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In phase 

Out of phase

Superposition of signals

UPDATE: August 14, 2017

Detection of a gravitional wave by 3 detectors, 

also by the European Virgo.

1.8 billion years ago, collision of black holes  

of 25 and 31 times the mass of the sun



14 augustus 2017 om 12.30.43 uur 

Belgische tijd.

Het verschijnsel is voor het eerst tegelijk 

waargenomen door drie detectoren, en 

twee soorten van detectoren: de twee 

LIGO's in de VS en de Europese Virgo.

Voor de Europese Virgo was de 

waarneming een primeur. Virgo, die een 

uitgebreide update heeft gekregen en nu 

de Advanced Virgo heet, was nog maar 

twee weken opnieuw bezig met het 

verzamelen van wetenschappelijke 

gegevens.

De botsing vond plaats op zowat 1,8 

miljard lichtjaar afstand.

GW170814, zoals de nieuw ontdekte 

zwaartekrachtgolf is gedoopt (Gravitational 

Wave en de datum), is veroorzaakt in de 

laatste ogenblikken van de versmelting van 

twee zwarte gaten die 31 en 25 keer zo 

zwaar waren als de zon

Albert Einstein had in 1915 geopperd 

dat het heelal bestaat uit ruimte en 

tijd, en dat die één geheel vormen. 

Na een heftige gebeurtenis kan die 

"ruimtetijd" trillen. De schokgolven, 

zwaartekrachtgolven, gaan dan door 

het heelal als rimpelingen na een 

steen in een vijver. Bij zo'n rimpeling 

rekt de ruimte iets uit of krimpt zij iets. 

Hoe groter de massa en hoe sneller 

de beweging van een massarijk 

object, des te sterker de 

zwaartekrachtgolf.
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The third pillar 
of the scientific world
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2005: “10GHz in 2010”

https://www.quora.com/Why-havent-CPU-clock-speeds-increased-in-the-last-5-years
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The Free Lunch is Over?
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The Free Lunch is Over

http://www.gotw.ca/publications/concurrency-ddj.htm

Why You Don’t Have 10GHz Today?

• heat/surface is the problem (power wall)

• 12 nm would mean electric paths of 10 atoms wide!

Moreover:

• memory bottleneck

• instruction level parallelism (ILP) wall

What about Moore’s Law?

➢ increase of Clock speed: stopped

➢ increase of Transistors: ongoing

It’s now about the number of cores!
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Multi- & manycores
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Graphics Processors (GPUs)

Graphics card
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Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes
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What is a Parallel System?
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Biggest Parallel System?

Brain
Internet

Frequency of brain waves: 10Hz

Number of neurons: 100 billion = 1011
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ENIAC

The first computer @ WWII

By Mauchly and Eckert, 1945

ENIAC’s vacuumtubes
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Von Neumann wants to improve the 
ENIAC. He builds the EDVAC

And lays the foundations of the modern processor…

John Von Neumann
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Processors: the next step

ENIAC
Parallel processing of data!

‘Programming’ is done by rewiring the hardware…

EDVAC: Stored-program computer
The program is stored in memory

The program is also ‘input’ like the ‘data’ 

EDVAC: serial/sequential processing
The instructions of the program are executed one-by-one, in 
order, by the same system which is organized by the Von 
Neumann architecture
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The Von Neumann architecture

INHERENTLY SEQUENTIAL PROCESSOR
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First parallel computers

1980s, early `90s: a golden age for parallel 
computing

special parallel computers: Connection Machine, MasPar, 
Cray (VUB also!)

True supercomputers: incredibly exotic, powerful, expensive

Based on vectorization (see further)

But…impact of data-parallel computing limited

Thinking Machines sold 100s of systems in total

MasPar sold ~200 systems
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Parallel computing now

Parallel computing steamrolled from behind 
by the inexorable advance of commodity 
technology

Economy of scale rules!

