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Shared Memory 
systems



I. Distributed-Memory 
Architectures 

 Each process got his 
own local memory

 Communication 
through messages

 Process is in control



II. Shared Address-space 
Architectures 

 Example: 
multiprocessors

 PRAM: Paralleled 
Random Access
Memory

◦ Idealization: No 
communication costs

 But, unavoidability: the 
possibility of race 
conditions



Example: A file server on a 
LAN

◦ It needs to handle 
several file requests 
over a short period 

◦ Hence, it is more 
efficient to create (and 
destroy) a single thread 
for each request 

◦ Multiple threads can 
possibly be executed 
simultaneously on 
different processors 
(mapped by Operating 
System)

P P P

P P P

Scheduled by the 
OS on the available 
processors

Processes versus Threads



Running threads on same core

 Executed one by one

 Context switch
◦ Thread’s state in core: 

instruction fetch buffer, 
return address stack, 
register file, control 
logic/state, …

◦ Supported by hardware

 Takes time!

thread

creation

T1

saving

T1's state

Processor 

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating 

system’s 

scheduler

T2

Context switch 

(overhead)

Coarse-grain multithreading



1. Architecture



Multilevel On-Chip Caches
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Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor



2-Level TLB Organization
Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small 

pages, 7 per thread (2×) for 

large pages

L1 D-TLB: 64 entries for small 

pages, 32 for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU 

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware



3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte 

blocks, 4-way, approx LRU 

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte 

blocks, 8-way, approx LRU 

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, write-

back/allocate, hit time 9 cycles

L2 unified 

cache

(per core)

256KB, 64-byte blocks, 8-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified 

cache 

(shared)

8MB, 64-byte blocks, 16-way, 

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 

replace block shared by fewest 

cores, write-back/allocate, hit 

time 32 cycles

n/a: data not available



Multicores: The following should be 
provided by hardware and/or OS

A. Connect processors to shared memories (the 
interconnect)

B. Address concurrent read/writes

C. Memory consistency: cache coherence 
protocol

D. Static/dynamic mapping of 
processes/threads to the cores

E. Thread synchronization



 SMP: shared memory multiprocessor
◦ Hardware provides single physical

address space for all processors

◦ Synchronize shared variables using locks

◦ Memory access time
 UMA (uniform) vs. NUMA (nonuniform)

A. Shared Memory
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Typical architectures



Bus-based Interconnects

With local 

memory/cache



Crossbar switches



Symmetric Multiprocessor 
Architectures (SMPs)

 Cf AMD architecture

 Bus is potential bottleneck

Number of SMPs is limited



B. PRAM Architectures

 Handling of simultaneous memory accesses:
◦ Read operation

 Exclusive-read, concurrent-read

◦ Write operation

 Exclusive-write, concurrent-write

 4 implementations: 
◦ EREW: access to a memory location is exclusive

◦ CREW: multiple write accesses are serialized

◦ ERCW

◦ CRCW: most powerful PRAM model



Concurrent Write Access Requires 
Arbitration

 Common: write is allowed if the new values are 

identical

 Arbitrary: an arbitrary processor is allowed to write, 

the rest fails.

 Priority: processor with the highest priority 

succeeds 

 Sum: the sum of the values is written. Any other 

operator can be used.



 Each memory bank/partition has one or two 
ports (read/write)
◦ Vertical partitioning (banks)

◦ Horizontal partitioning

 Each port can serve one memory request at 
the same time

 Multiple requests are handled one-by-one

Memory banks/partitions



 Memory banks

 Memory partitions

Memory Controllers (MCs)
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C. Caching & memory coherence

 Caching: copies are brought closer to processor
◦ By cache lines of 64/128 Bytes

 Cache coherence mechanism: to update copies



Cache Coherence Problem
 Suppose two CPU cores share a physical 

address space
◦ Write-through caches

Time 

step

Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1



False sharing

 2 processors do not share data but share a cache line 

◦ each processor has some data in the same cache line

◦ cache line is kept coherent, unnecessarily…

RAM

Level 2 

cache

core core core core

Level 1 

cache

Cache line = 6x8 bytes

Cache line = 3x8 bytes



Cache Coherence Mechanisms

Update protocol

 Excess in updates if variable is only read once in P1

 False sharing: processes update different parts of 
same cache line

Used nowadays: Invalidate protocols



Cache Coherence Mechanisms

 To keep copies of data in different memory elements 
consistent!
◦ Is not always performed. Best effort.

◦ Or explicit synchronization.

Invalidate protocol



Cache Coherence Protocols

= Operations performed by caches in multiprocessors 
to ensure coherence

 Snooping protocols
◦ If a cache line has been changed: a notification is put on the 

snoop bus

◦ All caches monitor the snoop bus.

