
Jan Lemeire
2022-2023

Introduction

September 14, 2015

In phase

Out of phase

Superposition of signals

UPDATE: August 14, 2017

Detection of a gravitional wave by 3 detectors,

also by the European Virgo.

1.8 billion years ago, collision of black holes

of 25 and 31 times the mass of the sun

14 augustus 2017 om 12.30.43 uur

Belgische tijd.

Het verschijnsel is voor het eerst tegelijk

waargenomen door drie detectoren, en

twee soorten van detectoren: de twee

LIGO's in de VS en de Europese Virgo.

Voor de Europese Virgo was de

waarneming een primeur. Virgo, die een

uitgebreide update heeft gekregen en nu

de Advanced Virgo heet, was nog maar

twee weken opnieuw bezig met het

verzamelen van wetenschappelijke

gegevens.

De botsing vond plaats op zowat 1,8

miljard lichtjaar afstand.

GW170814, zoals de nieuw ontdekte

zwaartekrachtgolf is gedoopt (Gravitational

Wave en de datum), is veroorzaakt in de

laatste ogenblikken van de versmelting van

twee zwarte gaten die 31 en 25 keer zo

zwaar waren als de zon

Albert Einstein had in 1915 geopperd

dat het heelal bestaat uit ruimte en

tijd, en dat die één geheel vormen.

Na een heftige gebeurtenis kan die

"ruimtetijd" trillen. De schokgolven,

zwaartekrachtgolven, gaan dan door

het heelal als rimpelingen na een

steen in een vijver. Bij zo'n rimpeling

rekt de ruimte iets uit of krimpt zij iets.

Hoe groter de massa en hoe sneller

de beweging van een massarijk

object, des te sterker de

zwaartekrachtgolf.

8Pag. / 72

The third pillar
of the scientific world

9Pag. / 72

2005: “10GHz in 2010”

https://www.quora.com/Why-havent-CPU-clock-speeds-increased-in-the-last-5-years

10Pag. / 72

The Free Lunch is Over?

11Pag. / 72

12Pag. / 72

The Free Lunch is Over

http://www.gotw.ca/publications/concurrency-ddj.htm

Why You Don’t Have 10GHz Today?

• heat/surface is the problem (power wall)

• 12 nm would mean electric paths of 10 atoms wide!

Moreover:

• memory bottleneck

• instruction level parallelism (ILP) wall

What about Moore’s Law?

➢ increase of Clock speed: stopped

➢ increase of Transistors: ongoing

It’s now about the number of cores!

13Pag. / 72

Multi- & manycores

14Pag. / 72

Graphics Processors (GPUs)

Graphics card

15Pag. / 72

Overview

1. Definition

2. Why?

3. Parallel compiler?

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes

16Pag. / 72

What is a Parallel System?

CPU

CPU

M

M
CPU

M

N

➢Memory

➢Processors

➢ Interconnect

CPU

M

CPU CPU

M

CPU

CPU

M

CPU

M

CPU

MN

17Pag. / 72

Biggest Parallel System?

Brain
Internet

Frequency of brain waves: 10Hz

Number of neurons: 100 billion = 1011

18Pag. / 72

Overview

1. Definition

2. History

3. Why?

3. Parallel compiler?

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes

19Pag. / 72

ENIAC

The first computer @ WWII

By Mauchly and Eckert, 1945

ENIAC’s vacuumtubes

20Pag. / 72

Von Neumann wants to improve the
ENIAC. He builds the EDVAC

And lays the foundations of the modern processor…

John Von Neumann

21Pag. / 72

Processors: the next step

ENIAC
Parallel processing of data!

‘Programming’ is done by rewiring the hardware…

EDVAC: Stored-program computer
The program is stored in memory

The program is also ‘input’ like the ‘data’

EDVAC: serial/sequential processing
The instructions of the program are executed one-by-one, in
order, by the same system which is organized by the Von
Neumann architecture

22Pag. / 72

The Von Neumann architecture

INHERENTLY SEQUENTIAL PROCESSOR

23Pag. / 72

First parallel computers

1980s, early `90s: a golden age for parallel
computing

special parallel computers: Connection Machine, MasPar,
Cray (VUB also!)

True supercomputers: incredibly exotic, powerful, expensive

Based on vectorization (see further)

But…impact of data-parallel computing limited

Thinking Machines sold 100s of systems in total

MasPar sold ~200 systems

24Pag. / 72

Parallel computing now

Parallel computing steamrolled from behind
by the inexorable advance of commodity
technology

Economy of scale rules!

