Parallel Systems

Project topics 2016 - 2017

1. Scheduling

Scheduling is a common problem which however is NP-complete, so
that we are never sure about the optimality of the solution.
Parallelisation is a natural way to find better solutions. The way the
search space is traversed will be discussed in the forthcoming chapter
on Discrete Optimization Problems (slides can be found on website).

Parallelisation can happen on several levels (see slide). We will provide
a real problem and discuss at which level the student will parallelize the
code.

Automated warehouses: scheduling

Optimization of container barge routing

scheduling

Algorithms

Branch &
Bound

Iterated Local
Search

Parallelization

Levels of Parallelism Parallel Hardware

Alternative algorithms

. . cluster
Alternative scenarios (due

to uncertainty)

Multi-search multicore

1%

Tree-level parallelism e (e

Node-level parallelism
(neighbor exploration)

parallel calcution of score
or bound

Suitability is problem-dependent!

P=
I

2. Image processing

Image processing requires a lot of computational power (and also memory
bandwidth). These algorithms are therefore first choices for parallelizations.

e Burg — chapter 3 — convolutions
* Neighborhood operation

(0x1)
(0x0)
(0x1)
+ (-4x2)

Source pixel

-
-
-

Convolution kernel
(emboss)

New pixel value (destination pixel)

.
-
-
-
-
-
-
-
-
-
4 -
-
-
-
-
-
-
-
-

file:///D:/teaching/dsp/The Science of Digital Media by Jennifer Burg/Burg_Worksheets_downloadedNov2012/Chapter2/AliasingInRendering.htm

Examples of convolution

Bufferedimage BufferedimageOp Bufferedimage

The source The filter The destination

Edge detection
with sobel filter

Histogram

* Histogram calculations are essential parts of many algorithms. It is not
completely straight forward to do this on GPU, but with some ‘tricks’,
a good speedup can be achieved.

* Company On Semi is interested in a GPU implementation to calibrate
and test the image sensors they are fabricating.

Image processing for dentists

Nobel Biocare develop software for dentists and surgeons. They need to speed up
their code to ensure a nice user experience. At the moment, they are stuck with
algorithms based on convolutions (see earlier slides). Convolutions are perfect for

GPUs!
The following 2 slides show previous things we did with Nobel Biocare.

5.6 Marching cubes

Requirements:
- Speed up algorithm (MACH: seconds -> real-time).
- Heterogenous CPU/GPU portability (Win/Mac).

CT volume isosurface

I_EXtI’aCtIOH

5.6 Distance map (distance field)

Requirements:
- Speed up algorithm (MACH: minutes -> seconds).
- Heterogenous CPU/GPU portability (Win/Mac).

3D model image volume

ray vs. triangle

Tnangle T

The fastest determinant calculator in
the world

Calculating determinants take time. A student of last year successfully build a GPU
implementation (and also a python version). Calculating a determinant is based on
the determinants of sub matrices. His algorithm starts with calculating all
determinants of all 2x2 sub matrices, then 3x3 and so on. It works!

There are still some optimizations to be tested. We want to make it available for
being used in Matlab.

An application is security. They are looking for matrices (see next slide) for which
no determinant of any sub matrix is zero. Our GPU implementation will help,
because their matlab code is awfully slow!