 If a cache line they own is changed by another cache

 cache line is invalidated or update

• The first cache that can put notification on the snoop bus 
gets the ownership of the cache line

 Directory-based protocols
◦ Caches and memory record sharing status of blocks in a 

directory



Invalidating Snooping Protocols

 Cache gets exclusive access to a block when 
it is to be written
◦ Broadcasts an invalidate message on the bus
◦ Subsequent read in another cache misses

 Owning cache supplies updated value

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1



Memory Consistency

 When are writes seen by other processors
◦ “Seen” means a read returns the written value
◦ Can’t be instantaneously

 Assumptions
◦ A write completes only when all processors have 

seen it
◦ A processor does not reorder writes with other 

accesses

 Consequence
◦ P writes X then writes Y
 all processors that see new Y also see new X

◦ Processors can reorder reads, but not writes



Memory Consistency



MESI-protocol

State Cacheline
Valid?

Valid in 
memory?

Copy in other 
cache?

Write access

Modified Yes No No Cache

Exclusive Yes Yes No Cache

Shared Yes Yes Possible Cache/Memo
ry

Invalid No Unknown Possible Memory

Complex, but effective protocol

Used by Intel

AMD adds an ‘owned’ state => MOESI-protocol

Possible states of a cache line:



 Static mapping

 Dynamic: Processor switches between 
processes/threads 

D. Process/thread scheduler



Software versus hardware threads

 Software threads
◦ Processor can only execute one program at the same 

time

◦ Overhead! Due to context switch (saving/restoring of 
processor state)

 Hardware threads
◦ Processor can execute several programs 

simultaneously: instructions of different threads go 
through pipeline

◦ No overhead!

◦ Intel CPUs: Hyperthreading



Hardware threads

 Software threads: scheduling and context switching is 
performed by Operating System

◦ Has a cost (overhead).

 Hardware thread: 

◦ Scheduling and context switching done by hardware.

◦ Separate registers & logic for each thread.

◦ Context switching is cheap.

◦ Each hardware thread appears as a logical processor 
core to the OS!

 In INTEL processors: Hyperthreading

 In GPUs: 1000s of threads are possible without overhead!



Multi-Threading (MT) possibilities

36

Context switch

Simultaneous MultiThreading

Fine-grained parallelism: see chapter on GPUs



 For efficiency, OS and hardware should 
organize this

 See next part

E. Thread Synchronization



2. Multicore usage



 Sum 100,000 numbers on 100 processor 
UMA
◦ Each processor has ID: 0 ≤ Pn ≤ 99
◦ Partition 1000 numbers per processor
◦ Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;i < 1000*(Pn+1); i++)

sum[Pn] += A[i];

 Now need to add these partial sums
◦ Reduction: divide and conquer
◦ Half the processors add pairs, then quarter, …
◦ Need to synchronize between reduction steps

Example: Sum Reduction



half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Example: Sum Reduction



 Fork & join

Multi-threading primitives



 A thread is basically a lightweight
process 

 A process : unit of resource 
ownership 

◦ a virtual address space to hold the 
process image 

◦ control of some resources (files, I/O 
devices...) 

 A thread is an execution path

◦ Has access to the memory address 
space and resources of its process. 
Shares it with other threads.

◦ Has its own function call stack.

Thread creation

main(){

thread.start();

...

...

...

...

...

}

run(){

...

...

...

}

Setup

Tear down

Process Thread

main 

thread



 One thread per C-element

 Concurrent read must be possible

No synchronization necessary

Too many threads

= a lot of overhead

Example: Matrix Multiplication

A11 A12 A13 ..  .. A1n 

A21 A22 ..       ..  A2n

...

Ai1 Ai2 Ai3 ..    .. Ain

...

...

...

An1 An2 An3 ..  .. Ann

B11 B12 .. B1j ..  .. B1n 

B21 B22 .. B2j     ..  B2n

...

...

...

...

...

Bn1 Bn2 .. Bnj  .. Bnn

Cij

 

 

A

B

C

for (r = 0; r < n; r++) 
for (c = 0;c < n; c++) 

c[r][c] = create_thread(dot_product(
get_row(a, r),get_col(b, c))); 

In this case, one may think of the thread as an instance of a 

function that returns before the function has finished executing. 



 Software Portability
◦ run on serial and parallel machines

 Latency Hiding
◦ While one thread has to wait, others can utilize CPU

◦ For example: file reading, message reading, reading data from 
higher-level memory

 Scheduling and Load Balancing
◦ Large number of concurrent tasks

◦ System-level dynamic mapping to processors

 Ease of Programming
◦ Easier to write than message-passing programs (at first sight)

Why Threads?



Latency Hiding

Faster CPU
More 
threads

4 cores: x4
Latency hiding: x3
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Multi-threading without speedup

 Webserver: a thread for each client

◦ Multi-threading for convenience
◦ = distributed computing, not parallel computing

 But: one can loose performance!

◦ 4 requests, each request takes 10 seconds to finish. 
◦ A single thread: user #1 has to wait 10 seconds, user 

#2 will wait 20 seconds, user #3 will wait 30 seconds 
and user #4 will wait 40 seconds. 

Average waiting time = 25 seconds

◦ Four threads are activated: they must split the 
available processor time. Each thread will take four 
times as long. So each request will complete at about 
40 seconds.

Waiting time = 40 seconds (+37.5%!) 

LINK 9



x is initially set to 1

One thread: x = 10; print(x);

Second thread: x = 5; print(x);

Both threads are started at the same time

What is the output?

Example why synchronization is 
necessary.



