VRIJE

UNIVERSITEI
BRUSSEL

Compiller
optimilizations

VRIJE
UNIVERSITEIT
BRUSSEL

Architecture of atypical optimizing compiler

FRONT END MIDDLE END BACK END
1 I—I> I‘I_’

High Level mtermediate_ .o .I.(:] 2'.':.' I.([\l._}.)} Optimized IR = Machine

Language Representation (IR) Language

CHECK PERFORM LOCAL and GLOBAL OPTIMISATIONS EMIT TARGET

SYNTAX AND ARCHITECTURE

SEMANTICS MACHINE CODE

Function inlining

Function macros

» In C/C++
» example:

#define ABS (my val) ((my val) < 0) °?
-(my val) : (my val)

» Use of macro: function is replaced by the
precompiler

» But: parameters and types are not checked
» Alternative: inline functions

Function inlining

» Instead of a function call, the functions is replace
by the code

» Function call:

- need of stack storage to pass parameters and store
variables

> A jump to start the function and one to return to the calling
code

» Inlining of the function:
> duplicate code
- May lead to more instruction cache misses

» Use the keyword inline to inform the compiler
that inlining is a good idea

Loop unrolling

Reducing branch frequency

» One way to make branches faster is to... not

branch as much.

» Loop unrolling is a technique to reduce the
number of branches. It does this by duplicating
the loop body, reducing the number of iterations

needed.

a[i] = b[i] + c[i];

for(i = @; i < 100; i++) Unrolled loop (2X)

Original loop

N

for(i = 0; i < 100; i += 2){ '
a[i] = b[i] + c[i];
a[i+1l] = b[i+1] + c[i+1];

}

10

STATIC LOOP UNROLLING = a trivial translation to MIPS

for(1=1000;i>0;1--) {

X[1]=X[1] + constant;

Our example translates into the MIPS
assembly code below (without any
scheduling).

Note the loop independent
dependence in the loop ,i.e. x[1] on

x[i]

Loop: L.D FO,0(R1)
ADD.D F4,FO,F2
S.D F4,0(R1)

DADDUI R1,R1,#-8
BNE R1,R2,Loop

; FO = array elem.

; add scalar in F2

; store result

; decrement ptr

; branch if R1 I=R2

11

n loop
Bodies for
n=4

Adjusted loop
overhead
instructions

LOCAL

STATIC LOOP UNROLLING —issuing our instructions

Loop: L.D FO,0(R1)
ADD.D F4,FO,F2
S.D F4[0(R1)
L.D [F6]-8(R1
ADD.D F8|F6|F2
S.D F8,8(R1)
L.D [F10,;16(R1)
ADD.D F12[F10,F2
SD F12,+r16(R1)
L.D [F14}24(R1)
ADD.D F16,F14.F2
S.D F16,-24(R1)

~ DADDUI R1,R1#-32
"BNE R1,R2,Lo0p

— The unrolled loop from the running example with an unroll factor of n = 4 would then be:

Note the renamed
registers. This eliminates
dependencies between
each of n loop bodies of
different iterations.

Note the adjustments
for store and load
offsets (only store
highlighted red)!

12

How far to unroll?

» The previous example doubled the code in
the loop. Of course we can unroll 3X, 4X,
8X... what are the tradeoffs?

» Space vs. time is the big one.

- But memory today is big, network connections are
fast... is this so much of a problem?

» Caching is the big bottleneck these days.

- The bigger the code is, the less of it will fit in the
cache.

> This is bad

13

Vector
INnstructions

VRIJE
UNIVERSITEIT
BRUSSEL

Instruction and Data Streams

Data Streams

No examples today

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 Instructions of x86
Multiple | MISD: MIMD:

Intel Xeon e5345

Vector processors (SIMD)

128-bit vector registers
78|21
3131517 Instructions can be performed at once

on all elements of vector registers
1057 [-8l¢

» Has long be viewed as the solution for high-
performance computing
- Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

» However: difficult to program

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

SIMD vector instructions

» Perform an instruction on 4/8/16 floats

(special registers) at once

> E.g., MMX and SSE instructions in x86
- Multiple data elements in 128-bit wide registers

» All processors execute the same instruction
at the same time
- Each with different data address, etc.