Commodity technology outperforms special machines

Massively-parallel machines replaced by clusters of ever-
more powerful commodity microprocessors

Clusters: federates of standard pcs (MPI & OpenMP)

In this course we focus on widespread commodity parallel technology

25Pag. / 72

More…

Supercomputer Cluster

Multicore

But also a single core…

26Pag. / 72

Flynn's taxonomy of
architectures

Single
Instruction

Multiple
Instructions

Single
Data

Multiple
Data

27Pag. / 72

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

CPUs vs GPUs

29Pag. / 72

Overview

1. Definition

2. Why?

3. Parallel compiler?

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes

30Pag. / 72

Why use parallel systems

Complete computation faster

More (local) memory available

But… not simple!

Why?? Since a parallelizing compiler

does not exist

31Pag. / 72

Speedup

Ideally: speedup = number of
processors

32Pag. / 72

Speedup i.f.o. processors

1) Ideal, linear speedup

2) Increasing, sub-linear
speedup

3) Speedup with an optimal
number of processors

4) No speedup

5) Super-linear speedup

33Pag. / 72

Parallel vs Distributed

Parallel computing: provide performance.
In terms of processing power or memory

To solve a single problem

Typically: frequent, reliable interaction, fine grained, low
overhead, short execution time.

Distributed computing: provide convenience.
In terms of availability, reliability and accessibility from
many different locations

Typically: interactions infrequent, with heavier weight and
assumed to be unreliable, coarse grained, much overhead
and long uptime.

PPP 20-21OUR FOCUS

34Pag. / 72

Example of distributed computing:
3rd generation web application

Web

Client

Application Server

Data
Local

Client

Firewall

Component

Component

Component

Component Services

Web server

35Pag. / 72

Overview

1. Definition

2. Why?

3. Parallel compiler?

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes

36Pag. / 72

Sequential programming world

Understand this to port it to the parallel world

Write Once, Compile Everywhere

C, C++, Pascal, Modula-2, …

Compile Once, Run Everywhere

Java, C#, Python

Sequential programming is close to our algorithmic
thinking (> 2 GL).

Von Neumann architecture provides useful
abstraction

37Pag. / 72

The Random Access Machine

Sequential computer = device with an instruction
execution unit and unbounded memory.

Memory stores program instructions and data.

Any memory location can be referenced in ‘unit’ time

The instruction unit fetches and executes an instruction
every cycle and proceeds to the next instruction.

Today’s computers depart from RAM, but function as
if they match this model.

Model guides algorithm design.

Programs do not perform well on e.g. vector machines.

CPU

M

PPP 58-60

38Pag. / 72

Software success relies on

abstraction & user transparency
A library offers a service and hides implementation
details for you.

Layered approaches such as the

OSI model in telecommunication

3rd generation language =>

assembler => machine code =>

machine

Language hides hardware details

Software engineering concepts

39Pag. / 72

Generic Compilation Process
PPP 22-25

Algorithm

Implementation

Compiler

Automatic

optimization

‘Sequential’ processor: super-
scalar out-of-order pipeline

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution

Branch prediction

Register renaming

…

42Pag. / 72

Speeding up by
Instruction-level Parallelism (ILP)

Exploit parallelism at the level of instructions:

1. Pipelining
➢ maximal attainable speedup = pipeline depth

2. Start multiple instructions simultaneously
➢ maximal attainable speedup = pipeline width

3. Apply instructions on vectors (multiple data
elements)
➢ maximal attainable speedup = vector width

Is handled in the next chapter.

43Pag. / 72

ILP is not for free

There should be enough independent instructions
available

Conditional control instructions (branches) limit ILP: the processor
doesn’t know what the next instruction will be

Data dependencies: instructions need the outcome of previous
instructions

…

Programmer, compiler and processor have work to
maximally exploit ILP

In practice, attaining an ILP of 4 seems the maximum

45Pag. / 72

Parallel compilers

Goal: automatically compile sequential program into
an efficient parallel program that does the same
thing.

Programmers would not have to learn special parallel constructs

Is a dream that seems beyond reach…

Many user-defined algorithms contain data dependencies that
prevent efficient parallelization.

Automatic dependency analysis and algorithm transformation: still
in their infancy, far from optimal. Real breakthrough not expected
in the near future.

For efficient parallel programs, a simple hardware model such as
the RAM model does not work.

PPP 22-23

46Pag. / 72

Example: Iterative Sum

Parallelism? Independent computations needed.

n data values x0, …, xn in array x
sum=0;

for (int i=0;i<n;i++)

sum+=x[i];

By associativity

of sum

Can this be done

by a compiler??

PPP 23

47Pag. / 72

Overview

1. Definition

2. Why?

3. Parallel compiler?

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes

Parallel Systems

Message-
passing

MPI

Explicit
multi-

threading

OpenCL/
CUDA

OpenMP

Vector
instructions

PROC

M

PROC

M

PROC

MN

PROC PROC

M

PROC

P P P P

M

P P P P

M

M

Distributed memory Shared memory

coarse-grain
parallelism

fine-grain
parallelism

SIMD
coarse-grain
parallelism

SIMT

52Pag. / 72

1. Shared Memory

Natural extension of sequential computer: all memory
can be referenced (single address space). Hardware
ensures memory coherence.