Commodity technology outperforms special machines

Massively-parallel machines replaced by clusters of ever-
more powerful commodity microprocessors

Clusters: federates of standard pcs (MPI & OpenMP)

In this course we focus on widespread commodity parallel technology
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More…

Supercomputer Cluster

Multicore

But also a single core…



26Pag. / 72

Flynn's taxonomy of 
architectures

Single 
Instruction

Multiple 
Instructions

Single 
Data

Multiple 
Data
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Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

CPUs vs GPUs
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Why use parallel systems

Complete computation faster

More (local) memory available

But… not simple!    

Why?? Since a parallelizing compiler 

does not exist
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Speedup

Ideally: speedup = number of 
processors
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Speedup i.f.o. processors

1) Ideal, linear speedup

2) Increasing, sub-linear 
speedup

3) Speedup with an optimal 
number of processors

4) No speedup

5) Super-linear speedup
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Parallel vs Distributed

Parallel computing: provide performance.
In terms of processing power or memory

To solve a single problem

Typically: frequent, reliable interaction, fine grained, low 
overhead, short execution time.

Distributed computing: provide convenience.
In terms of availability, reliability and accessibility from 
many different locations

Typically: interactions infrequent, with heavier weight and 
assumed to be unreliable, coarse grained, much overhead 
and long uptime.

PPP 20-21OUR FOCUS
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Example of distributed computing: 
3rd generation web application

Web

Client

Application Server

Data
Local

Client

Firewall

Component

Component

Component

Component Services

Web server
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Sequential programming world

Understand this to port it to the parallel world

Write Once, Compile Everywhere

C, C++, Pascal, Modula-2, …

Compile Once, Run Everywhere

Java, C#, Python

Sequential programming is close to our algorithmic 
thinking (> 2 GL).

Von Neumann architecture provides useful 
abstraction
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The Random Access Machine

Sequential computer = device with an instruction 
execution unit and unbounded memory.

Memory stores program instructions and data.

Any memory location can be referenced in ‘unit’ time

The instruction unit fetches and executes an instruction 
every cycle and proceeds to the next instruction.

Today’s computers depart from RAM, but function as 
if they match this model.

Model guides algorithm design.

Programs do not perform well on e.g. vector machines.

CPU

M

PPP 58-60
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Software success relies on 

abstraction & user transparency
A library offers a service and hides implementation 
details for you.

Layered approaches such as the 

OSI model in telecommunication

3rd generation language => 

assembler => machine code =>

machine

Language hides hardware details

Software engineering concepts
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Generic Compilation Process
PPP 22-25



Algorithm

Implementation

Compiler

Automatic

optimization



‘Sequential’ processor: super-
scalar out-of-order pipeline 

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution

Branch prediction

Register renaming

…
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Speeding up by
Instruction-level Parallelism (ILP)

Exploit parallelism at the level of instructions:

1. Pipelining
➢ maximal attainable speedup = pipeline depth

2. Start multiple instructions simultaneously
➢ maximal attainable speedup = pipeline width

3. Apply instructions on vectors (multiple data 
elements)
➢ maximal attainable speedup = vector width

Is handled in the next chapter.
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ILP is not for free

There should be enough independent instructions 
available

Conditional control instructions (branches) limit ILP: the processor 
doesn’t know what the next instruction will be

Data dependencies: instructions need the outcome of previous 
instructions

…

Programmer, compiler and processor have work to 
maximally exploit ILP

In practice, attaining an ILP of 4 seems the maximum
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Parallel compilers

Goal: automatically compile sequential program into 
an efficient parallel program that does the same 
thing.

Programmers would not have to learn special parallel constructs 

Is a dream that seems beyond reach…

Many user-defined algorithms contain data dependencies that 
prevent efficient parallelization.

Automatic dependency analysis and algorithm transformation: still 
in their infancy,  far from optimal. Real breakthrough not expected 
in the near future.

For efficient parallel programs, a simple hardware model such as 
the RAM model does not work.

PPP 22-23
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Example: Iterative Sum

Parallelism? Independent computations needed.

n data values x0, …, xn in array x
sum=0;

for (int i=0;i<n;i++)

sum+=x[i];

By associativity 

of sum

Can this be done 

by a compiler??

PPP 23
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1. Shared Memory

Natural extension of sequential computer: all memory 
can be referenced (single address space). Hardware 
ensures memory coherence.

