.
◦ The bigger the code is, the less of it will fit in the

cache.

◦ This is bad

13

Vector

instructions

Instruction and Data Streams

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

Vector processors (SIMD)

 Has long be viewed as the solution for high-
performance computing

◦ Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

 However: difficult to program

Instructions can be performed at once

on all elements of vector registers

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers

+

SIMD vector instructions

 Perform an instruction on 4/8/16 floats
(special registers) at once
◦ E.g., MMX and SSE instructions in x86

 Multiple data elements in 128-bit wide registers

 All processors execute the same instruction
at the same time
◦ Each with different data address, etc.

 Simplifies synchronization
 Reduced instruction control hardware
 Works best for highly data-parallel

applications

Vector Processing

+

r1 r2

r3

Add.d F3, F1, F2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

addv.d v3, v1, v2

VECTOR

(N operations)

 Vector processing exploits data parallelism by performing the same
computation on linear arrays of numbers "vectors” using one
instruction.

Scalar

ISA

(RISC

or CISC)

Vector

ISA

Up to

Maximum

Vector

Length

(MVL)

Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

◦ Data collected from memory into registers

◦ Results stored from registers to memory

 Example: Vector extension to MIPS

◦ 32 × 64-element registers (64-bit elements)

◦ Vector instructions (on up to 64 elements!)

 lv, sv: load/store vector

 addv.d: add vectors of double

 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Example: DAXPY (Y = a × X + Y)
 Conventional MIPS code

l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound of what to load

loop: l.d $f2,0($s0) ;load x(i)
mul.d $f2,$f2,$f0 ;a × x(i)
l.d $f4,0($s1) ;load y(i)
add.d $f4,$f4,$f2 ;a × x(i) + y(i)
s.d $f4,0($s1) ;store into y(i)
addiu $s0,$s0,#8 ;increment index to x
addiu $s1,$s1,#8 ;increment index to y
subu $t0,r4,$s0 ;compute bound
bne $t0,$zero,loop ;check if done

 Vector MIPS code (if X and Y contain 64-element)

l.d $f0,a($sp) ;load scalar a
lv $v1,0($s0) ;load vector x
mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
lv $v3,0($s1) ;load vector y
addv.d $v4,$v2,$v3 ;add y to product
sv $v4,0($s1) ;store the result

Properties of Vector Processors
 Each result in a vector operation is independent of

previous results (Data Parallelism, LLP exploited)
=> long pipelines used, compiler ensures no dependencies
=> higher clock rate

 Vector instructions access memory with known
patterns
=> Highly interleaved memory with multiple banks used to provide

the high bandwidth needed and hide memory latency.

=> Amortize memory latency of over many vector elements

=> no (data) caches usually used. (Do use instruction cache)

 A single vector instruction implies a large number
of computations (replacing loops or reducing
number of iterations needed)
=> Fewer instructions fetched/executed

=> Reduces branches and branch problems in pipelines

Vector vs. Scalar

 Vector architectures and compilers
◦ Simplify data-parallel programming
◦ Explicit statement of absence of loop-carried

dependences
 Reduced checking in hardware

◦ Regular access patterns benefit from interleaved
and burst memory

◦ Avoid control hazards by avoiding loops

 More general than ad-hoc media extensions
(such as MMX, SSE)
◦ Better match with compiler technology

Full Vector processors

 Has long be viewed as the solution for high-
performance computing

◦ Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

 80s: special vector computers (e.g. the Cray that
VUB/ULB bought)
◦ But could not compete with processors of commodity devices

 However: difficult to program

 Is SIMT (GPUs) a better alternative??

Power Efficient?

 The majority of power consumption of a CPU is not from the
ALU

◦ Cache management, data movement, decoding, and other
infrastructure

◦ Adding a few more ALUs should not impact power consumption

 Indeed, 4X performance via AVX does not add 4X power
consumption

◦ FromiI7 4770K measurements:

 Idle: 40 W

 Under load : 117 W

 Under AVX load : 128 W

Automatic

vectorization?