 When 2 threads run 
simultaneously, we cannot 
determine which one is 
first or which one is 
faster…

Race condition 
“a flaw in an electronic system or 
process whereby the output and/or 
result of the process is unexpectedly 
and critically dependent on the sequence 
or timing of other events.”

The term originates with the idea of two 
signals racing each other to influence 
the output first.

Indeterminism

Synchronization necessary



 When multiple threads attempt to manipulate the 
same data item, the results can often be incoherent 
if proper care is not taken to synchronize them. 

 Example: 
/* each thread tries to update variable best_cost */ 

if (my_cost < best_cost) 

best_cost = my_cost; 

◦ Assume that there are two threads, the initial value of best_cost is 
100, and the values of my_cost are 50 and 75 at threads t1 and 
t2. 

◦ Depending on the schedule of the threads, the value of best_cost
could be 50 or 75! 

◦ The value 75 does not correspond to any serialization of the 
threads. 

Synchronization of Critical Sections

critical section



Synchronization OK

50

my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost; 

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost < 
best_cost) 

best_cost = my_cost; 

OK

best_cost = 50

shared variable

best_cost = 75



Synchronization OK

51

my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost; 

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost < 
best_cost) 

best_cost = my_cost; 

OK

best_cost = 50

shared variable

best_cost = 50



Synchronization problem!!

52

my_cost = 75;

if (my_cost < best_cost)

best_cost = my_cost; 

Thread 1 Thread 2best_cost = 100

my_cost = 50;

if (my_cost < best_cost) 

best_cost = my_cost; 

Happens when the if-then of thread 2 happens 

in between the if and then of thread 1

best_cost = 75

shared variable

best_cost = 50

NOK



Solution: locking of critical sections

53

Thread 1 Thread 2best_cost = 100
pthread_mutex_t lock;

best_cost = 75

shared variables

best_cost = 50

OK

my_cost = 75;

pthread_mutex_lock(&lock)

if (my_cost < best_cost)

best_cost = my_cost;

pthread_mutex_unlock(&lock)

my_cost = 50;

pthread_mutex_lock(&lock)

if (my_cost < best_cost) 

best_cost = my_cost; 

pthread_mutex_unlock(&lock)

The mutex (mutual exclusion) lock overcomes that 2 threads can 

simultaneously execute the same critical section, thread 2 is 

blocked until thread 1 releases the lock.



Updating the same variable by 
different threads

Without synchronization, the data is not immediately updated and you 

might miss some values. The counter increment is called a critical 

section.

Java Solution (synchronized method): 

synchronized void addOne(){ 

count++; 

}

Example: threads are counting something and increment a common 

counter



 Problems:
What if access_x is 
accessed at the same 
time?

Thread consumes CPU 
time while waiting

Hardware & Operating 
System support needed!

A naïve critical section solution

boolean access_x=true;

while (!access_x)

; 

access_x=false;

if (my_cost < best_cost) 

best_cost = my_cost; 

access_x=true;

Ps. There is a software solution for this: Peterson Algorithm 
(but not efficient)



Critical sections trigger cache 
coherence

 System will not perform cache coherence all the time

◦ Too costly

 Critical sections indicate shared data

10/7/2019 56



Producers-Consumers Scenario

Producer

Threads

...

Produce thing

Put in buffer

...

Consumer

Threads

...

Get from buffer

Consume thing

...

...

Produce thing

If buffer=full

   wait

Put in buffer

Signal non-

emptiness

...

…

If buffer=empty

  wait

Get from buffer

Consume thing

Signal non-

fullness

...

1. Thread synchronization



Multi-threading primitives

Should minimally allow the following:

1. Thread creation

2. Locking of critical sections

3. Thread synchronization

With primitives we mean the minimal set of mechanisms (e.g. 
functions or language constructs) you need to write any multi-
threaded program.



Pthreads (C, C++, …) & Java

PThreads Java

How? library Built-in language
Encapsulation:
object manages 
thread-safety

Thread creation pthread_create
function

Thread class
Runnable interface

Critical sections Locks Synchronized 
methods

Thread 
synchronization

Condition variables Wait & notify

10/7/2019 59
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3. Low-level 
implementation
of thread synchronization



A bit of history: Semaphores

 One of the first concepts for both critical sections &                           
thread synchronization.

 Invented by Dutch computer scientist Edsger Dijkstra.

 found widespread use in a variety of operating systems as basic 
primitive for avoiding race conditions.

 Based on a protected variable for controlling access by multiple 
processes to a common resource

 By atomic operations you can decrement or increment semaphores

 binary (flag) or integer (counting)

◦ When binary: similar to mutexes

◦ When integer: The value of the semaphore S is the number of units of the 
resource that have not been claimed.

1930 – 2002

http://en.wikipedia.org/wiki/Binary_numeral_system


1. Atomicity

2. Spinlock versus thread inactivation

3. Cache coherence

4. Instruction reordering

Hardware instructions?

Implementation in hardware?

Role operating system?

Problems to solve



 to write to a memory location and return its old 
value as a single atomic (i.e., non-interruptible) 
operation. 

 If multiple processes may access the same memory 
location, and if a process is currently performing a 
test-and-set, no other process may begin another 
test-and-set until the first process is done. 