Easier to use
• Through multi-threading

Easier to create faulty programs
• Race conditions

More difficult to debug
• Intertwining of threads is implicit

Easier to create inefficient programs
• Easy to make non-local references

PPCP 10-12



53Pag. / 72

2. Distributed Memory

Processors can only access their own memory 
and communicate through messages.

Requires the least hardware support.

Easier to debug.
• Interactions happens in well-defined program parts

• The process is in control of its memory!

Communication protocol is needed
• Remote data cannot be accessed directly, only via request.



54Pag. / 72

3. Fine-grain parallelism

Needs many small pieces that can be processed in 
parallel.

Enormous processing power: vector processors, 
GPUs

No single programming model
• OpenCL versus vectorization

Harder to program

Independence & locality & high computational 
intensity needed to reach peak performance.
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1. Multithreading

One process is split into separate threads, 
executing a different sequence of instructions 

having access to the same memory

= Shared address space approach

CPU CPU

M

CPU
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Multi-threading primitives

Fork & join



62Pag. / 72

Example: Counting 3s

Parallelism? Yes.

Multithreaded solution: divide counting

count=0;

for (int i=0;i<array.length;i++)

if  (array[i] == 3)

count++;

n data values x0, …, xn 

in array array

PPP 29
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Multithreaded Counting 3s (C++)
parameters: array arr of size n, NBR_THREADS

void count_function(int threadID, int n, int* arr, int* count) {
for (int i = 0; i < n; ++i)

if (arr[i] == 3)
(*count)++;

}
Note: this program is faulty

Will be discussed later

vector<thread*> threads; // vector of pointers to threads
const int ELEMENTS_PER_THREAD = n / NBR_THREADS, count = 0;

// *** STARTING THE THREADS
for (int t = 0; t < NBR_THREADS; t++)

// pass the function to be executed and all the necessary 
parameters

threads.push_back(new thread(count_function, t, 
ELEMENTS_PER_THREAD, arr + t * ELEMENTS_PER_THREAD, &count)); 

// *** waiting for all threads to finish
for (int t = 0; t < threads.size(); t++) {

threads[t]->join();
delete threads[t];

}
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Counting 3s: experiments

Counting 3s in an array of 1000 elements and 4 threads:

* Seq : counted 100 3s in 234us

* Par 1: counted 100 3s in 3ms 615us

Counting 3s in an array of 40000000 elements and 4 threads:

* Seq : counted 4000894 3s in 147ms

* Par 1: counted 3371515 3s in 109ms

On a dual core processor
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2. Message-passing

Different processes
Communicate through messages

Got their own dedicated memory (and got full control over 
it)

=Message-passing approach

CPU

M

CPU

M

CPU

MN
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Messages…

The ability to send and receive messages is 
all we need

void Send(message, destination)

char* Receive(source)

boolean IsMessage(source)

But… we also want performance!
More functions will be provided
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Message-passing Counting 3s

int count3s_master(int* array){

int length_per_slave=array.length/nbr_slaves;

for (slave: slaves)

send integer subarray of length length_per_slave to slave;

int sum=0;

for (slave: slaves)

sum+= receive integer from slave;

return sum;

}

int count3s_slave(){

int* array = receive array from master;

count=0;

for (int i=0;i<array.length;i++)

if (array[i] == 3)

count++;

send count  to master;

}

pseudo code

= sequential program!
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Focus on low-level approaches

MPI, multi-threading & vectorization: low-level 
primitives 

Higher-level alternatives exist, but have not proven 
to be successfull for a wide variety of parallelization
problems

Fail to hide low-level aspects

We’ll focus on the 3 main low-level approaches

You will be able to learn/use the other approaches 
yourself
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The goals of this course

Learn to write good parallel programs, which

Are correct

Achieve good performance

Are scalable to large numbers of processors

Are portable across a wide variety of 
parallel platforms.

Are generic for a broad class of problems.

PPP 39-41
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To attain goals…

Master low-level and high-level IT skills
Low-level: hardware and system

High-level: Software engineering

Combine knowledge and inventivity

Approach: look at it as a user who wants to 
know as little as possible