» Simplifies synchronization
» Reduced instruction control hardware

» Works best for highly data-parallel
applications

VUBEE Vector Processing

» Vector processing exploits data parallelism by performing the same
computation on linear arrays of numbers "vectors” using one

instruction.
SCALAR VECTOR
Scalar (1 operation) (N operations)
ISA Vector
(RISC ISA

or CISC) !"
!

Add.d F3,

/ Up to
vector__ | maximum

length Vector

Length

F1, F2 addv.d v3, vl, v2 [i)

Vector Processors

» Highly pipelined function units

» Stream data from/to vector registers to units
- Data collected from memory into registers
- Results stored from registers to memory

» Example: Vector extension to MIPS

> 32 X 64-element registers (64-bit elements)
> Vector instructions (on up to 64 elements!)
- 1v, sv: load/store vector
- addv.d: add vectors of double
- addvs.d: add scalar to each element of vector of double

» Significantly reduces instruction-fetch bandwidth

Y VRIJE
UNIVERSITEIT
BRUSSEL

Example: DAXPY (Y =

» Conventional MIPS code

1.d $F0,a($sp)
addiu r4 $sO #512

Toop:

add1u $sO $sO #8
addiu $s1,$s1,#8
subu $t0,r4,$sO
bne $t0, $zero, Toop

» Vector MIPS code (if X and Y contain 64-element)

ax X+Y)

-load scalar a

;upper bound of what to load
-load x(1)

;a x x(1)

:load y(1)

;a x x(1) + y(1)
;store 1into y(1)
increment index to x
;increment index to y
;compute bound

check if done

1.d $f0,a($sp)
Tv $v1,0($s0)
mulvs.d $v2,%$vl, $f0
Tv $v3,0(%$s1)

addv.d $v4,%$v2,$v3
$v4,0($s1)

:load scalar a

:1load vector x
;vector-scalar multiply
; load vector y

;add y to product
-store the result

& “Properties of Vector Processors

» Each result in a vector operation is independent of

previous results (Data Parallelism, LLP exploited)

=> |long pipelines used, compiler ensures no dependencies
=> higher clock rate

» Vector instructions access memory with known

patterns
=> Highly interleaved memory with multiple banks used to provide
the high bandwidth needed and hide memory latency.

=> Amortize memory latency of over many vector elements
=> no (data) caches usually used. (Do use instruction cache)

» A single vector instruction implies a large number
of computations (replacing loops or reducing

humber of iterations needed)
=> Fewer instructions fetched/executed

Reduces branches and branch problems in pipelines

Vector vs. Scalar

» Vector architectures and compilers
- Simplify data—parallel programming
- Explicit statement of absence of loop-carried
dependences
- Reduced checking in hardware

- Regular access patterns benefit from interleaved
and burst memory

> Avoid control hazards by avoiding loops
» More general than ad-hoc media extensions
(such as MMX, SSE)

- Better match with compiler technology

Full Vector processors

» Has long be viewed as the solution for high-
performance computing
- Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

» 80s: special vector computers (e.g. the Cray that
VUB/ULB bought)

> But could not compete with processors of commodity devices
» However: difficult to program
» Is SIMT (GPUs) a better alternative??

Power Efficient?

» The majority of power consumption of a CPU is not from the
ALU

- Cache management, data movement, decoding, and other
infrastructure

- Adding a few more ALUs should not impact power consumption

» Indeed, 4X performance via AVX does not add 4X power
consumption

o Fromil7 4770K measurements:
- Idle: 40 W

« Underload: 117 W
- Under AVX load : 128 W

Automatic
vectorization?

VRIJE
UNIVERSITEIT
BRUSSEL

Vectorization

ASM code (addps)

Vector Intrinsics (mm_add_ps())

SIMD Intrinsic Class (F32vec4 add)

SIMD Vectorization (#pragma simd)

Auto-vectorization Hints (#pragma ivdep)

Automatic Vectorization

Manual

Programming control

A

\/

Ease of use

~m512 register
_mmb512 add operations

Only works for

Automatic simple cases

VRIJE
UNIVERSITEIT
BRUSSEL

Compiler Automatic Vectorization

» In gcg, flags “-0O3 -mavx -mavx2” attempts
automatic vectorization

» Works pretty well for simple loops

.L2:
, vmovdga xmml, XMMWORD PTR b[rax
int a[256], b[256], c[256]; 9 g [rax]
. add rax, 16
void foo () { 11d e 1, XMMWORD PTR c[16]
vpmu Xmme, xmm / c[rax-
for (int i=@; i<2563; i++) a[i] = b[i] * c[i]; = ? ’
} vmovaps XMMWORD PTR a[rax-16], xmm@
cmp rax, 1024
jne .L2