4-dimensional matrix

]. a2

[} 0 D 15 [} 1 D U 4
. bia 1+apbizs 0 0 0 1 0 0 0 1 0 0
Awal =1 0 1 0| | by 0 14ashs 0]] 0 0 1 0
0 0 0 1 0 0 0 1 514 0 0 1 -I—CE-J_.qu_.q
1 0 0 0 1 0 0 0 1 0 0 0
v 0 1 a3 0 % 0 1 0 124 5 0 1 0 0
0 523]. —|— ﬂ-ng-zg [} D D 1 D D D 1 g4
0 0 0 1 0 by 0 1+ azsboy 0 0 by 1+ asibsy
where aq; j=a, b; = b,we have
1 a1 0O 0 1 0 a 0 1 0 0 a
[A] _ b 1+ab 0 0 » 0o 1 0 0 « 0 1 0 0 «
S 0 1 0 b 0 1+ab 0 0 0 1 0
[0o 0 0 1 J [o0 0 1 J [b 0 0 1+ab J
1 0 0 0 1 0 0 0 1 0 0 0
« 0 1 a 0 » 0 1 0 a y 0 1 0 0
0 b 1+ab 0 0o 0 1 0 0 0 1 a
o0 0 1 0 b 0 1+ab J 0 0 b 1+ab J
! a a 0 1 0 0 a -| 1 0 0 0 -|
B b 1+4+ab ab 0 0 1 a 0 | 0 1 ab 0 |
b 0o 14ab 0! !l 0 b 14ab 0 “1o o 1 3
| 0 0 0 1 b 0 0 1+ab J 0 b b(l4+ab) (1+ab)(1+ab) J

Test the Intel Xeon Phi

A few years ago, Intel brought the Xeon Phi coprocessor on the market to compete
with the huge processing power of GPUs. We have one at our department. A
student could test it capabilities and compare it with GPUs.

The main difference with GPUs is that you need to vectorize your code. This can be
done manually or by compiler pragmas (see forthcoming slides).

Intel’s Xeon Phi coprocessor

Intel’s response to

pEEEE
«’ .I'n n;“; -ﬂ.- w0 cores
-t jpam o - O o - ooy

ring network

10/17/2016 Accelerator technology 16

@

inside™
XEON PHI™

Intel’s Xeon Phi’s core

Thread scheduler

4 hardwareé

threads
VPURF XE7 8F
WU To On-Die Interconnect
512b SIMD S
512-bit S L1 TLB and 32KB Data Cache
Vector unit X86 specific logic < 2% of core + L2 area
(SIMD)

10/17/2016 Accelerator technology 17

inside”
XEON PHI”

Usage of the coprocessor

e As MPIl-node

* Off-load from main processor
* As standalone processor

* Common c-programming
* Pthreads
* Openmp
* Intel threading building blocks

Accelerator technology

Vector processors (SIMD)

128-bit vector registers
71812]|-

Instructions can be performed at once
on all elements of vector registers

31-3|5]-

101 5|7 |-

* Has long be viewed as the solution for high-performance
computing
 Why always repeating the same instructions (on different
data)? => just apply the instruction immediately on all data

 However: difficult to program
* Is SIMT (OpenCL) a better alternative??

Vectorization needed for peak performa

ASM code (addps) Programming control

A

~m512 register

Vector Intrinsics (mm_add_ps()) .
~mmb512 add operations

SIMD Intrinsic Class (F32vec4 add)

SIMD Vectorization (#pragma simd)

Auto-vectorization Hints (#pragma ivdep)

\/

Automatic Vectorization Ease of use

17/10/2016 20 Accelerator technology

Auto-vectorization

Coewae]l eldknc-2:

<1|:|: -vec—-reporth —mmic —S'tlj 99 fu:npenmp -03

TE= L,

test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,

L T N

=

cl36);
cla6):
clhab);
cl36);
clhab);
cl36);
clhab):
cl36);
cla6):
cl36);
cld6);
clhab);
cl36);
clhaG6):
cl36);
cla6):
cl3l)

ct9):

[|

ool
ool .
ool .,
(ool
ool .,
(ool
ool .,
(ool
ool .
ool .,
(col,
ool .,
(ool
ool .
(ool
ool .

ool .,

[col .

AN

=N
<
<
<
<
N
=N
N
<
<
4
<
N
<
N
<
2

Faarm =l-'_|

remark:
remark:
Femarlk:
remark:
Femarlk:
remark:
remark:
remark:
remark:
remark
remark:
Femarlk:
remark:
remark:
remark:
==
rerark:
21 remar.

