
Parallel Systems
Project topics 2016 - 2017



1. Scheduling

Scheduling is a common problem which however is NP-complete, so 
that we are never sure about the optimality of the solution.
Parallelisation is a natural way to find better solutions. The way the 
search space is traversed will be discussed in the forthcoming chapter 
on Discrete Optimization Problems (slides can be found on website).

Parallelisation can happen on several levels (see slide). We will provide 
a real problem and discuss at which level the student will parallelize the 
code.



Automated warehouses: scheduling



Optimization of container barge routing

scheduling



Alternative algorithms

Alternative scenarios (due 
to uncertainty)

Multi-search multicore

Tree-level parallelism accelerator

Node-level parallelism 
(neighbor exploration)

parallel calcution of score 
or bound

cluster

Iterated Local 
Search

Branch & 
Bound

Parallelization

Algorithms Levels of Parallelism Parallel Hardware

Suitability is problem-dependent!

…



2. Image processing
Image processing requires a lot of computational power (and also memory 
bandwidth). These algorithms are therefore first choices for parallelizations.



• Burg – chapter 3 – convolutions
• Neighborhood operation

file:///D:/teaching/dsp/The Science of Digital Media by Jennifer Burg/Burg_Worksheets_downloadedNov2012/Chapter2/AliasingInRendering.htm


Examples of convolution

Edge detection 
with sobel filter



Histogram

• Histogram calculations are essential parts of many algorithms. It is not 
completely straight forward to do this on GPU, but with some ‘tricks’, 
a good speedup can be achieved.

• Company On Semi is interested in a GPU implementation to calibrate 
and test the image sensors they are fabricating.



Image processing for dentists
Nobel Biocare develop software for dentists and surgeons. They need to speed up 
their code to ensure a nice user experience. At the moment, they are stuck with 
algorithms based on convolutions (see earlier slides). Convolutions are perfect for 
GPUs! 

The following 2 slides show previous things we did with Nobel Biocare.



5.6 Marching cubes

Requirements:
- Speed up algorithm (MACH: seconds -> real-time).
- Heterogenous CPU/GPU portability (Win/Mac).

isosurfaceCT volume

extraction



5.6 Distance map (distance field)

Requirements:
- Speed up algorithm (MACH: minutes -> seconds).
- Heterogenous CPU/GPU portability (Win/Mac).

3D model image volume

ray vs. triangle



The fastest determinant calculator in 
the world
Calculating determinants take time. A student of last year successfully build a GPU 
implementation (and also a python version). Calculating a determinant is based on 
the determinants of sub matrices. His algorithm starts with calculating all 
determinants of all 2x2 sub matrices, then 3x3 and so on. It works!

There are still some optimizations to be tested. We want to make it available for 
being used in Matlab.

An application is security. They are looking for matrices (see next slide) for which 
no determinant of any sub matrix is zero. Our GPU implementation will help, 
because their matlab code is awfully slow!



4-dimensional matrix

𝑤ℎ𝑒𝑟𝑒 𝑎𝑖𝑗 = 𝑎, 𝑏𝑖𝑗= 𝑏,𝑤𝑒 ℎ𝑎𝑣𝑒

14



Test the Intel Xeon Phi
A few years ago, Intel brought the Xeon Phi coprocessor on the market to compete 
with the huge processing power of GPUs. We have one at our department. A 
student could test it capabilities and compare it with GPUs. 

The main difference with GPUs is that you need to vectorize your code. This can be 
done manually or by compiler pragmas (see forthcoming slides). 



Intel’s Xeon Phi coprocessor

Intel’s response to 
GPUs…

60 cores

10/17/2016 16

RAM

ring network

Accelerator technology



Intel’s Xeon Phi’s core

10/17/2016 17

4 hardware

threads

512-bit

Vector unit

(SIMD)

Thread scheduler

Accelerator technology



Usage of the coprocessor

• As MPI-node

• Off-load from main processor

• As standalone processor

• Common c-programming
• Pthreads

• Openmp

• Intel threading building blocks

18Accelerator technology



Vector processors (SIMD)

• Has long be viewed as the solution for high-performance 
computing

• Why always repeating the same instructions (on different 
data)? => just apply the instruction immediately on all data

• However: difficult to program

• Is SIMT (OpenCL) a better alternative??

Instructions can be performed at once
on all elements of vector registers

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers 

+



Vectorization needed for peak performance

17/10/2016 20 Accelerator technology

_m512 register
_mm512_add operations



Auto-vectorization

17/10/2016 21 Accelerator technology



SIMD pragma to indicate parallism

17/10/2016 22 Accelerator technology



Successful vectorization

17/10/2016 23 Accelerator technology



Test new features of OpenCL 2.0



Explore new features

• You need an OpenCL 2.0-enabled GPU (we can buy one)

• Check online 
• Explore differences with OpenCL1.0

• Test them, play with them: make small programs that show how they 
work

• Features
• Memory mapping (one address space CPU-GPU)

• Streams

• ...



Microbenchmarks
Our GPU research consists of developing small programs that test a specific feature 
of GPUs (e.g. memory bandwidth, double precision performance, overhead time 
for launching a kernel, etc). They are called microbenchmarks and can be found on: 
www.gpuperformance.org.

We invite students to develop new microbenchmarks that we can add to our 
microbenchmark suite.

http://www.gpuperformance.org/