Generated using GCC explorer: hitps://gcc.godbolt.oro/

» But not for anything complex
> E.g., naive bubblesort code not parallelized at all

https://gcc.godbolt.org/

‘!EE:

VRIJE
UNIVERSITEIT
BRUSSEL

Coewaeleldknc-2;
icc —wec-reporttb -mmic —Std 99 fupenmp -03

TE=S L, o oL
test.cC36): (col,
test.cl36): (col.
test.cl36): (col.
test.c(36): (col,
test.cl36): (col.
test.cC36): (col,
test.cl36): (col.
test.cC36): (col,
test.cl36): (col.
test.cC36): (col,
test.cl36): (col,
test.cl36): (col.
test.cC36): (col,
test.cl36): (col.
test.cC36): (col,
test.cl36): (col.
test.cC38): (col,
test,

ct9):

S

7 —=1

ﬁcnl

AN

<
<
<
<
<
N
=N
N
<
<
4
<
N
<
N
<
2
2)

Auto-vectorization

Faarm =H_I

remark:
remark:
Femarlk:
remark:
Femarlk:
remark:
remark:
remark:
remark:
remark
remark:
Femarlk:
remark:
remark:
remark:
==
rerark:

FEmar |

1T ———

R

uectur
vector
vectos
YeC or
vecto
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
CoL Lar

“/Projectsfadhd/simplet lopsg 2

Lo wectorized:
dependence:
dependenaoas
aependence;
dependence:
denendence:
depenaeiic’
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dEﬂﬁnHﬂ““”'
dependence:
loop was not vectorized:

: IDDE was not wvectorized: existence of wvector dEEEHdEHCP

tast. o

assumed

assumed
gssumed
assumed

e L |

assumed
assumed
assumed
assumed
assumed
assumed
assumed
assumed

555umed

SLAGS="-vec-reporth -mmic”

-lrt -o test

FLOL dependence between

[N u:'_lclll_lﬁ_ll-_--_
FLOW dependence between
AHTI dependence between

OUTPUT
aLTolLT
OUTPUT
QUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
QUTPUT
OUTPUT

COTT T

OUTPUT

dependen:e

dependen:e
dependence
dependence
dependence
dependence
dependence
dependence
dependence

dependence

not inner loop.

CC=icc make -B

existence of wector dependence.

line
Soteoen line

L=

line
between =23
o Leen a. 25
between a. 2?5
between a. 25
between a. 2?5
between a. 25
between a. 25
between a. 25
between a. 25
between a. 25
between a. 25
betwee, o Y5

| VRIJE s
UNIVERSITEIT o
BRUSSEL {lntel)

inside”

SIMD pragma to indicate parallism==

wold dflopsidouble = restrict a) t
const double o = 1. ;
const double = M. 9:;

‘ #pragma simd

(long long i = B; 1 < niterations; 1 += 1lb) ¢

ald]l = alBH]l = = + C;
alll = alll = = + c;
ald]l = alZ] = = +
alal = al3]l = = + ;
ald]l = ald] = = +
al5] = alb] = = +
ale]l = al6] = = +
al7?] = al?]l = » +

al8] = al8] = = +

ald9] = al9] = = + ;

all1ld] = allB] = = + C;
alll]l = allll = = + C;
all12] = all2] = % + C;
all13] = all1l3] = % + C;
alld]l = alld]l = = +
all15] = all5] = = + C;

\ VRIJE —
UNIVERSITEIT -
BRUSSEL g

inside”

Successful vectorization ™

I.._|.|

Qknc-2; Prn]EEtSfudhd':implwflup 'simpleflops$ CFLAL
—FPpHF+h -mmic -std=c99 -03 -fopernmp -funroll- I‘DP

4): (col. 5) remark: vectorization : support:

(col. 5) roiiark, wectorization suppor o,

(col. dywremark: LOOP LWAS "E| TORIZED .

fcol., 3) remark; J.-—|— Lo oy slarizedr mot inmer 1o op.
(col. 2) remark: lonn t=semcot T””*““1”Hd not inner loop.
(col. 4) rem=-%: SIMD LOOP WAS YECTORIZEL,

(col. 21 Fimark: SIMD LOOP WAS YECTORIZED.

