
Discrete Optimization ProblemsMessage-passing Parallel Processing

Parallelization of Discrete
Optimization Problems

Jan Lemeire

Dept. ETRO

November-December 2017

Parallel Systems Course: Chapter VII

Kumar Chapter 11

Advanced Topics in Parallel Processing

1

Jan Lemeire 2Pag. / 19
Discrete Optimization Problems

DOP Example: Shift- Puzzle

5 2

1 8 3

4 7 6

2 3

4 5 6

7 8

1?

Jan Lemeire 3Pag. / 19
Discrete Optimization Problems

Definition DOP

Set of feasible solutions S
Find any feasible solution

Optional: cost function f for each solution
Find optimal feasible solution (min or max)

In terms of complexity of solution methods, there are
two classes:

Problems that have efficient algorithms for finding optimal solutions.
ex Dijkstra

Problems that don’t have such efficient algorithms (NP-complete)
ex Traveling Salesman Problem

Algorithms
Exhaustive search: computational intensive due to large set size

Heuristic search

Jan Lemeire 4Pag. / 19
Discrete Optimization Problems

Tree representation

Shift Puzzle Initial

UP LEFT

UP LEFT DOWN UP LEFT RIGHT

LEFT DOWN

DOWN LEFT RIGHT

...

Jan Lemeire 5Pag. / 19

Another example: scheduling
of automated warehouses

Discrete Optimization Problems

Jan Lemeire 6Pag. / 19
Discrete Optimization Problems

Tree representation

0

feasible solution

optimal solution

Sometimes a feasible solution is OK,

in other cases the optimal solution should be found

Jan Lemeire 7Pag. / 19
Discrete Optimization Problems

Sequential Tree Search
Algorithms

Depth – First search

1. Simple Backtracking

2. Branch and Bound: limit the depth

Breadth – First search

1. Iterative Deepening: with open node list

Heuristic search

Best first search:

– based on breadth-first

– With heuristic function that identifies promising nodes

Jan Lemeire 8Pag. / 19

Alternative algorithms

Alternative scenarios (due
to uncertainty)

Multi-search multicore

Tree-level parallelism accelerator

Node-level parallelism
(neighbor exploration)

parallel calcution of score
or bound

cluster

Iterated Local
Search

Branch &
Bound

Parallelization possibilities

Algorithms Levels of Parallelism Parallel Hardware

Suitability is problem-dependent!

…

Our focus here

Discrete Optimization Problems

Brute force

Jan Lemeire 9Pag. / 19
Discrete Optimization Problems

Parallel Depth-first Tree Search

Distribution of tree:

0

CPU
1

CPU
2 CPU

3

After expansion of root
node: send children
& problem to slaves

Jan Lemeire 10Pag. / 19
Discrete Optimization Problems

DOP looking for a feasible solution

0

CPU
1

CPU
2

CPU
3

feasible solution

seq. algorithm stops

explored by seq. alg.
0

CPU
1

CPU
2

CPU
3

feasible solution

seq. algorithm stops

explored by seq. alg.

Jan Lemeire 11Pag. / 19
Discrete Optimization Problems

Parallel Work Anomalies

Sequential work ≠ Parallel work!





p

i

i

workseq TT
1

seq

p

i

i

work

T

T

worksequential

workparallel
FactorOverheadSearch


 1

In our approach: considered as overhead (can be positive or negative)

Impact on overhead:

seq

anomaly

T

T

Jan Lemeire 12Pag. / 19
Discrete Optimization Problems

Parallel Overhead

Partitioning: low

Communication: low

Synchronization: no

Returning results: low

Idling: HIGH

Due to load imbalances

Solution: dynamic load balancing

“when finished, ask for work”

Find solutions for:

1. Donor Selection

2. Termination Detection

Jan Lemeire 13Pag. / 19

Load imbalances

Discrete Optimization Problems

Jan Lemeire 14Pag. / 19
Discrete Optimization Problems

Donor selection

Asynchronous Round Robin
Each processor keeps a cyclic list

Global Round Robin
Master keeps a cyclic list

Random polling
Random selection of donor

Jan Lemeire 15Pag. / 19
Discrete Optimization Problems

Termination detection

Via master (centralized)

For example: if donor selection happens via master

Dijkstra’s token algorithm (distributed/local)

Arrange processes in a ring

Without DLB: a simple token that is passed around by
processes when they are terminated

With DLB:
– A boolean per process: keeps track whether work has been

redistributed since last pass of token

– A boolean as token: keeps track whether work has been redistributed
by one process and the token should go around again

Tree-Based (partly-distributed)

other …

Kumar p490

Jan Lemeire 16Pag. / 19
Discrete Optimization Problems

Tree-based Termination Detection

Master starts with weight 1.

It sends work to (p-1) slaves together with

weight 1/p for each. It keeps weight 1/p.

If a slave finishes: its sends its weight to

master. Master adds it to its weight.

If a slave sends a part of its work, it sends

halve of its weight.

Termination when weight at master becomes one

and master has finished

Idea: Associates weights with individual work pieces

Jan Lemeire 18Pag. / 19
Discrete Optimization Problems

Parallel Best-first Search

Breadth-first: similar to depth-first (every process explores part of

the tree)

Best-first: Keep stack of open nodes, ordered by a heuristic function

1. Centralised strategy: keep stack on master

 send part of nodes to slaves

 Slaves return expanded nodes

A LOT OF COMMUNICATION

2. Distributed/ local strategy: stack on each processor

Synchronization of open node list necessary:

- Random communication strategy

- Ring communication strategy

- Blackboard communication strategy

Jan Lemeire 19Pag. / 19

Ring communication

Discrete Optimization Problems

Local

Jan Lemeire 20Pag. / 19

Blackboard Strategy

Discrete Optimization Problems

Centralized

Jan Lemeire 21Pag. / 19
Discrete Optimization Problems

Graph Representation

If the same states can be encountered through different paths (cf
puzzle)

Disadvantage of a tree representation: nodes will be checked
multiple times!

Solution: Keep a closed node list

Check every expanded node whether already visited

- If parallel: synchronization of list (as for open node list)

- retrieve node with a hash function