Easier to use
• Through multi-threading

Easier to create faulty programs
• Race conditions

More difficult to debug
• Intertwining of threads is implicit

Easier to create inefficient programs
• Easy to make non-local references

PPCP 10-12

53Pag. / 72

2. Distributed Memory

Processors can only access their own memory
and communicate through messages.

Requires the least hardware support.

Easier to debug.
• Interactions happens in well-defined program parts

• The process is in control of its memory!

Communication protocol is needed
• Remote data cannot be accessed directly, only via request.

54Pag. / 72

3. Fine-grain parallelism

Needs many small pieces that can be processed in
parallel.

Enormous processing power: vector processors,
GPUs

No single programming model
• OpenCL versus vectorization

Harder to program

Independence & locality & high computational
intensity needed to reach peak performance.

57Pag. / 72

Overview

1. Definition

2. Why?

3. Parallel compiler?

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes

58Pag. / 72

1. Multithreading

One process is split into separate threads,
executing a different sequence of instructions

having access to the same memory

= Shared address space approach

CPU CPU

M

CPU

59Pag. / 72

Multi-threading primitives

Fork & join

62Pag. / 72

Example: Counting 3s

Parallelism? Yes.

Multithreaded solution: divide counting

count=0;

for (int i=0;i<array.length;i++)

if (array[i] == 3)

count++;

n data values x0, …, xn

in array array

PPP 29

63Pag. / 72

Multithreaded Counting 3s (C++)
parameters: array arr of size n, NBR_THREADS

void count_function(int threadID, int n, int* arr, int* count) {
for (int i = 0; i < n; ++i)

if (arr[i] == 3)
(*count)++;

}
Note: this program is faulty

Will be discussed later

vector<thread*> threads; // vector of pointers to threads
const int ELEMENTS_PER_THREAD = n / NBR_THREADS, count = 0;

// *** STARTING THE THREADS
for (int t = 0; t < NBR_THREADS; t++)

// pass the function to be executed and all the necessary
parameters

threads.push_back(new thread(count_function, t,
ELEMENTS_PER_THREAD, arr + t * ELEMENTS_PER_THREAD, &count));

// *** waiting for all threads to finish
for (int t = 0; t < threads.size(); t++) {

threads[t]->join();
delete threads[t];

}

66Pag. / 72

Counting 3s: experiments

Counting 3s in an array of 1000 elements and 4 threads:

* Seq : counted 100 3s in 234us

* Par 1: counted 100 3s in 3ms 615us

Counting 3s in an array of 40000000 elements and 4 threads:

* Seq : counted 4000894 3s in 147ms

* Par 1: counted 3371515 3s in 109ms

On a dual core processor

67Pag. / 72

2. Message-passing

Different processes
Communicate through messages

Got their own dedicated memory (and got full control over
it)

=Message-passing approach

CPU

M

CPU

M

CPU

MN

68Pag. / 72

Messages…

The ability to send and receive messages is
all we need

void Send(message, destination)

char* Receive(source)

boolean IsMessage(source)

But… we also want performance!
More functions will be provided

69Pag. / 72

Message-passing Counting 3s

int count3s_master(int* array){

int length_per_slave=array.length/nbr_slaves;

for (slave: slaves)

send integer subarray of length length_per_slave to slave;

int sum=0;

for (slave: slaves)

sum+= receive integer from slave;

return sum;

}

int count3s_slave(){

int* array = receive array from master;

count=0;

for (int i=0;i<array.length;i++)

if (array[i] == 3)

count++;

send count to master;

}

pseudo code

= sequential program!

70Pag. / 72

Focus on low-level approaches

MPI, multi-threading & vectorization: low-level
primitives

Higher-level alternatives exist, but have not proven
to be successfull for a wide variety of parallelization
problems

Fail to hide low-level aspects

We’ll focus on the 3 main low-level approaches

You will be able to learn/use the other approaches
yourself

72Pag. / 72

Overview

1. Definition

2. Why?

3. Parallel compiler?

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes

73Pag. / 72

The goals of this course

Learn to write good parallel programs, which

Are correct

Achieve good performance

Are scalable to large numbers of processors

Are portable across a wide variety of
parallel platforms.

Are generic for a broad class of problems.

PPP 39-41

74Pag. / 72

To attain goals…

Master low-level and high-level IT skills
Low-level: hardware and system

High-level: Software engineering

Combine knowledge and inventivity

Approach: look at it as a user who wants to
know as little as possible