(col. 2) remack: SIMD LOOP WAS VWECTORIZED,

e —

(.
1 1M
=
(1l
m

|
I'[I [—

O 20 1o

|:|| |
o

o R Y

++ + =+ —+ —+ + —+

m M M M M M M M

++ + ~+ —+ ~+ —+ —+

(T S I |
[]

X806 vectors

Intel SIMD Extensions

» New instructions, new registers

» Introduced in phases/groups of functionality

> SSE - SSE4 (1999 -2006)
128 bit width operations
- AVX, FMA, AVX2, AVX-512 (2008 - 2015)
- 256 - 512 bit width operations
- AVX-512 chips not available yet (as of Spring, 2019),
but soon!

» F16C, and more to come?

Intel SIMD Registers (AVX-512)

» XMMO - XMM15
XMMO

:mm_:. . 128-bit registers
o SSE

LM L= , YMMO - YMM15

- 256-bit registers
- AVX, AVX2

TVTVER » ZMMO - ZMM3 1
E.W.'_ > 512-bit registers

> AVX-512

BEERREEEERRRREEEERREECRRRECEERRE

Operation on 32 8-bit values in one instruction!

Data Types in AVX/AVX2

Type Description
128-bit vector containing
—lullicats 4 floats
128-bit vector containing
e 2 doubles
m128i 128-bit vector containing
— integers
256-bit vector containing
--m256 8 floats
256-bit vector containing
A 4 doubles
m256i 256-bit vector containing
— integers

___mb512 variants for AVX-512

VRIJE
UNIVERSITEIT
BRUSSEL

Intrinsic Naming Convention

» _mm<width>_[function]_[type]
- E.g., _-mm256_fmadd_ps :

perform fmadd (floating point multiply-add) on

256 bits of

packed single-precision floating point values (8 of them)

128 _mm_ Single precision

256 _mm256_ Double precision

512 _mm512_ Packed signed
integer

: : : Packed unsigned
Not all permutations exist! Check guide | integer

Scalar integer

_ps

_pd

_epiNNN (e.qg.,
epi256)

_epuNNN (e.qg.,
epu256)

_SiNNN (e.g., si256)

VRIJE
UNIVERSITEIT
BRUSSEL

Load/Store/Initialization
Operations

» Initialization
> _mm256_setzero_ps/pd/epi32/...
o _mm256_set_...

o

» Load/Store : Address MUST be aligned by 256-bit

o _mm256_load._...
° _mm256_store._...

» And many more! (Masked read/write, strided reads,
etc...)
e.g.,

__mm256d t=_mm256 load pd(double const * mem); // loads 4 double values
__mm256i v=_mm256_ set epi32(h,g,f,e,d,c,b,a); // loads 8 integer values

Vertical Vector Instructions

Add/Subtract/Multiply
o _mm256_add/sub/mul/div_ps/pd/epi
- Mul only supported for epi32/epu32/ps/pd a

v

- Div only supported for ps/pd 9 x |x |x
- Consult the guide! —T '
» Max/Min/GreaterThan/Equals b
» Sgrt, Reciprocal, Shift, etc... | L L e
» FMA (Fused Multiply-Add) c
> (a*b)+c, —-(a*b)-c, -(a*b)+c, and other _ - I- [_
permutations! A
- Consult the guide! d
>
~ .m256 a, b, c;

~_m256d=_mm256_fmadd_pd(a, b,

Integer Multiplication Caveat

» Integer multiplication of two N bit values
require 2N bits

» E.g., __mm256_mul_epi32 and
__mm256_mul_epu3?2
> Only use the lower 4 32-bit values
- Result has 4 64-bit values

» E.g., __mm256_mullo_epi32 and

__mm256_mullo_epu3?2

- Uses all 8 32-bit values

- Result has 8 truncated 32-bit values

And more options! Consult the guide...
AN

Horizontal Vector Instructions

» Horizontal add/subtraction

- Adds adjacent pairs of values
> E.g., __m256d _mm256_hadd_pd (__m256d a,

__m256d b)
a b

Vector processing in java 16+

» https://openjdk.java.net/jeps/338
» https://blogs.oracle.com/javamagazine/post/java-vector-
api-simd

