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Discrete Optimization Problems

DOP Example: Shift- Puzzle
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Discrete Optimization Problems

Definition DOP

Set of feasible solutions S
Find any feasible solution

Optional: cost function f for each solution 
Find optimal feasible solution (min or max)

In terms of complexity of solution methods, there are 
two classes:

Problems that have efficient algorithms for finding optimal solutions.
ex Dijkstra

Problems that don’t have such efficient algorithms (NP-complete) 
ex Traveling Salesman Problem

Algorithms
Exhaustive search: computational intensive due to large set size  

Heuristic search 
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Discrete Optimization Problems

Tree representation

Shift Puzzle Initial
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Another example: scheduling 
of automated warehouses

Discrete Optimization Problems
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Discrete Optimization Problems

Tree representation

0

feasible solution

optimal solution

Sometimes a feasible solution is OK, 

in other cases the optimal solution should be found
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Discrete Optimization Problems

Sequential Tree Search 
Algorithms

Depth – First search

1. Simple Backtracking 

2. Branch and Bound: limit the depth

Breadth – First search

1. Iterative Deepening: with open node list

Heuristic search

Best first search: 

– based on breadth-first

– With heuristic function that identifies promising nodes 
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Alternative algorithms

Alternative scenarios (due 
to uncertainty)

Multi-search multicore

Tree-level parallelism accelerator

Node-level parallelism 
(neighbor exploration)

parallel calcution of score 
or bound

cluster

Iterated Local 
Search

Branch & 
Bound

Parallelization possibilities

Algorithms Levels of Parallelism Parallel Hardware

Suitability is problem-dependent!

…

Our focus here

Discrete Optimization Problems

Brute force
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Discrete Optimization Problems

Parallel Depth-first Tree Search

Distribution of tree:
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After expansion of root 
node: send children 
& problem to slaves
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Discrete Optimization Problems

DOP looking for a feasible solution
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Discrete Optimization Problems

Parallel Work Anomalies

Sequential  work ≠ Parallel work!
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Discrete Optimization Problems

Parallel Overhead

Partitioning: low

Communication: low

Synchronization: no

Returning results: low

Idling: HIGH

Due to load imbalances

Solution: dynamic load balancing

“when finished, ask for work”

Find solutions for:

1. Donor Selection

2. Termination Detection
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Load imbalances

Discrete Optimization Problems
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Discrete Optimization Problems

Donor selection

Asynchronous Round Robin 
Each processor keeps a cyclic list 

Global Round Robin 
Master keeps a cyclic list 

Random polling
Random selection of donor
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Discrete Optimization Problems

Termination detection

Via master (centralized)

For example: if donor selection happens via master 

Dijkstra’s token algorithm (distributed/local)

Arrange processes in a ring 

Without DLB: a simple token that is passed around by 
processes when they are terminated

With DLB: 
– A boolean per process: keeps track whether work has been 

redistributed since last pass of token

– A boolean as token: keeps track whether work has been redistributed 
by one process and the token should go around again 

Tree-Based (partly-distributed)

other …

Kumar p490
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Discrete Optimization Problems

Tree-based Termination Detection

Master starts with weight 1.

It sends work to (p-1) slaves together with 

weight 1/p for each. It keeps weight 1/p.

If a slave finishes: its sends its weight to 

master. Master adds it to its weight.

If a slave sends a part of its work, it sends 

halve of its weight.

Termination when weight at master becomes one 

and master has finished 

Idea: Associates weights with individual work pieces
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Discrete Optimization Problems

Parallel Best-first Search

Breadth-first: similar to depth-first (every process explores part of 

the tree)

Best-first: Keep stack of open nodes, ordered by a heuristic function

1. Centralised strategy: keep stack on master

 send part of nodes to slaves

 Slaves return expanded nodes

A LOT OF COMMUNICATION

2. Distributed/ local strategy: stack on each processor

Synchronization of open node list necessary:

- Random communication strategy 

- Ring communication strategy 

- Blackboard communication strategy 
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Ring communication

Discrete Optimization Problems

Local
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Blackboard Strategy

Discrete Optimization Problems

Centralized
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Discrete Optimization Problems

Graph Representation

If the same states can be encountered through different paths (cf
puzzle)

Disadvantage of a tree representation: nodes will be checked 
multiple times!

Solution: Keep a closed node list

Check every expanded node whether already visited

- If parallel: synchronization of list (as for open node list)

- retrieve node with a hash function