1T ———

RE——

uectur
vector
vectos
VeS| oFr
vecto
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
coL Lar

GO wectorized:
dependence:
dependenaoas
aependence;
dependence:
denendence:
depenaeiic
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dEﬂﬁnHﬂ““”'
dependence:
loop was not vectorized:

IDDE was not wvectorized: existence of wvector dEEEHdEHCP

tast. o

az;umed

assumed
gssumed
assumed

- — = - A

assumed
assumed
assumed
assumed
assumed
assumed
assumed
assumed

R —

555umed

“/Projectsfadhd/simplet lopsy 2FLAG5S="-vec-reporth -mmic”

-lrt -o test

FLOL dependence between

[N u:'_lclll_lﬁ_ll-_--_
FLOW dependence between
AHTI dependence between
between =236

OUTPUT
aLToLT
OUTPUT
QUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
QUTPUT
OUTPUT

Sl 1Tl T

QUTPUT

dependen:e

dependen:e
dependence
dependence
dependence
dependence
dependence
dependence
dependence

dependence

not inner loop.

H+|nnn

L LWEEn
between
between
between
between
between
between
between
between
between
betuwec,.

CC=icc make -B

L1

a.
256
256
256
256
256
256
256
256
256

P | T o 1y o R o Ty o [y Ty v Ry

existence of wector dependence.
line 36
line 36
= db
line .

256

256

and

and

and

and
line
line
line
line
line
line
line
line
line
line
line
line

line 3
line 3
line 3
linme m

d6
d6
]
d6
]
d6
d6
d6
d6
d6
d6
]

and
and
and
and
and
and
and
and
and
and
and
and

void dflopsidouble =
const double o
const double =

‘ #pragma simd

(long long i

alH] ald]l = =

al 1] = :

al 2] al2]

al 3] al 3]

al 4] al 4]

al5] al5]

alb] alb]

al 7] al 7]

+ + + 4+ + + + o+

aldl aldl] = =
al9] al9] = = +

al 18]
all11]
al12]
al13]
al 14]
al 15]

alld] = =
all11] :
al 12]
al13]
al 14]
al 151

+ + + + + + [0]
OO0 n

17/10/2016 Accelerator technology

Successful vectorization

(R
T
=

@knc-2:
—rppur+h -mmic

| o
-~

.|'|:| —

0 o0 0 |'|:|

- -
1

PFH]EEt_;adhd'=imlef1Hp

*HmdrH:

o

Femark

I

Fimark:
Femnorko

T
T
T
T
t
t
T
T

=
=
=
=
=
=
=
=

t.
.
t.
t.
.
.
L.
L.

I e e Rt

‘'simpleflops$ CFLAI
-std=c99 -03 -fopenmp -funroll-loops
remark:

- Hr—FPpHFtE —mmic”

vectorization support: FETHFHHIH

vectorization suppor o,
LOOP AS “EITHPI 'ED,

].l__l_ L Y L w = |_|_|r].:Elj
L mm st antari zed!

SIMD LDDP-HHQ VECTORIZE L.
aIMD LOOP LAS VECTORIZED,
aIMD LOOP LAS VECTORIZED,

E—

! un:llgned acce
wnaligned ss uUsed inside 1o
not inner loop.
not inner loop.

Test new features of OpenCL 2.0

Explore new features

* You need an OpenCL 2.0-enabled GPU (we can buy one)

* Check online
* Explore differences with OpenCL1.0

* Test them, play with them: make small programs that show how they
work

* Features
 Memory mapping (one address space CPU-GPU)
* Streams

Microbenchmarks

Our GPU research consists of developing small programs that test a specific feature
of GPUs (e.g. memory bandwidth, double precision performance, overhead time
for launching a kernel, etc). They are called microbenchmarks and can be found on:

www.gpuperformance.org.

We invite students to develop new microbenchmarks that we can add to our
microbenchmark suite.

http://www.gpuperformance.org/