 CPUs may use test-and-set instructions offered by 
other electronic components, such as dual-port 
RAM

Test-and-set

http://en.wikipedia.org/wiki/Atomic_(computer_science)
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/DPRAM


boolean lock = false

function Critical(){

while TestAndSet(lock, true)

skip // spin until lock is acquired

critical section // only one process can be in 

this section at a time

lock = false // release lock when finished with 

the critical section

}

Implementing mutual exclusion 
with test-and-set



Synchronization in MIPS 

 Load linked: ll rt, offset(rs)
◦ rs: address

 Store conditional: sc rt, offset(rs)
◦ Tries to write value rt to address rs
◦ Succeeds if location not changed since the ll

 Returns 1 in rt (side-effect: rt = flag to indicate success)

◦ Fails if location is changed
 Returns 0 in rt

 Implemented in hardware with a bit called LLbit, 
which is set to zero if value at location has changed
◦ After a store conditional, the LLbit will be set to 0 at the 

other locations (cache copies) using the same rs
 => their sc will fail

 This is managed by the cache coherence system

See https://www.cs.auckland.ac.nz/courses/

compsci313s2c/resources/MIPSLLSC.pdf



TestAndSet
argumenten: $a0 (lock variabele) en $a1 (waarde) 
teruggeefwaarde: register $v0

try: add $t0,$zero,$a1 ;copy set-value
ll $t1,0($a0)    ;load linked
sc $t0,0($a0)    ;store conditional
beq $t0,$zero,try ;branch store fails
add $v0,$zero,$t1 ;put loaded value in $v0

Test-and-set with LL and SC



Test-and-set with LL and SC



Atomic swap in MIPS 

 Example: atomic swap of $s4 and $s1 
◦ Atomic: $s4 and $s1 are not changed by another 
thread during the swap

◦ Application: to test/set lock variable

try: add $t0,$zero,$s4 ;copy exchange value
ll $t1,0($s1)    ;load linked
sc $t0,0($s1)    ;store conditional
beq $t0,$zero,try ;branch store fails
add $s4,$zero,$t1 ;put load value in $s4



 Prevent interrupts (thread switching) within 
critical sections

1a. Atomicity on single cores



 Memory fences (barriers) necessary
◦ Memory fence = a type of barrier instruction that 

causes a central processing unit (CPU) or compiler 
to enforce an ordering constraint on memory 
operations issued before and after the barrier 
instruction. 

=> the operations issued prior to the barrier are 
guaranteed to be performed before operations issued 
after the barrier.

 Implemented via cache coherence system

1b. Atomicity on multicores



 Spinning for short locks

 Switching for long locks
◦ Eg: when inactive thread has to release the lock!

 In practice: spinning with timer interrupt to
suspend thread

 Operating system ensures switching
◦ Smart thread scheduling

2. Spinning vs switching



 memory fences via snoop bus

 Claim ownership on cache line

 Either waiting for response

 Either tag cache line and check later
◦ See LL and SC instructions of MIPS

 IO must also be connected to the cache 
coherence system to know whether RAM is 
up-to-date (e.g. When memory-mapped IO)

3. Cache coherence



4. Thread reordering

 Initially, A = B = 0

 Then: 

 Value of r1 and r2?

 End result r2 == 2, r1 == 1 is possible!!

◦ Compilers are allowed to reorder the instructions in either 
thread, when this does not affect the execution of that 
thread in isolation (being independent)

◦ Reordering instructions might improve performance

 This can be solved by adding a memory fence, which 
will act as a barrier

Thread 1 Thread 2

1: r2 = A; 3: r1 = B;

2: B = 1; 4: A = 2;



A bit of history: Semaphores

 One of the first concepts for critical sections & thread 
synchronization.

 Invented by Dutch computer scientist Edsger Dijkstra.

 found widespread use in a variety of operating systems as basic 
primitive for avoiding race conditions.

 Based on a protected variable for controlling access by multiple 
processes to a common resource

 By atomic operations you can decrement or increment semaphores

 binary (flag) or integer (counting)

◦ When binary: similar to mutexes

◦ When integer: The value of the semaphore S is the number of units of the 
resource that have not been claimed.

10/7/2019 76

1930 – 2002

http://en.wikipedia.org/wiki/Binary_numeral_system


4. Java threads
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The Java Thread Class
PPP 202
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Thread creation

class PrimeThread extends Thread { 
long minPrime; 

PrimeThread(long minPrime) { 
this.minPrime = minPrime; 

} 
public void run() { 
// compute primes larger 
// than minPrime

. . . 
} 
} 

PrimeThread p = new PrimeThread(143);
p.start(); 

class PrimeRun implements Runnable { 
long minPrime; 
PrimeRun(long minPrime) { 
this.minPrime = minPrime; 
} 
public void run() { 
// compute primes larger 
// than minPrime 
. . . 
} 
} 

PrimeRun p = new PrimeRun(143); 
new Thread(p).start(); 

LINK 2
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Synchronized methods & blocks

synchronized void updateCost(int 
my_cost){

if (my_cost < best_cost) 
best_cost = my_cost;

}

Synchronized(object) {
if (my_cost < 

best_cost) 
best_cost = 

my_cost;
}

LINK 3

void updateCost(int my_cost){
Synchronized(this) {

if (my_cost < best_cost) 
best_cost = my_cost;

}
}

is identical to

synchronized static void 
method(){

…
}

Static methods

synchronized on the associated 'Class' 
object:
<theClass>.class is used for locking

1

2
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Java objects act as Monitors

 When one thread is executing a synchronized method for 
an object, all other threads that invoke synchronized 
methods for the same object block (suspend execution) 
until the first thread is done with the object. 