Vectorization

_m512 register

_mm512_add operations

Manual

Automatic

Only works for

simple cases

Compiler Automatic Vectorization

 In gcc, flags “-O3 –mavx –mavx2” attempts
automatic vectorization

 Works pretty well for simple loops

 But not for anything complex
◦ E.g., naïve bubblesort code not parallelized at all

Generated using GCC explorer: https://gcc.godbolt.org/

https://gcc.godbolt.org/

Auto-vectorization

2

9Accelerator technology

SIMD pragma to indicate parallism

3

0Accelerator technology

Successful vectorization

3

1Accelerator technology

x86 vectors

Intel SIMD Extensions

 New instructions, new registers

 Introduced in phases/groups of functionality
◦ SSE – SSE4 (1999 –2006)

 128 bit width operations

◦ AVX, FMA, AVX2, AVX-512 (2008 – 2015)

 256 – 512 bit width operations

 AVX-512 chips not available yet (as of Spring, 2019),
but soon!

 F16C, and more to come?

ZMM0
YMM0

Intel SIMD Registers (AVX-512)

XMM0

ZMM1
YMM1

XMM1

ZMM31
YMM31

XMM31

…

 XMM0 – XMM15
◦ 128-bit registers

◦ SSE

 YMM0 – YMM15
◦ 256-bit registers

◦ AVX, AVX2

 ZMM0 – ZMM31
◦ 512-bit registers

◦ AVX-512

SSE/AVX Data Types

YMM0

float float float float

double double

int32 int32 int32 int32

float float float float

double double

int32 int32 int32 int32

1
6

1
6

8 8

1
6

1
6

8 8 8 8 8 8

1
6

1
6

8 8

1
6

1
6

8 8 8 8 8 8

1
6

1
6

8 8

1
6

1
6

8 8 8 8 8 8

1
6

1
6

8 8

1
6

1
6

8 8 8 8 8 8

Operation on 32 8-bit values in one instruction!

255 0

Data Types in AVX/AVX2

Type Description

__m128
128-bit vector containing
4 floats

__m128d
128-bit vector containing
2 doubles

__m128i
128-bit vector containing
integers

__m256
256-bit vector containing
8 floats

__m256d
256-bit vector containing
4 doubles​

__m256i
256-bit vector containing
integers

__m512 variants for AVX-512

Intrinsic Naming Convention

 _mm<width>_[function]_[type]
◦ E.g., _mm256_fmadd_ps :

perform fmadd (floating point multiply-add) on
256 bits of
packed single-precision floating point values (8 of them)

Width Prefix

128 _mm_

256 _mm256_

512 _mm512_

Type Postfix

Single precision _ps

Double precision _pd

Packed signed
integer

_epiNNN (e.g.,
epi256)

Packed unsigned
integer

_epuNNN (e.g.,
epu256)

Scalar integer _siNNN (e.g., si256)

Not all permutations exist! Check guide

Load/Store/Initialization
Operations

 Initialization
◦ _mm256_setzero_ps/pd/epi32/…

◦ _mm256_set_...

◦ …

 Load/Store : Address MUST be aligned by 256-bit
◦ _mm256_load_...

◦ _mm256_store_...

 And many more! (Masked read/write, strided reads,
etc…)

e.g.,

__mm256d t = _mm256_load_pd(double const * mem); // loads 4 double values

__mm256i v = _mm256_set_epi32(h,g,f,e,d,c,b,a); // loads 8 integer values

Vertical Vector Instructions

 Add/Subtract/Multiply
◦ _mm256_add/sub/mul/div_ps/pd/epi

 Mul only supported for epi32/epu32/ps/pd
 Div only supported for ps/pd
 Consult the guide!

 Max/Min/GreaterThan/Equals
 Sqrt, Reciprocal, Shift, etc…
 FMA (Fused Multiply-Add)
◦ (a*b)+c, -(a*b)-c, -(a*b)+c, and other

permutations!
◦ Consult the guide!

 …

a

b

c

d

× × × ×

+ + + +

=

__m256 a, b, c;

__m256 d = _mm256_fmadd_pd(a, b, c);

= ==

Integer Multiplication Caveat

 Integer multiplication of two N bit values
require 2N bits

 E.g., __mm256_mul_epi32 and
__mm256_mul_epu32
◦ Only use the lower 4 32-bit values

◦ Result has 4 64-bit values

 E.g., __mm256_mullo_epi32 and
__mm256_mullo_epu32
◦ Uses all 8 32-bit values

◦ Result has 8 truncated 32-bit values

 And more options! Consult the guide…

Horizontal Vector Instructions

 Horizontal add/subtraction
◦ Adds adjacent pairs of values

◦ E.g., __m256d _mm256_hadd_pd (__m256d a,
__m256d b)

a b

c

+
+ +

+

 https://openjdk.java.net/jeps/338

 https://blogs.oracle.com/javamagazine/post/java-vector-
api-simd

Vector processing in java 16+