 When a synchronized 

method exits, the new state

of the object are visible to

all threads.

Thread synchronization 

happens through objects.



Example: Counting 3s

 Parallelism? Yes.

 Multithreaded solution: divide counting

count=0;

for (int i=0;i<array.length;i++)

if  (array[i] == 3)

count++;

n data values x0, …, xn 

in array array

PPP 29



Parallel Counting 3s (wrong version)

count=0;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

public void run(){

int length_per_thread=array.length/ nbrThreads;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

count++;

}

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

try {

threads[t].join();

} catch (InterruptedException e) {}



Parallel Counting 3s: experiments

Counting 3s in an array of 1000 elements and 4 threads:

* Seq  : counted 100 3s in 234us

* Par 1: counted 100 3s in 3ms 615us

* Par 2: counted 100 3s in 13ms 83us

* Par 3: counted 100 3s in 5ms 23us

* Par 4: counted 100 3s in 3ms 845us

Counting 3s in an array of 40000000 elements and 4 threads:

* Seq  : counted 4000894 3s in 147ms

* Par 1: counted 3371515 3s in 109ms

* Par 2: counted 4000894 3s in 762ms

* Par 3: counted 4000894 3s in 93ms 748us

* Par 4: counted 4000894 3s in 77ms 14us

On a dual core processor



Parallel Counting 3s II

 Problem in 
previous: access 
to the same data

 Solution: 
synchronized 
method

synchronized void addOne(){ count++; }

count=0;

final int NBR_THREADS = nbrThreads;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

public void run(){

int length_per_thread=array.length/NBR_THREADS;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)
addOne(); }

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

try {

threads[t].join();

} catch (InterruptedException e) {}
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Parallel Counting 3s III

 Problem in 
previous: 

- locking overhead

- lock contention

- cache coherence 
overhead

 Solution: Use 
local subtotals

synchronized void addCount(int n){ count+=n; }

count=0;

final int NBR_THREADS = nbrThreads;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

int private_count=0;

public void run(){

int length_per_thread=array.length/NBR_THREADS;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

private_count++;

addCount(private_count);

}

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

threads[t].join();
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Parallel Counting 3s IV

 Problem in 
previous: false 
sharing

(see earlier slide)

 Solution: 
padding

synchronized void addCount(int n){ count+=n; }

count=0;

final int NBR_THREADS = nbrThreads;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

int private_count=0;

int p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15;

public void run(){

int length_per_thread=array.length/NBR_THREADS;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

private_count++;

addCount(private_count);

}

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

threads[t].join();

PPP 34



10/7/2019 89

Volatile Variables

 The Java language allows threads to keep private working 
copies of these variables (= caching). This enables a more 
efficient execution of the two threads. For example, when 
each thread reads and writes these variables, they can do 
so on the private working copies instead of accessing the 
variables from main memory. The private working copies 
are reconciled with main memory only at specific 
synchronization points.

 Volatile variables: Private working memory is reconciled 
with main memory on each variable access.
= Light-weight synchronization

LINK 4
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Only for atomic operations

volatile int best_cost;
…
if (my_cost < 
best_cost) 

best_cost = my_cost;
…

volatile int x;
…
X++;
…

volatile int x;
…
X=5;
…

Which code is thread-safe?

Conditions:

1. Writes to the variable do not depend on 

its current value. 

2. The variable does not participate in 

invariants with other variables

volatile int lower, upper;

public void setLower(int value) { 
if (value > upper) 

throw new 
IllegalArgumentException(...);

lower = value;
}
public void setUpper(int value) { 

if (value < lower) 
throw new 

IllegalArgumentException(...);
upper = value;

}

LINK 4&5



Incorrectly synchronized programs 
exhibit surprising behaviors

 Initially, A = B = 0

 Then: 

 End result r2 == 2, r1 == 1 is possible!!

◦ Compilers are allowed to reorder the instructions in 
either thread, when this does not affect the 
execution of that thread in isolation (being 
independent)

◦ Reordering instructions might improve performance
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Thread 1 Thread 2

1: r2 = A; 3: r1 = B;

2: B = 1; 4: A = 2;



The Java Memory Model

 Describes how threads interact through memory.

 Specifies the legal behaviors for a multithreaded 
program.

 The compiler/virtual machine is allowed to make 
optimizations.

 Tries to provide safety, but also flexibility (allowing 
optimizations to improve performance).

◦ Trade-off!

10/7/2019 92

LINK 4
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Thread Synchronization

Via Object class

 public final void wait() throws InterruptedException
◦ Causes the current thread to wait until another thread invokes the notify()

method or the notifyAll()

◦ The current thread must own this object's monitor. The thread releases 
ownership of this monitor 

 public final void wait(long timeout, int nanos) throws 
InterruptedException

 public final void notify()
◦ Wakes up a single thread that is waiting on this object's monitor. 

◦ The awakened thread will not be able to proceed until the current thread 
relinquishes the lock on this object. 

 public final void notifyAll() 

LINK 2

http://java.sun.com/javase/6/docs/api/java/lang/InterruptedException.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/InterruptedException.html
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Put synchronization in critical 
section

OK?
...

Produce thing

while buffer=full

   wait()

Put in buffer

notify()

...

…

while buffer=empty

  wait()

Get from buffer

notify()

Consume thing

...

synchronized void put()

{

  while buffer=full

     wait()

  Put in buffer

  notify()

}

synchronized void get()

{

  while buffer=empty

     wait()

  Get from buffer

  notify()

}

Lock is released 
on wait() 

LINK 6

Race condition 
possible!

Producer

Threads

Consumer

Threads



10/7/2019 95

Vector versus ArrayList

 Vector is synchronized, Arraylist is not

 Only one thread: 
◦ Reported: Vector is slower <> my tests: no 

difference
Recent java versions automatically choose best version

 Multiple threads:
◦ Vector OK

◦ Use Collections.synchronizedList(new 
ArrayList(...)) ;

LINK 7
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Atomic Objects

http://java.sun.com/docs/books/tutorial/essential/concurre
ncy/atomicvars.html

 Liveness problem:
◦ Waiting threads due to (unnecessary) synchronization

LINK 3

http://java.sun.com/docs/books/tutorial/essential/concurrency/atomicvars.html
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More Advanced …

 Explicit lock objects
◦ tryLock(): provides means to back out of lock

 Executors: more advanced threads
◦ Thread pools: reuse of finished threads

 Concurrent Collections: concurrent data 
structures that can be accessed by multiple 
threads simultaneously
◦ BlockingQueues

◦ ConcurrentMa

PPP 207



POSIX Threads
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The POSIX Thread API 

 Commonly referred to as Pthreads, POSIX has emerged 
as the standard threads API (1995), supported by most 
vendors. 

 The concepts discussed here are largely independent of 
the API and can be used for programming with other 
thread APIs (NT threads, Solaris threads, Java threads, 
etc.) as well. 

KUMAR Chapter 7

PPP Chapter 6
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pthreads: Creation and Termination 

#include <pthread.h> 

int pthread_create (pthread_t *thread_handle, const 
pthread_attr_t *attribute, void * (*thread_function)(void *), 
void *arg);

int pthread_join ( pthread_t thread, void **ptr);

 The function pthread_create invokes function 
thread_function as a thread.

 The function pthread_join waits for the thread to be 
finished and the value passed to pthread_exit (by the 
terminating thread) is returned in the location pointer 
**ptr.
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Example
#include <pthread.h> 

#include <stdlib.h> 

#define MAX_THREADS 512 

void *compute_pi (void *); 

main() { 

pthread_t p_threads[MAX_THREADS]; 

pthread_attr_t attr; 

pthread_attr_init (&attr); 

for (i=0; i< num_threads; i++) { 

hits[i] = i; 

pthread_create(&p_threads[i], &attr, compute_pi, 
(void *) &hits[i]);

} 

for (i=0; i< num_threads; i++) { 

pthread_join(p_threads[i], NULL); 

total_hits += hits[i]; 
}

} 

Executed on a 4-processor SGI 

Origin: speedup of 3.91 with 32 

threads. 

This corresponds to a parallel 

efficiency of 0.98! 

KUMAR
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Mutual Exclusion 

 The code in the previous example corresponds to a 
critical segment or critical section; i.e., a segment that 
must be executed by only one thread at any time. 

 Critical segments in Pthreads are implemented using 
mutex locks. 

 Mutex-locks have two states: locked and unlocked. At any 
point of time, only one thread can lock a mutex lock. A 
lock is an atomic operation. 

 A thread entering a critical segment first tries to get a 
lock. It goes ahead when the lock is granted. Otherwise it 
is blocked until the lock relinquished.
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Mutual Exclusion 

 The pthreads API provides the following 
functions for handling mutex-locks: 

◦ int pthread_mutex_init ( pthread_mutex_t
*mutex_lock, const pthread_mutexattr_t

*lock_attr);

◦ int pthread_mutex_lock ( pthread_mutex_t
*mutex_lock); 

◦ int pthread_mutex_unlock (pthread_mutex_t
*mutex_lock); 
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Lock critical sections

 We can now write our previously incorrect code segment as: 

pthread_mutex_t minimum_value_lock; 

... 

main() { 

.... 

pthread_mutex_init(&minimum_value_lock, NULL); 
.... 

} 

void *find_min(void *list_ptr) { 

.... 

pthread_mutex_lock(&minimum_value_lock); 

if (my_min < minimum_value) 

minimum_value = my_min; 

/* and unlock the mutex */ 

pthread_mutex_unlock(&minimum_value_lock); 

}
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Disadvantages lock
 Deadlock possible, see later

 Performance degradation
◦ Due to locking overhead

◦ Due to idling of locked threads (if no other thread is there to 
consume available processing time)

Alleviate locking overheads

 Minimize size of critical sections
◦ Encapsulating large segments of the program within locks can 

lead to significant performance degradation. 

◦ create_task() and process_task() are left outside 
critical section!
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Alleviate locking overheads

 Test a lock:

◦ int pthread_mutex_trylock (pthread_mutex_t
*mutex_lock);

◦ Returns 0 if locking was successful, EBUSY when 
already locked by another thread.

 pthread_mutex_trylock is typically much faster than 
pthread_mutex_lock since it does not have to deal with 
queues associated with locks for multiple threads waiting 
on the lock. 

 Example: write result to global data if lock can be 
acquired, otherwise temporarily store locally

KUMAR: ‘Finding matches in a list’
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Condition Variables for Synchronization

 A condition variable allows a thread to block itself until specified data 
reaches a predefined state. 

 A condition variable is associated with this predicate. When the 
predicate becomes true, the condition variable is used to signal one 
or more threads waiting on the condition. 

 A single condition variable may be associated with more than one 
predicate. 

 A condition variable always has a mutex associated with it. A thread 
locks this mutex and tests the predicate defined on the shared 
variable. 

 If the predicate is not true, the thread waits on the condition variable 
associated with the predicate using the function 
pthread_cond_wait.
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Synchronization in Pthreads

 Pthreads provides the following functions for 

condition variables:
int pthread_cond_wait(pthread_cond_t *cond, 

pthread_mutex_t *mutex); 
int pthread_cond_signal(pthread_cond_t *cond); 

int pthread_cond_broadcast(pthread_cond_t *cond); 

int pthread_cond_init(pthread_cond_t *cond, 

const pthread_condattr_t *attr); 

int pthread_cond_destroy(pthread_cond_t *cond);
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Producer-consumer work queues

 The producer threads create tasks and inserts 
them into a work queue.

 The consumer threads pick up tasks from the 
queue and executes them.

 Synchronization!
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Producer-Consumer Using Locks 

 The producer-consumer scenario imposes the following 
constraints: 

 The producer thread must not overwrite the shared buffer 
when the previous task has not been picked up by a 
consumer thread. 

 The consumer threads must not pick up tasks until there 
is something present in the shared data structure. 

 Individual consumer threads should pick up tasks one at a 
time.



PPP 170

(get-put)==1

Small mistake in PPP on page 170

Thanks to Xuyang Feng, 2014
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Controlling Thread and Synchronization 
Attributes 

 The Pthreads API allows a programmer to change the 
default properties of entities (thread, mutex, condition 
variable) using attributes objects. 

 An attributes object is a data-structure that describes 
entity properties. 

 Once these properties are set, the attributes object can 
be passed to the method initializing the entity. 

 Enhances modularity, readability, and ease of 
modification. 



113

Attributes Objects for Threads 

 Use pthread_attr_init to create an attributes object. 

 Individual properties associated with the attributes 
object can be changed using the following functions: 

pthread_attr_setdetachstate, 

pthread_attr_setguardsize_np, 

pthread_attr_setstacksize, 

pthread_attr_setinheritsched,

pthread_attr_setschedpolicy,

pthread_attr_setschedparam
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Threads locks multiple times

pthread_mutex_lock(&lock1); 

...

pthread_mutex_lock(&lock1); 

...

pthread_mutex_unlock(&lock1); 

...

pthread_mutex_unlock(&lock1);

E.g. happens when in 
one critical section 
we call code with also 
a critical section 
protected by the 
same lock

What will happen?  
➢ depends on type of lock
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Types of Mutexes 
 Pthreads supports three types of mutexes - normal, recursive, and 

error-check. 

◦ A normal mutex deadlocks if a thread that already has a lock 
tries a second lock on it. This is the default. 

◦ A recursive mutex allows a single thread to lock a mutex as 
many times as it wants. It simply increments a count on the 
number of locks. A lock is relinquished by a thread when the 
count becomes zero. 

◦ An error check mutex reports an error when a thread with a 
lock tries to lock it again (as opposed to deadlocking in the 
first case, or granting the lock, as in the second case).

 The type of the mutex can be set in the attributes object before it is 
passed at time of initialization.
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Attributes Objects for Mutexes 
 Initialize the attrributes object using function: 

pthread_mutexattr_init. 
 The function pthread_mutexattr_settype_np can be 

used for setting the type of mutex specified by the 
mutex attributes object. 
pthread_mutexattr_settype_np ( 
pthread_mutexattr_t *attr, 
int type);

 Here, type specifies the type of the mutex and can take 
one of: 
◦ PTHREAD_MUTEX_NORMAL_NP 
◦ PTHREAD_MUTEX_RECURSIVE_NP 
◦ PTHREAD_MUTEX_ERRORCHECK_NP
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Thread Cancellation

int pthread_cancel(pthread_t *thread); 

 Terminates another thread

 Can be dangerous
◦ In java: deprecated suspend() method. Use of it is discouraged.

◦ But sometimes useful, e.g. as long as the user is staying at a certain 
view in your application, you calculate extra information, as soon as he 
leaves the view, you stop the calculation.

 A thread can protect itself against cancellation

 pthread_exit: exit thread (yourself) without exiting the 
process

Pthread_cond_timedwait



Thread Safety



Adaptable range-object

11

9

volatile int lower, upper;

public void setLower(int value) { 
if (value > upper) 

throw new IllegalArgumentException(...);
lower = value;

}
public void setUpper(int value) { 

if (value < lower) 
throw new IllegalArgumentException(...);

upper = value;
}

 Object specifies a range with a lower and upper 
attribute. 

◦ Invariant (should always be true): lower <= upper

◦ Make thread-safe! Check the invariant.



Condition variables & locking

 Condition variables should be protected by a 
lock
◦ Signal of non-emptiness can happen just between 

check and when consumer thread goes into waiting

 Should the signal also be protected by the 
lock?
◦ No

PPP 171-173



Thread-safe?

pthread_mutex_lock(&lock); 
while (apples==0) 

pthread_cond_wait(&more_apples, &lock);
while (oranges==0) 

pthread_cond_wait(&more_oranges, 
&lock);
// eat apple & orange
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock); 
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples, &lock);
pthread_cond_wait(&more_oranges, 

&lock);
}
// eat apple & orange
pthread_mutex_unlock(&lock);

NOK!!

Still NOK!

PPP 173-174

Mistake in PPP on page 173!!



Thread-safe!

pthread_mutex_lock(&lock); 
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples_or_more
oranges, &lock);
}
// eat apple & orange
pthread_mutex_unlock(&lock);

OK

PPP 173-174

OK

pthread_mutex_lock(&lock); 
boolean allConditionsPassed;
do {

allConditionsPassed = true;
if (apples == 0){

pthread_cond_wait(&more_apples, &lock);
allConditionsPassed = false; }

if (oranges == 0){
pthread_cond_wait(&more_oranges, &lock);
allConditionsPassed = false; }

} while (!allConditionsPassed);
// eat apple & orange
pthread_mutex_unlock(&lock);

Mistake in PPP on page 173!!

By the boolean, you can easily add

more conditions. Also OK, no boolean: 

} while(apples == 0 || oranges == 0) 

Only 1 cond variable
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The Dining Philosophers
LINK 8

Thinking

Hungry Eating

The philosophers are not 
allowed to speak and there 
is no arbiter organizing the 
resources

strategy (protocol)?
might deadlock or 

livelock…

LES 3 TOT HIER



Deadlocks
 Four conditions

1. Mutual exclusion

2. Hold and wait: threads hold some resources and 
request other

3. No preemption: resource can only be released by the 
thread that holds it

4. Circular wait: cycle in waiting of a thread for a 
resource of another

PPP 177



Livelocks

 Similar to a deadlock, except that the states of the 
processes involved in the livelock constantly change with 
regard to one another, none progressing.

 Real-world example: two people meet in a narrow 
corridor, each moves aside to let the other pass, but they 
end up swaying from side to side

 A risk with algorithms that detect and recover from 
deadlock.
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OpenMP and related
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OpenMP Philosophy

 The OpenMP Application Program Interface (API) 
supports multi-platform shared-memory parallel 
programming in C/C++ and Fortran. 

 Portable, scalable model with a simple and flexible 
interface for developing parallel applications 

 Augment sequential programs in minor ways to identify 
code that can be executed in parallel.
◦ Simpler to use

◦ More restrictive in terms of parallel interactions than Java/POSIX

 Standardized (Sun, Intel, Fujitsu, IBM, …)

 http://www.openmp.org

PPP 207
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How?

 Add pragmas to program

◦ #pragma omp <specifications>
◦ The #pragma directives offer a way for each 

compiler to offer machine- and operating system-
specific features. If the compiler finds a pragma it 
does not recognize, it issues a warning, but 
compilation continues.

 An OpenMP-compliant compiler will generate 
appropriate multithreaded code
◦ Other compilers simply ignore the pragmas and 

generate sequential code.

PPP 208
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Count 3s example
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parallel for (line 9)

 The iterations can execute in any order

the iterations can execute in parallel.
◦ count instead of count_p is wrong!

 Reduction pragma for computations that 
combine variables globally

count=0;

#pragma omp parallel for reduction(+,count)

for(i=0; i<length; i++)

count += array[i]==3 ? 1 : 0;
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Handling data dependencies

#pragma omp critical

{

count += count_p;

}

#pragma omp atomic

score += 3

Memory update is 
noninterruptible

Critical section that 
will be protected by 
locks
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Sections to express task parallelism

#pragma omp sections
{

#pragma omp section
{

Task_A();
}
#pragma omp section
{

Task_B();
}
#pragma omp section
{

Task_C();
}

}



OpenACC for GPU computing

 A dialect of OpenACC especially for GPU computing

◦ Easier than OpenCL/CUDA

◦ The future??

 Based on  OpenHMPP from CAPS enterprise (Bretagne, 
France)
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Matlab: parallel for

 Parallel computing toolbox provides simple constructs 
to allow parallel execution

◦ Parallel for (when iterations are independent)

◦ …

 Automatic parallel execution

 Create pool of computers that will work together

 Many functions of libraries run in parallel and even 
(automatically) on GPU!
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